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To date, the only published reports of bone mineral density (BMD) in MPS IV involve patients with MPS IVA; no
reports exist describing BMD for MPS IVB. In this prospective study of BMD in three patients with MPS IVB, BMD
was acquired by dual-energy X-ray absorptiometry (DXA) at whole body (WB), lumbar spine (LS), and lateral
distal femur (LDF). Functional abilities, ambulatory status, medical history, and height z-score were evaluated.
Three patients with MPS IVB (two females), aged 17.7, 31.4 and 31.7 years, were evaluated. Every patient was
ambulatory and one sustained two fractures caused by trauma. Whole body and hip DXA scans were technically
invalid in every patient due to the presence of prosthetic hip hardware. Lumbar spine was valid in only 1 patient
due skeletal abnormalities, and was normal (Z-score of−0.8). The LDFwas valid in every patient andwas low at
all three regions of interest: average LDF z-scoreswere−3.1 (range,−2.9 to−3.6),−2.3 (range,−2.0 to−2.5),
and−2.1 (range,−2.0 to−2.3) for region 1–region 3, respectively. Patients with MPS IVB have low BMD of the
lower extremities even with full-time ambulation. Routine body sites to measure by DXA were problematic; hip
andWBwere invalid due to artifact, and LS had limited utility. The LDF was the only body site consistently avail-
able on all patients. Patients did not experience low-energy fractures despite low BMD.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mucopolysaccharidosis IVB (MPS IVB, Morquio syndrome type
B) (OMIM#253010) is an autosomal recessive inherited metabolic dis-
order caused by deficiency of β-galactosidase (GLB1) [1]. This hydrolase
is responsible for the catabolism of terminal β-galactose residues as
keratan sulfate (KS) andGM1ganglioside [2,3]. Keratan sulfate accumu-
lation in patients with MPS IVB causes skeletal dysplasia, growth retar-
dation, keratansulfaturia, corneal clouding, and impaired cardiac
function [2,4]. The incidence of MPS IV is variable among different pop-
ulations (1 per 75,000 in Northern Ireland to 1 per 640,000 in Western
Australia) [5,6]. To date more than 180 mutations have been described
on GLB1 (HGMD) [7], but fewer mutations are associated with the clin-
ical phenotype ofMPS IVB [2,4,8,9]. There is no cure or established treat-
ment for MPS IVB.

Bone and cartilage are the main tissues affected in patients with
MPS IVB, resulting in skeletal dysplasia. However, skeletal and
cartilage involvement are not only caused by the primary GAG
accumulation but also by disruption of several secondary mecha-
nisms and pathways as: signaling transduction pathways, regulation
of humoral factors (chemokines and cytokines), endocytosis,
authophagy, apoptosis, oxidative stress, innate and adaptive
immune responses [10].

The growth deficits and bone deformities seen in MPS IVB are less
severe than those observed inMPS IVA, resulting in amilder phenotype
with greater functional abilities. Lack of ambulation is known to nega-
tively impact BMD of the lateral distal femur (LDF) in patients with
other medical conditions including cerebral palsy, Duchenne muscular
dystrophy, and spina bifida [11–15]. A strong association was demon-
strated between low BMD at the LDF and fracture history in children
with cerebral palsy and Duchenne muscular dystrophy [16]. Several re-
ports have demonstrated low BMD inMPS IVA [17–20]. One of those re-
ports [17] employed a height adjustment methodology to the DXA
results, the HAZ method described by Zemel [21]. The appropriateness
of using the HAZ method for children with skeletal dysplasia and who
have severe height deficits is questionable [20,22]. Kecskemethy and
colleagues reported low BMD of the lower extremities (LDF DXA) in pa-
tients with MPS IVA, indicating that the LDF, due to the presence of me-
tallic hardware, intolerance of required position for scan acquisition,
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and spine abnormalities, is the most accurate and feasible site to mea-
sure BMD in MPS IVA [20].

To date, no reports exist describing BMD for MPS IVB; this is the first
report of BMD in MPS IVB. We describe BMDmeasured by DXA at stan-
dard body sites and the LDF [23,24], and examine clinical correlates (an-
thropometric measures, medical and fracture history, and ambulation).
Investigation of bone mineral density (BMD) in patients with MPS IVB
contributes to understanding of disease pathology.

2. Methods

2.1. Subjects

This cross-sectional study prospectively evaluated three patients
with MPS IVB (two females) ranging in age from 17.7 to 31.7 years
(mean age 26.9 years) who were enrolled in this study at the
Nemours/Alfred I. duPont Hospital for Children (AIDHC). Patients
were diagnosed biochemically by enzyme assay. Functional abilities,
medical history, tanner score, and height Z-score were reviewed. Radio-
graphs of the lateral spine were used to aid in correct region of interest
placement on the lumbar spine (LS) DXA. Age and gender-matched
norms were used to calculate Z-scores. Height and weight measures
were obtained and height Z-scores were calculated using National
Health and Nutrition Survey (NHANES) LMS tables (CDC 2000, accessed
9/5/15) [25]. The maximum age available (19.9 years) was used for pa-
tients over this age. Informed consent was applied and the study was
approved by the Institutional Review Board of the Institution (338578).

2.2. BMD assessments

Bonemineral density was assessed by DXA at thewhole body (WB),
lumbar spine LS, and LDF using a Hologic Discovery A model bone den-
sitometer (Hologic, Bedford,MA, USA) located in theAIDHCMedical Im-
aging Department. All scans were acquired and analyzed by the same
DXA technologist. The DXA Z-scores were calculated based on age and
gender-matched manufacturer-provided norms and published norma-
tive values for the LDF [21]. The oldest normative LDF values available
(18 years) were used for the two patients older than 18 years.

The LDF scans were analyzed for three distinct regions of interest,
described by Henderson et al., to assess bone density in different types
of bone [24]. Region 1 (R1), themost distal region, is predominantly tra-
becular bone; region 2 (R2) is a mix of trabecular and cortical bone; and
region 3 (R3), the most proximal region, is primarily cortical bone
(Fig. 1). The LDF BMD was assessed bilaterally, left and right femur
BMD values were averaged, and Z-scores were calculated. Abnormal
DXA results were defined as more than two standard deviations (SD)
below the normal mean, expressed as Z-score b −2 [26]. Radiographs
of the LS, including inter-vertebral assessment by DXA, were reviewed
by a radiologist and were used to aid in correct region of interest place-
ment on the LS DXA.

3. Results

Three Caucasian patients (two females) withMPS IVB were evaluat-
ed; aged 17.7, 31.4 and 31.7 years. Mean height was 131.2 cm (average
Z-score −5.4), and mean weight was 39.9 kg (average Z-score −4.0)
(Table 1). All patients were ambulatory: two walked independently
without any aids and one used a walker and occasionally (once per
month) used a wheelchair. One patient sustained two fractures (arm
and femur) due to trauma (fall and motor vehicle accident, respective-
ly). All three subjects were post-pubescent.

The presence of metallic artifact from prosthetic hips on every WB
scan precluded valid assessment of the results (Fig.2). Metal is
interpreted as bone on DXA and therefore the presence of metal artifi-
cially elevates BMD. Two of the three patients had vertebral overlap at
T12 and L1, invalidating LS scan results. The one technically valid LS

scan resulted in a normal BMD Z-score of −0.8, but wedging of L3,
which can elevate LS BMD DXA results, was noted [27] (Fig. 3). The
LDF yielded technically valid results for all patients, and Z-scores were
low at all three regions of interest with average Z-scores of −3.1,
−2.3, and−2.1 at R1–R3, respectively (Fig. 4). Every region of interest
for all measurements (both femurs) was consistently below normal.

4. Discussion

In this study, we evaluated and reported the BMD of three patients
with MPS IVB. The skeletal abnormalities seen in patients with MPS
IVB are primarily caused by the accumulation of KS. The exact mecha-
nism of low BMD in MPS IVB is still unknown, although as undegraded
substrate accumulates, normal bone and cartilage formation is
disrupted leading to impaired homeostasis which could affect BMD
[10,28]. Low BMD has also been reported in other lysosomal disorders
[28] (e.g. Gaucher's) and skeletal dysplasias [29] (e.g. achondroplasia
and hypochondroplasia).

In general, patients with MPS IVB exhibit a less severe phenotype
than those with MPS IVA. This fact is evidenced by greater functional
ability (all patients were ambulatory) and less severe growth deficits
in height resulting in an average height Z-score of −5.4, compared
with a group of patients with MPS IVA where nine of 18 patients were
fully ambulatory and had an average height Z-score of −7.4 [20].

Ambulation is preservative of bone density as demonstrated by
studies examining DXA of the lower extremities in patients with cere-
bral palsy, Duchenne muscular dystrophy, and spina bifida [11–16].
Henderson et al. described a strong association between fracture and
LDF BMD in children with Duchenne muscular dystrophy and cerebral
palsy [16]. All of our patients were essentially full-time ambulators
(one used a walker and a wheelchair once per month). Despite this am-
bulation, the LDF BMDwasuniformly belownormal in all three patients.
There was no history of non-traumatic fracture, often seen in patients
with low BMD of the lower extremities. It is impossible to examine

Fig. 1. The LDF DXA scan is analyzed for three regions of interest: Region 1 (anterior distal
metaphysis) is essentially trabecular bone, region 2 (metadiaphysis) is composed of both
trabecular and cortical bone, region 3 (diaphysis) is composed primarily of cortical bone.
There has been proximal femoral surgery with the distal end of the metal prosthesis
visible above region 3. LDF DXA, lateral distal femur dual-energy X-ray absorptiometry;
R1, region 1; R2, region 2; R3, region 3.
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the relationship between BMD and fracture in this limited number of
patients.

While DXA is themost commonly used and clinically available tech-
nology to assess BMD, there are known limitations with a two-
dimensional assessment of a three-dimensional object, like bone.
Dual-energy X-ray absorptiometry is an areal measurement that uses
values for area and bone mineral content, taken from a two-
dimensional image to determine BMD in gm/cm2—this is frequently
designated areal BMD (aBMD). Abnormally-shaped vertebrae that are

wedge-shaped or beaked are common in MPS IVB (Fig. 3). Utilizing
DXA to measure atypically shaped vertebrae can yield variable aBMD
results [27]. This is a limitation of using the LS DXA to assess BMD in pa-
tients withMPS IV(A and B). Careful review of LS radiographs should be
made to determine both the technical validity and correct identification
of vertebrae on the LS DXA scan when assessing BMD in MPS IVB. Only
oneof three LSDXA scans in this studywas valid, and still an elevation in
overall LS BMD from wedging noted at L-3 may have resulted.

While WB DXA scans could reliably be acquired, their validity was
compromised by the presence of metallic artifact present with hip re-
placements (Fig. 4). The LDF measurement was established as an

Table 1
Clinical data for MPS IVB patients.

Patient ID 1 2 3

Age (years) 17.7 31.4 31.7
Gender F M F
Height (cm) 129.5 137.2 127
Height Z-score −5.2 −5.4 −5.5
Weight (kg) 33.2 50 36.4
Weight Z-score −5.3 −2.5 −4.2
LS BMD (gm/cm2) 0.915 Invalid Invalid
LS BMD Z-score −0.8 n/a n/a
Technical note Wedging L3 L1–T12 overlap L1–T12 overlap
LDF R1 BMD (gm/cm2) 0.605 0.738 0.6775
LDF R1 Z-score −3.6 −2.9 −2.9
LDF R2 BMD (gm/cm2) 0.886 0.986 0.883
LDF R2 Z-score −2.4 −2.0 −2.5
LDF R3 BMD (gm/cm2) 0.990 1.024 0.961
LDF R3 Z-score −2.0 −2.1 −2.3
Fracture history? Y/N N Y × 2 (trauma) N
Fracture details n/a L arm from fall; L femur from car accident n/a
Ambulation details Uses walker; manual WC 1×/month Independent walker - no assistive devices Independent walker - no assistive devices

LS, lumbar spine; BMD, bone mineral density; LDF, lateral distal femur; R1, region 1; R2, region 2; R3, region 3; F, female; WC, wheelchair; M, male; L, left; MVA, motor vehicle accident.

Fig. 2. Metallic prostheses used in bilateral hip replacements artificially elevate BMD on
WB DXA. Every patient had artificial hips, invalidating WB DXA results. BMD, bone
mineral density; WB DXA, whole body dual-energy X-ray absorptiometry.

T-11

L-3

Fig. 3. Lateral spine radiograph used for correct identification of lumbar vertebrae for LS
DXA. Note the dysmorphic vertebral bodies with anterior wedging of L-3 and a
hypoplastic, wedge-shaped body at T-11. These result in focal areas of kyphosis. There
has been spinal fusion in the cervico-thoracic region using metallic fixation. LS DXA,
lateral spine dual-energy X-ray absorptiometry.
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alternative measurement site for patients with joint contractures, hip
dislocation, positioning limitations, or metallic hardware [24]. Only
the LDF DXA consistently offered technically valid DXA results. This
scan was easily obtained and well-tolerated by patents with MPS IVB.

Patient height and bone size are known to affect DXA results and for
that reason adjustments are sometimes recommended to DXA BMD re-
sults [26]. The Height-Adjusted Z-score (HAZ) method described by
Zemel et al. [21], has been applied to BMD results of patientswith differ-
ent types of MPS, resulting in normalization of the LS and WB results
[17,30].We donot adjust our one valid LS result by using the HAZmeth-
od because of the large height deficits seen in our patients withMPS IVB
(Table 1). The HAZ method of correcting for height deficit has not been
validated for the LDF DXA.

The HAZ method was developed for children with height deficits,
aged 6–18 years, who have normal skeletal morphometry. In the 2010
paper describing the HAZ method, the shortest height used was
−2.6 SD below the age-matched controls [31]. Polgreen and colleagues
[22] describe the use of the HAZ method in a group of 24 children with
MPS I (n = 11), II (n = 9) or VI (n = 4); they reported that the HAZ
method was valid for the LS, but overestimated WB results, likely due
to overall atypical bone geometry seen in MPS. While the HAZ method
was valid at the LS in this group of patients, it is important to note
that patients with MPS I and II have fewer spinal skeletal deformities
than are seen in MPS IV(A or B). The skeletal abnormalities and height
deficits seen in MPS VI are more similar to MPS IV, but the average
height Z-score in theMPSVI subjectswas−4.3 (±0.6), whereas the av-
erage height Z-score in our study was −5.4 (±0.2). The HAZ method
applied to the one technically valid LS in this study resulted in a possible
overcorrection: the unadjusted Z-score was−0.8 and after adjustment,
became +2.1. It would appear that using the HAZ adjustment might
have resulted in an overcorrection of results. Themaximum height def-
icit acceptable for theHAZmethod is unknown. For patientswith severe
skeletal conditions affecting bone morphometry and severe height def-
icits, height-based adjustments of DXA results should be used with
caution.

This study has several limitations including a limited sample size of
three patients. MPS IVB is a rare condition and BMD in MPS IVB has
not been described in the literature. Another limitation of this study is
that our evaluation of bone density was limited to DXA, which is an
areal measure. The oldest age available for the LDF DXA normative
values is 18 years. The mean age of our study population was
26.9 years (range, 17.7–31.7 years). However, peak bone mass in the
typical population is thought to be acquired between 20 and 30 years
of age depending on gender and body site [32]. We know neither the

age of peak bone mass accrual in MPS IVB, nor the age at which peak
bone is acquired at the distal femur.

In conclusion, despite these limitations, we have presented novel
findings about BMD in patientswithMPS IVB.We evaluate the technical
validity of the DXA scans acquired at different body sites and present
BMD findings at an alternative DXA site – the LDF. Imageswere evaluat-
ed and interpreted by a pediatric radiologist ensuring the accuracy of
our findings in the presence of potentially confusing skeletal anatomy.
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