GOT WORMS?: Planning and Evaluation of a Culturally Appropriate Health Education Pilot Program for the Control of Soil-Transmitted Helminth Infections in Rwandan Village Children

Pier Hart
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/mphcapstone.presentation

Part of the Public Health Commons

Let us know how access to this document benefits you

Recommended Citation
https://jdc.jefferson.edu/mphcapstone.presentation/45

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's *Center for Teaching and Learning (CTL).* The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Master of Public Health Capstone Presentations by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
GOT WORMS?: Planning and Evaluation of a Culturally Appropriate Health Education Pilot Program for the Control of Soil-Transmitted Helminth Infections in Rwandan Village Children

Pier Hart
Thomas Jefferson University
July 2011
Global Health

- Neglected Tropical Diseases (NTDs)
 - 13 types of bacterial and parasitic infections
 - Affect poor people in Africa, South America and Asia
 - Prevalence is 1.4 billion people
 - Low mortality
 - High morbidity
Soil-transmitted Helminthes (STH)

- Parasitic worms colonize the intestines
- Three types of STH Infections
 - Ascariasis: roundworm (*Ascaris lumbricoides*)
 - Trichuriasis: whipworm (*Trichuris trichiura*)
 - Hookworm infection: hookworm (*Ancylostoma duodenale* and *Necator americanus*)
STH Epidemiology

- **Incidence of STH infections**
 - Roundworm: 1.2 billion new cases per year
 - Whipworm: 800 million new cases per year
 - Hookworm: 700 million new cases per year
STH Transmission

- Fecal-to-oral transmission of eggs (roundworm & whipworm)
 - Consumption of trace amounts of contaminated soil
- Penetration of skin by larvae (hookworm)
 - Exposed skin contact with contaminated soil
- More common among children
 - Hand-to-mouth behaviors

http://www.dpd.cdc.gov/dpx
STH Symptoms and Morbidity

- Low intensity infections
 - Relatively harmless
- High intensity infections
 - Malnutrition
 - Anemia
- Chronic, high intensity infections cause long-term morbidity in children
 - Cognitive developmental problems and learning disabilities
 - Stunted physical growth and wasting
 - Fatigue
STH Prevention

- **Hygiene and Sanitation**
 - Hand washing
 - Bathroom habits
 - Wearing shoes
 - Food preparation
 - Water treatment
 - Latrine maintenance
 - Farming practices
STH Treatment

- Anthelminthic “deworming” drugs
 - Cheap
 - Safe
 - Effective
 - Easily administered
 - Chemoprophylactic

- **WHO Guidelines for Mass Drug Administration (MDA)**
 - Once per year for 20-50% pediatric prevalence
 - Twice per year for 50%+ pediatric prevalence
Epidemiological Assessment
Conducted by The Access Project in 2007

- Prevalence of STH infections in Rwanda
 - 66% of all 10- to 16-year-olds
 - 70%+ in 15 of the country’s 30 districts
 - Simultaneous infection with multiple types of STH common

- UNICEF 2003-2008 findings
 - 51% Rwandan children had stunted growth
 - 18% of under 5-year-olds severely underweight
Community Assessment
Conducted by Priscilla Sepe and JeffHEALTH in 2009

- "Knowledge, attitudes and practices related to soil-transmitted helminthes in Rwandan villages”
 - Misconceptions about transmission
 - Limited knowledge of long-term morbidity
 - Willingness to take deworming drugs
 - Limited water poses barrier to prevention
 - Poor sense of self-efficacy

- Recommendations for interventions
 - Small group seminar lessons
 - Educate mothers and/or children
 - Visual aids
STH Control in Rwanda

The Access Project in collaboration with Rwanda Ministry of Health

- **Mass drug administration (MDA) in Rwanda**
 - Ongoing: 2008-present, twice per year
 - Administration via health center and health workers
 - Successful

- **MDA in Rwanda is cost-effective**
 - $0.12 per child treated averts $4.22 per anemia case

- **Sensitization campaign in Rwanda**
 - Implemented: 2008-2009
 - Health education in schools and health centers
 - Unsuccessful
Goals and Objectives

Goal 1: Plan and implement culturally appropriate health education pilot program based on findings of Sepe 2009

- Objective 1: Increase knowledge of STH infections and transmission
- Objective 2: Improve attitudes toward prevention and treatment
- Objective 3: Support changes in health behaviors relevant to transmission
Goals and Objectives

Goal 2: Evaluate pilot health education program

- Objective 1: Improve planning and implementation of future health education programs in Rwanda
- Objective 2: Determine effectiveness of community-based approach to program planning and evaluation
Materials and Methods

- Inclusion criteria and rationale
 - Women only
 - Have children or take care of children
- Subject recruitment
 - Convenience sample
- Format
 - Small group seminars
 - 3 lessons in each village
 - 9-12 subjects per lesson
 - Oral with visual aids
 - Traditional storyline/drama teaching method
- Content
 - Tailored to Rwandan village population
 - Knowledge
 - Attitudes
 - Practices
Materials and Methods

- Health Belief Model
 - Perceived susceptibility
 - Perceived severity
 - Perceived benefits
 - Perceived barriers

- Questionnaire
 - Pre- and post-lesson
 - One-on-one
 - Kinyarwanda translation
 - 17 questions
 - 2 demographics questions
 - 4 Yes/no answer questions
 - 11 Multiple-choice questions
Results

Sample size and demographics

- Number of Participants: 61
- Number of Participants from Akarambi Village: 32
- Number of Participants from Rugerero Village: 29
- Percent Female: 100%
- Age Range: 17 to 60 years
- Average Age: 34.6 years
- Number of Children: 0 to 8
- Average Number of Children: 3.1
Results

- Perceived susceptibility & knowledge of transmission
 - Who in your village can have infection with inzoka? (Question 4)
 • Before: 90% Correct
 • After: 100% Correct
 • Percent Change: 11%
 • Chi-square (1, N=62) = 10.53, p = .001
 - Why do people become infected with inzoka? (Question 5)
 • Before: 92% Correct
 • After: 100% Correct
 • Percent Change: 8.7%
 • Chi-square (1, N=62) = 8.33, p = .004
Results

- Perceived severity & knowledge of symptoms and morbidity
 - Do people who have inzoka have symptoms? (Question 7)
 - Before: 3% Correct
 - After: 15% Correct
 - Percent Change: 400%
 - Chi-square (1, N=62) = 8.79, p = .003
 - Common symptoms of inzoka in children are? (Question 8)
 - Before: 100% Correct
 - After: 100% Correct
 - Repeated infections with inzoka in children can cause? (Question 9)
 - Before: 44% Correct
 - After: 62% Correct
 - Percent Change: 41%
 - Chi-square (1, N=62) = 6.50, p = .01
Results

Knowledge of prevention

How can you prevent worm infection at home? (Question 11)
- Before: 92% Correct
- After: 97% Correct
- Percent Change: 5.4%
- Chi-square (1, N=62) = 2.41, p = .1

When is it most important for you and your children to wash your hands? (Question 12)
- Before: 74% Correct
- After: 87% Correct
- Percent Change: 18%
- Chi-square (1, N=62) = 5.38, p = .02
Results

Perceived barriers and knowledge of treatment

- Is there medication available to treat inzoka? (Question 13)
 - Before: 100% Yes
- If yes (to Q13), is the medication to treat inzoka safe for your children to take? (Question 14)
 - Before: 100% Yes
- At what age can you start giving a child medication for inzoka? (Question 15)
 - Before: 24% Correct
 - After: 81% Correct
 - Perfect Change: 240%
 - Chi-square (1, N=62) = 65.14, p = 0
Results

Perceived benefits and intention to seek treatment

When should children take medication to treat inzoka? (Question 16)
- Before: 90% Correct
- After: 98% Correct
- Perfect Change: 8.9%
- Chi-square (1, N=62) = 5.67, p = .02

What should you do if you think that you or your child has inzoka? (Question 18)
- Before: 100% Correct
- After: 100% Correct
Results

Knowledge of prior treatment
- To your knowledge, has your child been given medication for inzoka in the past? (Question 17)
 - Before: 93% Yes

Self-efficacy
- Do you think it is possible to keep from getting inzoka? (Question 10)
 - Before: 98% Yes
Conclusions

Lesson content
- Good knowledge of transmission and high perceived severity
- Very limited knowledge of long-term morbidity and low perceived severity
- Good knowledge of treatment
- Sufficient perceived benefit to treatment
- Few perceived barriers to treatment
- Self-efficacy and perceived barriers to prevention unclear

Teaching methods
- Visual aids effective
- Traditional Rwanda teaching methods very effective
- Quantitative information easily understood
Recommendations for Future JeffHEALTH Interventions

- Utilize traditional Rwandan teaching method of drama
- Develop culturally appropriate visual aids
- Give hands-on instruction in preventive health behaviors
- Use other health behavior theories
- Teach older children who take care of younger children
- Recruit and train village “STH experts”
- Work with villagers to improve sanitation
Acknowledgements

- James Plumb, MD MPH
- Rickie Brawer, PhD
- Priscilla Sepe, MPH
- JeffHEALTH & RVCP
- Translators
- Villagers of Akarambi and Rugerero