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Synaptic nanomodules underlie the organization and plasticity 
of spine synapses

Martin Hruska1, Nathan Henderson1, Sylvain J Le Marchand2, Haani Jafri1, and Matthew B 
Dalva1,*

1Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Thomas 
Jefferson University, Philadelphia, PA

Abstract

Experience results in long-lasting changes in dendritic spine size, yet how the molecular 

architecture of the synapse responds to plasticity remains poorly understood. Here, a combined 

approach of multi-color stimulated emission depletion microscopy (STED) and confocal imaging 

demonstrates that structural plasticity is linked to the addition of unitary synaptic nanomodules to 

spines. Spine synapses in vivo and in vitro contain discrete and aligned sub-diffraction modules of 

pre- and post-synaptic proteins whose number scales linearly with spine volume. Live-cell time-

lapse super-resolution imaging reveals that N-methyl-D-aspartate receptor (NMDAR)-dependent 

increases in spine size are accompanied both by enhanced mobility of pre- and post-synaptic 

modules that remain aligned with each other and by the coordinated addition of new nanomodules. 

These findings suggest a simplified model for experience-dependent structural plasticity relying on 

an unexpectedly modular nano-molecular architecture of synaptic proteins.

Introduction

Experience and NMDAR-dependent plasticity induce long-lasting changes in dendritic spine 

shape and size, which are thought to be a structural correlate of learning and memory1–3. 

Dendritic spines contain specialized structures called post-synaptic densities (PSDs) that are 

directly apposed to pre-synaptic neurotransmitter release sites and which scale in size with 

changes in synaptic strength4,5. Influx of calcium into dendritic spines following the 

activation of NMDARs triggers translocation and accumulation of key proteins of the PSD 

such as the MAGUK, PSD-95 and leads to lasting changes in synaptic strength6. Despite 

having understood this relationship for many years, the molecular dynamics of the 

translocation and accumulation of PSD proteins following structural plasticity remains 

poorly understood.
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Among the structural components of the PSD are MAGUK scaffolding proteins, which 

anchor and organize the signaling complex of excitatory synapses4,7. It has been postulated 

that the expression of plasticity is mediated by the addition of new ‘slots’ formed by 

MAGUKs or MAGUK binding partners that are added to the PSD8, 10–13. However, more 

recent dynamic imaging experiments have challenged this view, suggesting that synaptic 

structures are fluid, forming a network of barriers to the diffusion of synaptic proteins rather 

than unitary slots14–17. These two models suggest that plastic changes to synapse function 

may result from either the addition of clustered sets of synaptic components or by the 

accumulation of molecules trapped in networks of protein complexes. To resolve these 

important issues, a nanoscale understanding of how key components of the PSD such as 

PSD-95 are organized and respond to plasticity within individual spine synapses is needed.

The sizes of individual spines, PSDs, and pre-synaptic terminals are strongly correlated, 

suggesting that the coordinated enlargement of PSDs and pre-synaptic active zones might 

underlie structural plasticity18,19. However, in contrast to post-synaptic changes, much less 

is known about the impact of NMDAR-dependent plasticity on pre-synaptic organization. 

Live imaging experiments demonstrated a tight temporal relationship between the 

enlargement of dendritic spines and pre-synaptic boutons20. These findings suggest that 

similar mechanisms or dynamics may function both pre- and post-synaptically. However, the 

impact of plasticity on the molecular architecture of the pre-synaptic terminal and how these 

changes might be related to the organization of the post-synaptic terminal are not known.

Here, using a combination of confocal microscopy, two- and three-color STED and two-

color live-cell STED, we demonstrate that structural plasticity of dendritic spines is 

mediated by coordinated increases in the number of precisely aligned modules of pre- and 

post-synaptic proteins. Spine synapses in vitro and brain slices contain discrete, precisely 

aligned sub-diffraction nanomodules, whose number, not size, scales with spine volume. 

Chemical LTP results in an NMDAR-dependent increase in the number of nanomodules in 

spines. In potentiated spines both pre- and post-synaptic nanomodules show enhanced 

mobility. Remarkably, despite their enhanced mobility, pre- and post-synaptic modules 

remained precisely registered, moving as an aligned pair. Thus, our findings suggest a 

simplified model for experience-dependent plasticity where aligned nanomodules of pre- 

and post-synaptic proteins function as units, or nanoquanta, of synaptic organization.

Results

Spine size correlates to the number of aligned pre- and post-synaptic modules in vitro

Dendritic spine synapses respond to synaptic plasticity with changes in the proteins of the 

PSD6. To begin to determine the link between the spine and the molecular architecture at 

synapses, we visualized the pre- and post-synaptic nano-architecture in individual dendritic 

spines under basal conditions in mature 21-27 day in vitro (DIV) cultured cortical neurons 

transfected with only tdTomato. Imaging of cell-filling tdTomato-labeled dendrites enabled 

visualization of dendritic spines at confocal resolution (>250 nm) while simultaneous dual-

color STED imaging of endogenous pre-synaptic vesicular glutamate transporter, vGlut1, 

and endogenous post-synaptic scaffolding MAGUK protein, PSD-95, was used to examine 
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nano-organization of excitatory synapses using STED-validated fluorescently conjugated 

secondary antibodies (resolution of 80-100nm; Fig. 1a-k; Fig. S1).

As expected, combined confocal and STED imaging resolved dendritic spines that contained 

PSD-95 clusters tightly apposed to vGlut1 clusters spaced at a distance of ~100nm (Fig. 1a, 

b)4. The number of apposed vGlut1 and PSD-95 clusters varied among spines. Most spines 

contained a single synaptic profile with one PSD-95 puncta aligned with one vGlut1 puncta. 

However, many spines contained more than one pair of PSD-95 and vGlut1 puncta (Fig. 1a-

c, f). In control experiments, the deconvolution algorithm used improved the apparent 

resolution of our STED images (Fig. S2), but did not introduce or remove clusters even after 

multiple rounds of photobleaching (Fig. S3)21. Analysis of non-deconvolved PSD-95 and 

vGlut1 images gave similar results as analysis of the same set of images after deconvolution, 

further validating the use of the algorithm (Fig. S4a, d, g). We confirmed that multiple 

aligned puncta at spines represented discrete clusters using 3× gated STED confocal 

microscopy that enabled us to acquire super-resolved images in XY (~50 nm) and Z (~200 

nm) of PSD-95 and vGlut1 or PSD-95 and the pre-synaptic active zone marker Bassoon 

(Fig. S5a, b).

To explore the nano-organization of spine synapses in more detail, three-color STED images 

of either the synaptic vesicle protein, Synaptophysin-1 (SYP-1), or Bassoon together with 

vGlut1 and PSD-95, were collected from EGFP-filled cortical neurons (Fig. 2 and 3; Leica 

SP8 3× gated STED, FWHM ~50 nm). At EGFP+ spines SYP-1 and Bassoon were found to 

co-localize with vGlut1 and were apposed to PSD-95 puncta (Fig. 2a and Fig. 3a). 

Consistent with our results from imaging the pre-synaptic marker vGlut1, most spines were 

apposed to a single SYP-1 or Bassoon puncta, while the remainder of spines were contacted 

by multiple SYP-1 (Fig. 2a, b) and Bassoon puncta (Fig. 3a-d). Thus, we find that many 

excitatory synapses are composed of multiple aligned pre- and post-synaptic clusters of 

endogenous synaptic proteins.

Surprisingly, the average size of individual PSD-95, vGlut1, SYP-1 and Bassoon clusters did 

not vary between single and multi-cluster spines (Fig. 1d, g; Fig. S4e, h; Fig. 2c and Fig. 3e). 

Thus, as the number of puncta at a spine increases there is a net increase in the overall 

amount of PSD-95, vGlut1, SYP-1, and Bassoon found at spine synapses, but the average 

size of each puncta remains constant (Fig. 1e, h; Fig. 2d; Fig. 3f; and Fig. S4f, i). These 

results suggest that individual PSD-95 and pre-synaptic clusters may represent modular units 

of synaptic organization. We termed them “nanomodules”.

To test the hypothesis that nanomodules are units of spine organization, we asked how the 

number of pre- and post-synaptic modules was related to spine size17. The number of 

PSD-95, vGlut1, SYP-1 and Bassoon clusters scaled with spine size, exhibiting a linear 

relationship with spine head area (Fig. 1i, j; Fig. 2f, g; Fig. S4b, c; Fig. 2h and Fig. 3h). 

Larger spines contained more PSD-95, vGlut1, SYP-1, and Bassoon with a significant 

positive correlation between the total area of PSD-95, vGlut1, SYP-1, or Bassoon per spine 

and spine head area (Fig. S5c-f). However, cumulative probability histograms of PSD-95, 

vGlut1, SYP-1, or Bassoon nanomodule areas revealed no significant differences in 

nanomodule size in single and multi-cluster spines (Fig. 2e and Fig. 3g). These findings 
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suggest that while the number of nanomodules scales with spine size, the size of individual 

nanomodules does not change.

To test the possibility that the relationship between the number of nanomodules and spine 

size was due to a random association between larger spines and nanoclusters, we conducted 

Monte Carlo simulations (Fig. S6 and Fig. S7). Simulated spines were selected for analysis 

using the same set of inclusion criteria as used for endogenous spines (Fig. S6c). Of the 

fraction of simulated spines that were associated with PSD-95 (≤ 4%) or vGlut1 (≤19%) 

greater than 80% contained only single nanomodules, and a significantly lower fraction of 

simulated spines contained multiple nanomodules than observed in neurons (Fig. 1c, f; Fig. 

S6g, h; PSD-95, two and three puncta, p ≤ 0.0142; vGlut1, two puncta, p ≤ 0.0073, three 

puncta, p≤0.0001, t-test). Similar results were obtained for SYP-1 and Bassoon clusters (Fig. 

S7i, j). These findings suggest that the number of nanomodules in dendritic spines is not 

random and may involve an active process. In simulated spines that contained nanomodules, 

the areas of simulated spines and the number of nanomodules showed little correlation (Fig. 

S6i, j and Fig. S7k-n), and spine size and nanomodule number in simulated spines was 

significantly less well correlated than in neurons in vitro (Fig. 1i, j; Fig. 2f-g and Fig. 3h). 

These results support a model where nanomodules are units of spine organization, with 

module number, not size, scaling with spine area.

The observation that spines may contain multiple pre- and post-synaptic elements suggests 

that individual pre- and post-synaptic modules might function in pairs, similar to what has 

been observed by electron microscopy (EM) at perforated synapses22. Indeed, we found that 

the number of PSD-95 clusters increased with the number of vGlut1, SYP-1 and Bassoon 

nanomodules (Fig. 1k; Fig. 2j; Fig. 3i). These findings demonstrate a relationship between 

pre- and post-synaptic nano-organization and suggest that the number of PSD-95 and pre-

synaptic modules found at a single spine may scale with dendritic spine size.

Synaptic architecture exhibits modular organization in vivo

To determine whether dendritic spines in the cortex are also composed of pre- and post-

synaptic modules, neurons of the somatosensory cortex were labeled at postnatal day 7 (P7) 

by injecting a lentivirus that transduced only EGFP. At P28-P35 when many mature 

dendritic spines are present, we perfused the mice, sectioned the brains and cleared the 

sections using the CUBIC1/2 method to minimize light scattering during imaging23,24. 3D 

super-resolved images were collected with a gated 3× STED Leica confocal system to image 

EGFP-labeled spines in confocal resolution (>250 nm) and endogenous PSD-95 and vGlut1 

clusters in super-resolution (~80 nm in XY and ~ 200 nm in Z; Fig. 4a, b and Video S1).

Spines were selected from primary and secondary dendritic branches of the apical dendritic 

arbor where experience-dependent plasticity of spine size occurs25. 3D reconstruction of 

non-deconvolved imaged sections demonstrated that, similar to synapses in vitro, dendritic 

spines in vivo contained both single and multiple aligned PSD-95 and vGlut1 pairs (Fig. 4b-

d and Video S1). Approximately 40% of spines contained a single PSD-95 cluster apposed 

to a single vGlut1 cluster, while spines with two, three, four and even five aligned PSD-95 

and vGlut1 clusters were also observed (Fig 4d-f). Similar results were obtained from brain 

sections that were not subjected to CUBIC (Fig. S8a, b, e). Interestingly, in brain sections, 
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we found fewer spines that consisted of a single module of PSD-95 and vGlut1 than seen in 
vitro (~40% vs. ~60%) with a concomitant increase in the proportion of spines that 

contained two or more modules. To test whether these differences were due simply to higher 

density of synaptic clusters in the brain we conducted Monte Carlo simulations (Fig. S9). 

Simulations resulted in significantly more single nanomodule spines and fewer spines 

containing multiple PSD-95 and vGlut1 nanomodules than found endogenously (Fig. 4a, f; 

Fig. S8b, e and Fig. S9f). These data suggest that in brain sections nanomodules are 

precisely associated with spines.

A lower fraction of spines contains single nanomodules in brain sections than in vitro, 

therefore we asked whether the relationship between spine size and module number was still 

maintained in neurons of the somatosensory cortex. The average size of PSD-95 and vGlut1 

nano-clusters in vivo was not significantly different between single and multi-cluster spines 

(Fig. 4g, h; Fig. S8c, f). Moreover, the number of PSD-95 and vGlut1 clusters scaled with 

spine size (Fig. 4i, j and Fig. S8h, i) with a significantly steeper slope than expected from the 

Monte Carlo simulation (Fig. S9h, i). Finally, the number of PSD-95 and vGlut1 

nanomodules scaled tightly with each other at spines (Fig. 4k). These data indicate that both 

in vivo and in vitro spine synapses are composed of aligned pre- and post-synaptic 

nanomodules whose number scales linearly with spine size.

Structural plasticity results in spines containing multiple aligned pre- and post-synaptic 
nanomodules

To examine whether coordinated increases in the number of nanomodules might be linked to 

structural plasticity that underlies increases in dendritic spine size3, we examined whether 

the number of endogenous PSD-95 and vGlut1 modules per spine is impacted by NMDAR-

dependent chemical LTP (cLTP)26. We hypothesized that the increase in PSD-95 levels 

observed three hours after induction of structural plasticity might be due to the addition of 

new post-synaptic modules20. We induced spine enlargement with glycine treatment (cLTP) 

in DIV21-25 cortical neurons transfected with only cell-filling tdTomato. This method 

results in NMDAR-dependent structural plasticity of approximately 40% of dendritic 

spines26–28. To determine which spines exhibit structural plasticity, neurons were imaged 

using a spinning disk confocal microscope once every six minutes for three hours after the 

induction of cLTP (Fig. 5a-e, Video S2 and S3). cLTP resulted in sustained enlargement of 

~42% of dendritic spines while the remainder of spines were non-responsive, having no 

lasting changes in size (Fig. 5f). Increases in spine size following glycine treatment were 

blocked by pre-treatment with 50 μM APV and 10 μM MK-801 and remained unchanged in 

control (un-stimulated) neurons imaged for three hours (Fig. 5f, Video S2 and S3).

To determine the impact of cLTP on the synaptic nano-architecture, neurons were fixed 

immediately at the conclusion of live-cell imaging and stained for endogenous PSD-95 and 

vGlut1. Retrospective analysis of individual live-imaged spines was conducted using STED 

and confocal imaging (Fig. 5a-e). In control neurons, which were not treated with glycine, 

the majority of spines (>65%) contained a single PSD-95 module apposed to a single vGlut1 

module, while the remaining < 35% of spines had multiple clusters (Fig. 5a, g-j). In contrast, 
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spines that increased in size after cLTP contained significantly more PSD-95 modules (Fig. 

5b, g).

Plasticity may drive correlated changes in pre- and post-synaptic size20. Consistent with this 

idea, enlarged spines also had significantly more pre-synaptic vGlut1 modules (Fig. 5b, h), 

suggesting that both pre- and post-synaptic nanomodules are impacted by structural 

plasticity. Potentiated spines had a shift in pre- and post-synaptic module number with 

respect to control spines such that only ~40% contained single PSD-95 and vGlut1 

nanomodules and ~60% of spines contained multiple PSD-95 and vGlut1 modules (Fig. 5i, 

j). APV and MK-801 pre-treatment prevented the increases in PSD-95 and vGlut1 

nanomodule numbers and reduced the proportion of multi-module spines to less than 40% 

(Fig. 5d, g-j). Thus, the increases in the number of both pre- and post-synaptic nanomodules 

appear related to structural plasticity induced by cLTP. Consistent with this model, non-

responsive spines, which did not increase in size after cLTP, contained significantly fewer 

PSD-95 and vGlut1 nanomodules than potentiated spines (Fig. 5c, f-j; PSD-95: p = 0.006; 

vGlut1: p = 0.03, t-test). Thus, spine enlargement following cLTP leads to the increase in the 

number of endogenous PSD-95 and vGlut1 nanomodules resulting in a higher proportion of 

multi-module spines.

Under basal conditions, synaptic nanomodule size did not differ between single and multi-

cluster spines (Fig. 1–3). Therefore, we next tested whether PSD-95 and vGlut1 

nanomodules have unitary size following cLTP. In potentiated spines, the size of PSD-95 

and vGlut1 nanomodules did not differ from control or non-responsive spines (Fig. 5k, l). 

However, consistent with the well-established role of neuronal activity in the maintenance of 

synaptic PSD-9529,30, treatment with APV and MK-801 during the three-hour imaging 

period significantly reduced the area of PSD-95 but not vGlut1 nanomodules (Fig. 5k, l). 

Importantly, in spines that underwent structural plasticity neither pre- nor post-synaptic 

module size changed as spine size increased (Fig. 5m, n). These results suggest that the 

coordinated increase in modular pre- and post-synaptic protein complexes may underlie 

NMDAR-dependent structural plasticity.

Pre- and post-synaptic modules exhibit increased dynamics, yet remain aligned during 
structural plasticity

Post-hoc analysis following cLTP induction does not allow us to rule out the possibility that 

the spines that became larger already had multiple modules. Therefore, we simultaneously 

visualized the dynamic remodeling of pre- and post-synaptic nano-architecture during 

structural plasticity of dendritic spines. We used live-cell STED imaging of DIV 21-25 

cortical neurons following cLTP induction for three hours at ~90 nm resolution. Pre- and 

post-synaptic nanomodules were visualized in living neurons by separately transfecting two 

groups of cortical neurons in suspension at DIV 0, one group with PSD-95-EGFP and cell-

filling tdTomato and the other with Synaptophysin-mTurq2 (SYP-mTurq2), and then mixing 

the two sets of neurons (Methods). SYP-mTurq2 was chosen as the pre-synaptic marker for 

these experiments because Synaptophysin is organized into nanomodules (Fig. 2) and has 

well-characterized fluorescently tagged expression constructs31–33.
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In unstimulated control neurons, the majority of spines contacted by a SYP-mTurq2+ axon 

contained a single PSD-95-EGFP nanomodule apposed to a single SYP-mTurq2 

nanomodule (Fig. 6a). The average size of control spines did not change over the course of 

three hours (Fig. S10a) and the number of PSD-95-EGFP and SYP-mTurq2 modules 

remained stable on average over this imaging period (Fig. 6e, f). As expected from our 

previous experiments, glycine treatment resulted in two groups of spines: non-responsive 

spines that remained unchanged in size, and potentiated spines that exhibited a significant 

long-lasting increase in size (Fig. 6b, c and Fig. S10a). Similar to control spines, non-

responsive spines failed to show changes in the number of pre- or post-synaptic 

nanomodules over the imaging period (Fig. 6b, e, f). Consistent with the hypothesis that 

structural plasticity results in an increased number of synaptic nanomodules, three hours 

after glycine treatment potentiated spines contained significantly more of both PSD-95-

EGFP and SYP-mTurq2 nanomodules. This increases were blocked by NMDAR antagonists 

(Fig. 6c-f). These findings indicate that induction of structural plasticity results in the paired 

increase of pre- and post-synaptic nanomodules.

Structural changes to spine size occur rapidly during the first 30 minutes after induction of 

plasticity6,20. We next asked when changes to the molecular nano-architecture might occur. 

In potentiated spines, there was a significant increase in the number of PSD-95-EGFP 

modules within an hour after glycine treatment that remained significantly higher than 

control for the remainder of the imaging period (Fig. 6e). These findings are consistent with 

previous work demonstrating a significant rise in PSD-95 levels 60 minutes after LTP 

stimulation20. During the imaging period the size of individual PSD-95-EGFP clusters 

within single potentiated spines did not change (Fig. S10b). Pre-synaptic SYP-mTurq2 

modules also began to increase in number soon after cLTP, and this increase reached 

significance within two hours post glycine treatment (Fig. 6f). Increases in PSD-95-EGFP 

and SYP-mTurq2 module number were not observed in non-responsive glycine-treated 

spines or control-treated spines and were blocked by NMDAR antagonists (Fig. 6a-f). 

Similar results were obtained when endogenous PSD-95 was labeled with EGFP-FingR 

PSD-95 intrabodies34 (Fig. S11a, b; Video S4). These results indicate that the number of 

modules begins to increase soon after induction of structural plasticity and that by two hours 

post induction newly aligned pre- and post-synaptic modules are present in potentiated 

spines. Importantly, while the increase in average nanomodule number is gradual, the 

average reflects an increasing proportion of spines with multiple modules, which appear to 

be added in a unitary fashion. These findings highlight the importance of coordinated re-

organization of pre- and post-synaptic nano-architecture.

Induction of structural plasticity results in changes to spine dynamics3. Therefore, we next 

examined whether plasticity might result in changes in the organization of synaptic 

nanomodules. Under basal conditions both PSD-95-EGFP and SYP-mTurq2 modules were 

not stationary. In control spines both PSD-95-EGFP+ and SYP-mTurq2+ modules moved 

similar distances (~1 μm, Fig. 6a, g, h; Video S5). Remarkably, glycine treatment resulted in 

a significant increase in the mobility of PSD-95-EGFP and SYP-mTurq2 nanomodules in 

potentiated spines (Fig. 6c, g, h; Video S5). This increased mobility of synaptic modules is 

likely functionally important for the structural plasticity of synapses because it was blocked 

by inhibiting NMDARs and absent in non-responsive spines (Fig. 6b, g, h; Video S5). 
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Consistent with this model, the mobility of endogenous PSD-95 nanomodules visualized 

using EGFP-FingR intrabodies was significantly higher in potentiated spines than in control 

or non-responsive spines (Fig. S11c; Video S4).

Increased mobility of synaptic modules following induction of structural plasticity has been 

suggested to result in changes to the trans-synaptic complex linking pre- and post-synaptic 

proteins16. In this model, mobility of the synaptic nano-architecture might be due to 

instability in the synaptic structure. Alternatively, movement of pre- and post-synaptic 

structures might reflect an ordered process linked to the formation of new synaptic 

components. If plasticity results in increased synaptic disorder, we would expect that pre- 

and post-synaptic nanomodules might begin to move independently from one another. To 

test this, we asked whether plasticity changed the total distance that pre- and post-synaptic 

modules moved. Rather than reflecting disorganization, the enhanced mobility of PSD-95-

EGFP and SYP-mTurq2 appears ordered, with each pair of nanomodules moving together 

(Fig. 6c; Video S5) and covering similar distances during the imaging period (~1.5 μm, Fig. 

6g, h).

To examine how plasticity might impact the nanoscale spatial organization of the synapse, 

we quantified the relationship between pre- and post-synaptic nanomodules using two 

metrics: distance between the centroids of pairs of modules (dx) and the alignment between 

pairs of modules (өx; Fig. 6i, Methods). Despite the significantly higher mobility of PSD-95-

EGFP and SYP-mTurq2 in potentiated spines, neither the distance between pairs of modules 

nor the alignment of modules varied significantly between groups (Fig. 6j, k; Video S5). 

Blockade of NMDARs resulted in a significantly smaller өx between pre- and post-synaptic 

modules, suggesting that neuronal activity may regulate the alignment of nanomodules. 

Regardless, examination of the movement of PSD-95-EGFP and SYP-mTurq2 modules 

revealed that these complexes move around the spine head as an aligned pair. These data 

suggest a model in which the pre-and post-synaptic nano-architecture participates in 

structural plasticity as a functional unit that spans the synaptic cleft.

Pre- and post-synaptic nano-architecture is rapidly modified following structural plasticity

Induction of NMDAR-dependent structural plasticity results in rapid changes to spine 

morphology. To begin to examine when the nanoscale changes in synaptic organization 

occur after induction of structural plasticity, we performed live-cell STED imaging of 

cultures transfected as described above every 12.5 minutes for one hour (Fig. 7). These 

experiments revealed that the number of PSD-95-EGFP nanomodules in potentiated spines 

began to increase within 12.5 minutes of cLTP induction. By 50 minutes after induction of 

cLTP, potentiated spines contained significantly more PSD-95-EGFP nanomodules than both 

the control and non-responsive spines (Fig. 7a-c; Video S6). These results suggest that 

changes to post-synaptic nano-architecture begin within minutes following the induction of 

NMDAR-dependent plasticity.

Unlike PSD-95, there was a significant increase in SYP-mTurq2 nanomodules in both 

potentiated and non-potentiated spines immediately after cLTP induction (Fig. 7d; Video 

S6). These early structural modifications may reflect short-term changes in pre-synaptic 

function associated with high-levels of neuronal activity35. By 25 minutes after cLTP 
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induction, numbers of SYP-mTurq2 nanomodules in non-potentiated spines had fallen to 

control levels while in potentiated spines the number of nanomodules was significantly 

higher (Fig. 7d). These data suggest that changes in pre-synaptic module number may occur 

prior to the increase in post-synaptic module number.

The number of pre- and post-synaptic nanomodules increases in spines by one hour after 

induction of cLTP, but shortly after induction of structural plasticity, PSD-95 is thought to 

undergo a rapid and transient increase in mobility36. To examine events that occur during the 

first 12.5 minutes after induction of cLTP, we first determined the number of PSD-95-EGFP 

nanomodules in individual tdTomato+ spines using live-cell STED. Then spines with one or 

two nanomodules were photobleached and fluorescence recovery of PSD-95-EGFP in 

photobleached spines (FRAP) was monitored following cLTP36,37. At the conclusion of 

FRAP neurons were again imaged with live-cell STED and nanomodule number determined 

(Fig. 7e, f).

Before cLTP the recovery of PSD-95-EGFP in bleached spines was similar in all conditions 

(Fig. 7g, h). Induction of cLTP resulted in a rapid and transient increase in PSD-95-EGFP 

mobility only in spines that were enlarged (≥10% sustained increase over baseline) after 

cLTP (Fig. 7f-h; Video S7). These findings are consistent with previously published data for 

structural plasticity induced by photostimulation36, and suggest that increases in PSD-95 

mobility occur rapidly after induction of structural plasticity, are transient, and are specific 

to spines undergoing structural changes. Although we were able to measure differences in 

PSD-95 mobility, as expected from rapid live-cell STED imaging, there were no significant 

changes in PSD-95-EGFP nanomodule number in unenlarged or enlarged spines at this early 

time point (Fig. 7f). These results suggest that the transient increase in PSD-95-EGFP 

mobility occurs prior to the increase in the number of PSD-95-EGFP nanomodules.

Discussion

Competing hypotheses have suggested that the synaptic micro-architecture is composed of 

either ridged structures trapped in nanodomains that form a trans-synaptic column16 or 

amorphous fluid-like structures with rapidly transitioning proteins in a dynamic 

equilibrium14. How these two models might explain the ability of the synapse to undergo 

long-lasting, activity-dependent structural changes has remained obscure. Here, using STED 

imaging, we demonstrate that spine synapses in vitro and in vivo are composed of discrete, 

aligned pre- and post-synaptic protein nanomodules of uniform size, whose number, not 

size, scales with the size of dendritic spines. Activity-dependent structural plasticity of 

individual spines results in long-lasting increases in the number of modules. These findings 

are reminiscent of previous work in the hippocampus suggesting an all-or-none model of 

synaptic plasticity38, recent modeling work39, and are consistent with the observation that 

some dendritic spines may contain perforated PSDs22,40,41. The nano-organization of pre- 

and post-synaptic proteins was remarkably similar in vitro and in brain slices from cortex 

suggesting that these are robust features of the synapse. Similar post-synaptic nano-clusters 

of PSD-95 have been observed in the hippocampus42. Together, our data indicate that 

synaptic architecture is composed of modular pre- and post-synaptic organizational units, 

and that the increase in the number of these modules underlies structural plasticity.
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The tight correlation between the sizes of pre-and post-synaptic structures has led to the 

suggestion that the modifications of pre- and post-synaptic architecture following plasticity 

may occur in concert18,19. However, at most synapses plasticity is thought to be expressed 

by post-synaptic structural changes downstream of calcium influx through NMDARs7,43. 

Whether long-lasting changes in pre-synaptic molecular organization are associated with 

NMDAR-dependent plasticity is less clear. In pyramidal neurons, induction of LTP and 

spine enlargement appear to result in an increase in the size of the associated pre-synaptic 

boutons20, while in the amygdala induction of fear learning may result in increased numbers 

of boutons44. Using live-cell dual-color STED imaging we demonstrate that spine 

enlargement following cLTP leads to the formation of new aligned nanomodules that 

undergo coordinated rearrangements pre-and post-synaptically. In this respect, multi-

nanomodule spine synapses are unexpectedly similar to the neuromuscular junction, 

containing sets of pre-synaptic sites paired with post-synaptic proteins, which can be added 

in response to NMDAR-driven plasticity. Fast time resolved live-cell STED imaging 

indicates that the changes in the number of SYP-1 nanomodules may precede modification 

to the post-synaptic PSD-95 nano-architecture. These data suggest that the expression of 

experience-dependent plasticity is not solely a post-synaptic phenomenon, but rather 

involves both pre- and post-synaptic mechanisms functioning in concert. It will be 

interesting to determine whether the mechanisms mediating the coordinated increase in pre- 

and post-synaptic nanomodule number and movement are the same or different and whether 

these events are linked to changes in the movement of glutamate receptors or 

spines12,13,45–47.

How might new nanomodules be generated rapidly after NMDAR-dependent plasticity? One 

possibility is that nanomodules are recruited as units from dendrites or axons into 

potentiated synapses. While attractive, this possibility seems unlikely as PSD-95 appears to 

move between spines by diffusion48 and we failed to detect nanomodules of PSD-95 moving 

into enlarged spines after cLTP. However, due to the limitations of live-cell STED 

microscopy, new nanomodules could have been rapidly delivered to spines. A second 

possibility is that new nanomodules could be generated by splitting of existing 

nanomodules. Consistent with this possibility, analysis of nanomodules in vitro and in brain 

slices indicates that both pre- and post-synaptic modules are limited in size. Results from 

FRAP experiments suggest that the exchange of PSD-95 within a spine increases before 

changes in the number of nanomodules occur. In this model increases in protein exchange 

could lead to increases in nanomodule size, driving the formation of new modules once the 

size limit is reached. Finally, new nanomodules might be linked to the addition of new 

anchoring proteins. These might be proteins such as AMPARs or AMPAR associated 

proteins that are added rapidly to the synapse after the induction of synaptic plasticity or 

trans-synaptic organizing molecules such as ephrin-B3 that interact directly with 

PSD-956,8,10,11,13,37. Additional work will be required to determine whether one of these 

models may explain how the number of nanomodules increases in spines following 

NMDAR-dependent plasticity.

Increased NMDAR-dependent nanomodule movement is linked to the addition of 

nanomodules and synaptic plasticity. These rapid changes in the movement of synaptic 

nanomodules are reminiscent of the increased remodeling of the actin cytoskeleton 
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following NMDAR activation6,49,50. Importantly, although mobile, nanomodules at synapses 

undergoing NMDAR-dependent plasticity remain in precise alignment suggesting that trans-

synaptic interactions are maintained during structural plasticity. Thus, even during plasticity, 

synaptic function would likely remain intact and the regions of the synapse with the highest 

likelihood of release would remain in precise register with regions of the highest 

concentration of glutamate receptors16. We propose a simplified model for experience-

dependent plasticity where induction of structural plasticity within individual spines is 

mediated by addition of unitary synaptic nanomodules and that these modules or nanoquanta 

function as building blocks to enable synaptic plasticity.

Online Methods

Animals

All animal studies were approved by the Institutional Animal Care and Use Committee 

guidelines at Thomas Jefferson University in accordance with US National Institutes of 

Health guidelines. Mouse pups for lentiviral transduction experiments were obtained from 

timed pregnant CD-1 mice purchased from Charles River Laboratories Inc. (Wilmington, 

MA) and housed (3-5 mice per cage) in Thomas Jefferson University’s laboratory animal 

facility. Long-Evans E17-18 rat embryos from timed pregnant animals purchased from 

Charles River Laboratories Inc. (Wilmington, MA) were used to make primary cortical 

neuron cultures (see below).

Primary Cortical Neuron Culture preparation

Dissociated cortical neurons were prepared from embryonic day 17-18 (E17-18) rat cerebral 

cortex as described previously37,51,52 and cultured in Neurobasal medium (Life 

Technologies, Carlsbad, CA) supplemented with B27 (Life Technologies), glutamine 

(Sigma, St. Louis, MO) and penicillin-streptomycin (Sigma). Neurons were plated on poly-

D-lysine (BD Biosciences, San Jose, CA) and laminin (BD Biosciences) coated glass 

coverslips (12 mm, #1.5; Cat#: 64-0712, Warner Instruments, Camden, CT) or in glass 

bottom 35mm dishes made with #1.5 German optic cover glass (cat#: GBD00004-200, Cell 

E&G LLC, Houston, TX). Neurons were plated at 150,000/well in 24-well plates or at 

180,000 neurons per 18 mm glass coverslip of a single 35 mm dish for transfection 

experiments and were maintained in a humidified 37°C incubator with 5% CO2.

Plasmids and Plasmid construction

The tdTomato expression construct used to visualize neuronal morphology was made using a 

neuronal specific human Synapsin-1 promoter (kind gift from Dr. Peter Scheiffele, 

University of Basel, Biozentrum) by replacing EGFP between the BamHI and MscI 

restriction sites with the tdTomato sequence37. For visualization of PSD-95-EGFP puncta 

and neuronal morphology with tdTomato in live-cell STED experiments we used 

GATEWAY technology (Invitrogen) to generate a plasmid that simultaneously expresses 

PSD-95-EGFP under control of the human ubiquitin promoter and tdTomato from the 

human Synapsin-1 promoter (pFUb_PSD-95/hSYN-1_tdTomato)37,53. Endogenous PSD-95 

in live-cell STED experiments was visualized using EGFP labeled Fibronectin intrabodies 

generated with mRNA display (FingR) construct under the pCAGGS promoter element34. 
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Synaptophysin-1 was tagged at the N-terminus with mTurqouise2. Briefly, HA-tagged 

Synaptophysin-1 cDNA (NM_009305; kind gift from Dr. Peter Scheiffele, University of 

Basel, Biozentrum) was subcloned into the NotI/NheI sites of the pCAGGS vector54. The 

mTurquoise2 cDNA was then cloned in frame into the KpnI/XhoI sites just upstream of the 

HA site in the HA-Synaptophysin-1 pCAGGS vector to generate a fluorescently tagged 

molecule (pCAGGS_mTurq2-HA-SYP-1).

Neuronal transfection

To control for levels of protein expression, neurons were transfected at day in vitro 0 (DIV0) 

in suspension as previously described51 using Lipofectamine 2000 (Life Technologies) and 

fluorescently tagged proteins were under control of mammalian promoters (described 

above). Briefly, immediately after dissociation of E17-18 rat cortices, cortical neurons were 

resuspended in OptiMEM (Life Technologies) at 500,000 neurons/mL. 1 mL of suspension 

was added to 1 mL of the Lipofectamine 2000 / DNA mixture and the transfection mix was 

incubated at 37°C for 45 minutes. Neurons were subsequently plated either in 24 well plates 

or in 35 mm dishes and left to adhere to coverslips for 1.5 hours after which they were 

washed once in cortical medium (Basal Medium Eagle, Life Technologies) supplemented 

with 10% heat inactivated fetal bovine serum (cat#: S11150H, Atlanta Biologicals, Flowery 

Branch, GA) and penicillin/streptomycin (Sigma). Neurons were then maintained in 

Neurobasal medium supplemented with B27 (Life Technologies) and 1% penicillin/

streptomycin (Sigma) for 21-25 days at which point they were used for 

immunocytochemistry and STED or live-cell imaging experiments. 300,000 neurons were 

transfected with 300 ng of pENTR3-hSYN-1-tdTomato, 1 μg of pFU-PSD-95-EGFP/

hSYN-1-tdTomato plasmid or 600 ng of pCAGGS-mTurq2-HA-SYP-1 plasmids. For 

visualizing endogenous PSD-95, neurons were transfected with 1 μg of the construct 

encoding EGFP FingR intrabody (pCAG_PSD-95.FingR-eGRP-CCR5TC was a gift from 

Don Arnold, Addgene plasmid # 46295) along with 300 ng of pENTR3-hSYN-1-tdTomato 

in suspension at DIV0. For live-cell STED simultaneous imaging of pre- and post-synaptic 

clusters, two groups of neurons were transfected separately either with pFU-PSD-95-EGFP/

hSYN-1-tdTomato or pCAGGS-mTurq2-HA-SYP-1 plasmids for 45 minutes at 37°C after 

which they were combined in a 1:1 ratio when plating onto 35 mm glass bottom coverslips.

Immunocytochemistry

For immunocytochemistry, cultured cortical neurons were fixed between DIV21 and DIV25 

in 4% paraformaldehyde (PFA)/2% sucrose in PBS for 8 minutes at room temperature. Fixed 

neurons were washed three times in PBS, then blocked and permeabilized for 2 hours at 

room temperature in 1% ovalbumin and 0.2% gelatin from cold-water fish in PBS containing 

0.01% saponin. Neurons were then stained for 2 hours at room temperature or overnight at 

4°C with the indicated primary antibodies, washed three times in PBS and then 

immunostained with corresponding secondary antibodies for 45 minutes at room 

temperature. After washing three times in PBS, coverslips were mounted with MOWIOL 

and used for confocal and STED imaging.
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Lentiviral transduction and immunohistochemistry

The EGFP lentivirus used to label neuronal morphology in vivo was generated at Penn 

Vector Core (University of Pennsylvania, Philadelphia) using the pFUGW plasmid that 

expresses EGFP under control of the human ubiquitin promoter53. Postnatal day 7 (P7) 

CD-1 male and female pups were anesthetized with 5% isoflurane for 5 minutes and then 

maintained under 1-2% isoflurane anesthesia while performing bilateral stereotaxic 

injections of the EGFP lentivirus into somatosensory cortex of the brain (~30 minutes). 

Sparse labeling of cortical neurons was achieved by delivering 0.6 μl of the EGFP lentivirus 

(9.05 × 1010 infective particles/mL) into each injection site. To allow for the efficient 

expression of EGFP, mice were sacrificed three to four weeks post-injection. At P28-35 

mice were perfused trans-cardially with PBS followed by 4% PFA. Brains were post-fixed 

overnight in 4% PFA at 4˚C. After washing three times for 10 minutes in PBS brains were 

sectioned at 300 μm using a VT-1000S Vibratome (Leica). All subsequent steps were carried 

out with sections free floating. Sections were cleared using the CUBIC1/2 method23,24. 

Briefly, sections were incubated in CUBIC reagent-1 (25% urea (cat# U5378, Sigma), 25% 

N, N, N’, N’-tetrakis (2-hydroxypropyl) ethylenediamine (Sigma, cat#: 122262) and 0.2% 

Triton-X100) for three days at room temperature and washed with PBS. After CUBIC 

reagent-1 treatment, blocking was performed overnight at room temperature in a blocking 

solution of 10% fetal bovine serum (FBS, Atlanta biological), 1% bovine serum albumin 

(BSA, cat# 10857, Affymetrix, Cleveland, OH) and 0.2% Triton-X100 (cat# T9284, Sigma) 

diluted in PBS. Sections were incubated with primary antibodies diluted in blocking solution 

for three days at room temperature, washed three times for 10 minutes with PBS and stained 

with secondary antibodies diluted in blocking solution for three days at room temperature. 

The stained samples were then washed with PBS and immersed in CUBIC reagent-2 (50% 

sucrose (BP220-1, Fisher Scientific), 25% urea, 10% tri-ethanolamine (cat# T58300, Sigma) 

and 0.1% Triton-X100) overnight at room temperature. The cleared sections were then 

mounted using CUBIC-2 reagent on slides, covered with #1.5 cover glass and used for 

STED imaging.

For the experiments in non-cleared brain sections, fixed brains were sectioned at 50 μm. 

Prior to immunostaining, antigen retrieval was carried out by incubating sections in ddH2O 

for 5 minutes at 37˚C followed by 0.2N HCl containing 0.5 mg/ml pepsin protease for 10 

minutes at 37˚C. Sections were then blocked overnight at 4˚C in 10% FBS, 1% BSA, and 

0.2% Triton-X100 in 1× PBS, incubated overnight at 4˚C with primary antibodies, washed 3 

times in PBS, incubated for 2 hours at room temperature with secondary antibodies, washed 

3 times in PBS then mounted. Delivery of EGFP by lentivirus was used only to label 

neuronal morphology. No manipulation of protein expression was performed and, therefore, 

no randomization was done in animal studies.

Antibodies

All primary and secondary antibodies were profiled in our previous publications and were 

reported to be specific37,51,52,55. Primary antibodies: mouse monoclonal (IgG2A) anti-

PSD-95 clone K28/43 (1:1000 (ICC) or 1:200 (IHC), Neuromab, UC Davis, Davis, CA), 

mouse monoclonal (IgG1) anti-Synaptophysin-1 (1:1000, cat # 101 111, Synaptic Systems, 

Gottingen, Germany), guinea pig polyclonal anti-vesicular glutamate transporter 1 (α-
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vGlut1; 1:5000 (ICC) or 1:2500 (IHC), Milipore, Temecula, CA, cat#: AB5905), guinea pig 

polyclonal anti-Bassoon (1:300, Synaptic Systems, Gottingen, Germany), rabbit anti-

Bassoon (1:300, cat #: 141 003, Synaptic Systems), rabbit anti-RFP (1:500, Rockland, 

Limerick, PA, cat# 600-401-379), rabbit anti-GFP (1:500, Abcam, Cambridge, MA, cat# 

ab290). Secondary antibodies: Goat anti mouse IgG2A Atto 425 (1:250, Rockland, Inc., cat# 

610-151-041), Goat anti-mouse IgG1 Atto-647N (1:500, cat # 610-156-040, Rockland, Inc.), 

Goat anti-rabbit Atto-647N (1:500, cat # 611-156-122, Rockland, Inc.), Donkey anti-guinea 

pig AlexaFluor-488 (1:500, Jackson ImmunoResearch, West Grove, PA, cat# 706-545-148), 

Donkey anti-rabbit Cy3 (1:500, Jackson ImmunoResearch, cat# 711-165-152), Donkey anti-

rabbit AlexaFluor-488 (1:500, Jackson ImmunoResearch, cat# 711-545-152), Donkey anti-

mouse AlexaFluor-594 (1:500, Jackson ImmunoResearch, cat# 715-585-150), Donkey anti 

guinea pig AlexaFluor-594 (1:500, Jackson ImmunoResearch, cat # 706-586-148), Donkey 

anti-guinea pig AlexaFluor-647 (1:500, Jackson ImmunoResearch, cat# 706-605-148).

Chemical LTP

NMDAR-dependent chemical LTP was induced by treatment of DIV21-25 cortical neurons 

transfected with tdTomato or pFUG-PSD-95-EGFP/hSYN-1-tdTomato and pCAGGS-

mTurq2-HA-SYP-1 with 200 μM glycine as described26,28. Neurons were placed in artificial 

cerebrospinal fluid (ACSF, 143 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 30 mM 

Glucose and 10 mM HEPES, pH 7.4) containing 0.5 μM TTX, 1 μM Strychnine and 20 μM 

Bicuculline. After 15-30 minutes of imaging, cultures of neurons were treated with 10 ml of 

glycine stimulating solution (143 mM NaCl, 5 mM KCl, 2 mM CaCl2, 0 mM MgCl2, 30 

mM Glucose, 10 mM HEPES, pH 7.4, 0.5 μM TTX, 1 μM Strychnine, 20 μM Bicuculline 

and 200 μM Glycine) for 3-5 minutes, followed by 10 mL of 0 mM MgCl2 containing 

ACSF. To block cLTP, 50 μM APV and 10 μM of MK-801 were included in the solutions 

described above. Imaging was then conducted for three hours to monitor long-term changes 

in spine morphology. Spines were classified as “enlarged” only if their area increased by at 

least 10% immediately following the application of glycine and remained increased (≥10% 

over baseline) for the entire imaging period.

Imaging – STED nanoscopy

Dual-color imaging of synaptic structures in fixed and immunostained cultured cortical 

neurons was conducted on a Leica TCS SP5 STED CW confocal microscope (Leica 

Microsystems, Mannheim, Germany) containing a 592 nm CW depletion line. Images of 

fixed neurons were acquired as single optical sections using a resonance scanner (8000 Hz 

scanning), HyD detectors (set between 100-200%) and 100× oil immersion objective (Leica) 

with 5-10× zoom to obtain 15-30 nm pixel size. The 442 nm and 488 nm lines were used to 

excite the Atto-425-labeled PSD-95 and the AlexaFluor-488-labeled vGlut1, respectively. 

The 592 nm depletion line (at 90-100% power) was used to reduce the point-spread function 

(PSF) for both fluorophores to ~80 nm. Images were deconvolved using the 80 nm PSF in 

Leica TCS SP5 software and analyzed in ImageJ (NIH, Bethesda, MD).

For chemical LTP experiments, time-lapse live images were acquired using a confocal 

spinning disk system equipped with a Yokogawa CSU-10 and Hamamatsu EM-CCD digital 

camera attached to an inverted Leica microscope and controlled by Volocity software 
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(Perkin Elmer). Optical sections spaced at 0.3 μm were used to acquire 1-2 μm image stacks 

of dendrites using a 100× oil immersion objective. Adaptive focus control (Leica) was used 

to minimize focus shifts during 3-hour image acquisition. After conclusion of live imaging 

neurons were immediately fixed, stained and subjected to STED imaging. Single optical 

sections of the same dendritic spines that were imaged live were next imaged with super-

resolution (~80 nm) using Leica TCS SP5 STED CW as described above.

Live-cell STED chemical LTP, in vivo experiments and three-color STED experiments of 

cultured cortical neurons were performed using a Leica TCS SP8 gated STED (GSTED) 3× 

super-resolution system (Leica Microsystems) equipped with a tunable white light laser, CW 

592 nm and 660 nm depletion lines and a pulsed 775 nm depletion line. Live-cell STED 

images of PSD-95-EGFP and mTurquoise2-Synaptophysin-1 and confocal images of cell-

filling tdTomato were acquired as stacks (~1μm) with a 100× oil immersion objective using 

a resonant scanner (8000 Hz) and gated HyD detectors (set at 150-250%). Both EGFP and 

mTurqoise2 have been shown to undergo effective STED in live-cell experiments56,57. 

Images were maintained in focus during 1-3 hours of imaging using Adaptive Focus Control 

(AFC, Leica). AFC was set to correct focal drifts at every timepoint and imaging position. 

For EGFP and mTurquoise2, the 592 nm CW line (at 25-35% power) was used to generate 

STED. For imaging of fixed brain sections, stacks of images at 100-150 nm intervals were 

acquired using a 100× oil immersion objective. Maximum XY resolution was adjusted for 

the individual images to ~ 25 nm/pixel. The 594 nm and 647 nm lines were used to excite 

the AlexaFluor-594-labeled PSD-95 and the AlexaFluor-647 labeled vGlut1, respectively. 

The pulsed 775 nm depletion laser was used to generate STED in XY (~70 - 80 nm FWHM) 

with 10% of the power redirected to the Z donut to generate Z resolution of ~200 nm.

For three-color gated STED images of fixed cultured neurons imaged using Leica SP8 3× 

GSTED, PSD-95 was labeled with Atto-425, vGlut1 was labeled with Alexa-594 and 

Synaptophysin1 (SYP-1) or Bassoon were labeled with Atto-647N. Resonance scanning 

(8000 Hz), gated HyD detectors (set at 100-200%) and 100× oil immersion objective (Leica) 

with 5-10× zoom to obtain desired pixel size (15-25 nm) was used to acquire stacks at 150 

nm image intervals. PSD-95 was excited with the 442 nm line (12-15% power) and the CW 

592 nm line (60-65% power) was used to generate STED. Gated HyD detectors adjusted 

between 0.2/0.3 to 6 nanoseconds were used to acquire vGlut1 (excited with the 594 nm 

laser at 8-12% maximal power), and SYP-1 or Bassoon (excited with the 647 nm laser at 

10-15% maximal laser power). The pulsed 775 nm depletion line (set at 10-15% of maximal 

laser power) was used to generate STED with a resolution of ~50 nm. For Z depletion, 10% 

of the 775 depletion line power was re-directed to the Z donut to achieve an image Z-

resolved at ~250-300 nm.

Image processing and deconvolution

Raw STED images obtained using SP5 Leica CW STED were subjected either to (1) 

background subtraction (mean intensity of all pixels in the images) followed by a Gaussian 

blur (2 pixel size) or (2) deconvolution using SP5 Leica Application Suite Advance 

Fluorescence Software using 80 nm microscope resolution (determined using 40 nm yellow/

green (505/515) beads, cat #: F8795, Thermo Fisher Scientific). Detailed methodology for 
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each manipulation along with the FWHM are provided in figure S2. Both approaches 

provided similar results (Fig. 1 vs. Fig. S4).

Raw STED images from sections of CUBIC and non-CUBIC processed brain tissue were 

processed with only background subtraction followed by 2 pixel Gaussian blur. Images 

collected using SP8 Leica GSTED from cultured neurons were deconvolved as stacks using 

Huygens deconvolution software by specifying the point spread function (PSF, Leica SP8/

DM6000/100× objective, imaging wavelength), optical sectioning, X, Y and Z pixel 

resolution21. Deconvolution was performed separately for each channel using a maximum of 

40 iterations. To validate our deconvolution approach, deconvolved images were compared 

to images processed with simple background subtraction and 2 pixel Gaussian blur (Fig. S3). 

The deconvolution algorithm was further tested on extensively photobleached images to 

examine the effects of deconvolution at low signal-to-noise ratio. Comparison of 

sequentially bleached images and raw STED images validated our approach (Fig. S3). Image 

analysis was conducted off-line using Image J.

Image analysis

Super-resolution analysis of PSD-95 and vGlut1 localization in dendritic spines was 

performed on a per spine basis. Images of spines, acquired at confocal resolution (~250-300 

nm) were detected visually and Gaussian blur (2 pixel value) was applied to filter out noise. 

Individual spines were converted to binary masks by thresholding the resulting tdTomato 

image. Nanoclusters of labeled PSD-95 and vGlut1 (acquired in STED super-resolution) 

were identified by binarizing each channel separately using intensity thresholds. Thresholds 

were defined as the mean + 2 × S.D. of intensity values of a 500×500 image pixel area. 

Clusters were defined as minimum of 5 and maximum of 200 continuous pixels 

corresponding to an area of 0.03 – 0.3 μm2. For three-color STED using gated detectors, 

clusters were defined as a minimum of 10 and maximum of 100 continuous pixels 

corresponding to an area of 0.015 – 0.15 μm2. Separation between individual PSD-95 and 

vGlut1 clusters was identified from line intensity profiles of nearby clusters in each channel 

and was defined as the mean + 1.5 × S.D. of a local 50×50 pixel area that approximately 

corresponded to the average size of a spine head. The resulting thresholded nanomodules 

were used to determine whether these modules colocalized with individual spines. ROIs of 

each thresholded spine head were used to manually assign the PSD-95 and vGlut1 puncta to 

spines. PSD-95 clusters were assigned to a spine if the thresholded pixel areas were entirely 

within the spine head ROI. vGlut1 clusters were assigned to a spine if the thresholded pixel 

areas either completely or partially overlapped with the spine head ROI. Based on the size of 

the synaptic cleft and antibody chains, colocalization was defined as puncta that were 

separated by no more that 150 nm (Figure 1b). Only spines with clearly identifiable PSD-95 

or vGlut1 clusters were included in the analysis.

For analysis of PSD-95 and vGlut1 clusters in vivo, outlines of spines were determined in 

individual z sections of thresholded images. The spine outlines were then overlaid onto the 

thresholded images of the channels corresponding to PSD-95 and vGlut1 clusters. From 

these assignments, spine co-localization of each cluster was made independently for each z 

section. Orthogonal views of the overlaid image stacks were used to verify that individual 
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clusters co-localized with individual spines in the z plane. Finally, image stacks were 

overlaid and filtered by an edge-preserving algorithm in Imaris software (Bitplane AG). 

High-contrast images of puncta within the area that corresponded to the size of the spine 

head and shaft (approximately 100×100 pixels) were projected in Imaris to generate high-

contrast volume rendered images. Volume rendering was performed for each channel 

separately using a two-voxel separation between thresholded objects. Thresholded clusters 

that did not colocalize with the area of the spine were discarded. Similar to the in vitro 
cluster analysis, the PSD-95 and vGlut1 channels were binarized separately using intensity 

thresholds (mean + 2 × S.D. of intensity values within an area of 400×400 pixels). Cluster 

separation was determined as described above for the in vitro cluster analysis. Due to tissue 

expansion following the CUBIC treatment58 the separation between aligned pre- and post-

synaptic clusters was accepted to be between 100-200 nm by measuring the intensity peaks 

of aligned clusters. Data for both in vitro and in vivo spine analysis of module number 

represent observations and were acquired and analyzed without an experimenter blinding. 

For the live-cell cLTP and retrospective STED analysis, an experimenter was blinded to the 

condition and the effect of spine size change by first identifying the cluster numbers and 

then revealing the change in spine morphology for a given condition.

Analysis of live-cell STED—The 4D (x, y, z, t) deconvolved image stacks acquired from 

the live-cell STED experiments were aligned using ImageJ macros (Stack reg and Turbo reg) 

using a rigid body transformation based on the morphology of neuronal dendrites and then 

were analyzed as maximum intensity projections. Dendritic spines were visualized by 

applying a Gaussian blur (2 pixel value) to the maximum projections of the tdTomato 

channel. The presence of PSD-95-EGFP and mTurquoise2-Synaptophysin-1 clusters was 

assessed for each channel separately in each spine. To identify individual clusters, intensity 

thresholds were generated using the mean + 2 × S.D. of a local 50×50 pixel area 

corresponding to the average size of a spine head. The appearance of new clusters was 

determined visually from time-lapse image series by using the manual tracking algorithm in 

ImageJ. The identity of new clusters was confirmed from intensity plots by measuring the 

line profile intensity. New clusters were defined when there was >20% difference between 

peak intensities of individual clusters and the trough between the peaks of the clusters.

The alignment of pre- and post-synaptic nanomodules in live-cell STED experiments was 

quantified using two metrics based on two-dimensional projections of the images (Fig. 6i). 

First, the deviation (өx) from perfect alignment (a 90-degree angle, өx = өi - 90°) between 

the centers of PSD-95-EGFP and SYP-mTurq2 modules measured along the long axis of the 

SYP-mTurq2 centroid was calculated at each time point and summed. This measure reflects 

the relative apposition of the two modules. Second, the distance (dx) between the centers of 

PSD-95-EGFP and SYP-mTurq2 centroids was calculated for each time point. The average 

angular deviation and centroid distance during the three-hour imaging period were then 

calculated for each condition. Centroids for SYP-mTurq2 and PSD-95-EGFP were generated 

using the DrawElipse plugin in ImageJ software (https://imagej.nih.gov/ij/macros/

DrawEllipse.txt) by manually tracing each nanomodule at each timepoint.
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Monte Carlo simulations

The super-resolved images of PSD-95 and vGlut1 from in vitro and in vivo experiments 

were thresholded as described above. For in vitro data, thresholded masks for each channel 

were generated using maximum projection images of the entire z-stack (≤ 1μm). 

Thresholded images for brain sections were generated from a substack corresponding to the 

average thickness of a spine (~1 μm). Using thresholded masks, we modeled the probability 

of overlap between randomly positioned spines of varying areas and actual PSD-95, vGlut1, 

SYP-1 and Bassoon nanomodule images (Fig. S6, S7 and S9). Spine positions were 

randomized using the random number generator macro in ImageJ. Clusters were assigned as 

belonging to simulated spines using the same criteria that were used to manually assign 

post-synaptic and pre-synaptic nanomodules in our data set – PSD-95 was included only 

when puncta were entirely within the simulated spine area and pre-synaptic nanomodules 

were included only when puncta were within or touching the simulated spine (Fig. S6c). 

Simulations were conducted with a variety of sizes of simulated spines reflecting the 

variation in spine size observed in our data set (Fig. S6, S7 and S9). Spine area was 

approximated by a circular area calculated from the average diameter of spines in our raw 

data set. Monte Carlo simulations were then performed on three randomly selected images 

from independent experiments. For each channel, simulated spines of a specific size were 

placed at 500 randomly selected locations overlaid onto each raw image selected using an 

ImageJ macro. Simulations were conducted in three independent runs for the total of 1500 

simulations per spine size. Only simulated spines placed randomly at locations that 

contacted puncta of synaptic marker proteins were included for further analysis.

Statistical analysis

Data were acquired and analyzed based on the standards in the field, however, no method of 

randomization was used to determine how samples were allocated to experimental groups 

and processed. Data are expressed as means ± SEM. All data points collected were included 

for analysis. Statistical significance of the differences among groups were determined by 

one-way analysis of variance followed by post-hoc tests as described in individual figure 

legends, or by two-tailed Student’s t-test when testing differences between two conditions. 

Kruskal-Wallis test was used to test differences between cumulative probability distributions 

as well as the differences between FRAP recovery distributions. P values less than 0.05 were 

considered statistically significant. For p values less than 0.0001 we are providing a range 

and not the exact number. See supplementary table 1 for statistical detail. Distribution of the 

data was assumed to be normal, but this was not formally tested. No statistical methods were 

used to predetermine sample sizes, but the sample sizes are similar to those reported in 

previous publications37,51,52,55. Group differences in variance were tested for each data set 

and determined to be similar. Unless stated otherwise, statistical tests were conducted on a 

per spine basis, from cortical neurons collected from a minimum of three independent 

transfection experiments/animals (Supplementary Table 1).

Data Availability Statement

All relevant data and analysis are within the paper and its Supporting Information files. Raw 

image stacks are available upon request to Matthew Dalva (Matthew.Dalva@jefferson.edu).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Modular organization of dendritic spine synapses in vitro
(a) Representative high-contrast images of PSD-95 (green) and vGlut1 (red) modules 

imaged with STED (~80 nm FWHM) in dendritic spines imaged simultaneously in confocal 

mode (~300 nm FWHM, gray and dashed yellow lines) in tdTomato-transfected DIV21 

cortical neurons. Scale bar, 0.8 μm. Schematic (left panel) demonstrating the arrangement of 

multiple synaptic profiles in individual spines from images in the right panel. (b) Line 

profiles (white lines in a) of the intensity of PSD-95/vGlut1 labeling in spines from panel a 
indicate a high degree of apposition (~100 nm) of individual pre- and post-synaptic clusters. 
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(c and f) Quantification of the percentage of spines containing single and multiple (c) 

PSD-95 (n = 217 spines) and (f) vGlut1 clusters (n = 212 spines, graphs represent mean +/− 

SEM, dots show percentage of spines from three independent experiments, 9 different 

neurons). (d and g) Quantification of the average areas of individual (d) PSD-95, and (g) 

vGlut1 clusters demonstrating no significant size differences between single and multi-

cluster spines, one-way ANOVA). (e and h) Quantification of the total area of (e) PSD-95 

and (h) vGlut1, one-way ANOVA with Fisher’s LSD post-hoc). (i and j) Plots of the 

relationship between cluster number and spine size. Positive correlation of (i) PSD-95 (green 

line, R2 = 0.4324, slope = 1.972 ± 0.1559, p<0.0001, F-test, n = 212 spines) and (j) vGlut1 

(red line, R2 = 0.2795, slope = 1.524 ± 0.1689, p<0.0001, F-test, n = 212 spines) cluster 

number with areas of individual spines (only spines with both PSD-95 and vGlut1 clusters 

were included for analysis, dots represent cluster number values of individual spines). Monte 

Carlo simulation (black line) of the relationship between spine size (500 simulations per 

spine size, spines without PSD-95 and vGlut1 puncta were not included) and the number of 

(i) PSD-95 (simulated slope = 0.1783 ± 0.0355, ANCOVA) and (j) vGlut1 (simulated slope 

= 0.3276 ± 0.0256, ANCOVA) clusters. (k) A plot of the relationship between pre- and post-

synaptic nanomodules (R2 = 0.4383, slope = 0.6366 ± 0.0497). All experiments were 

repeated ≥ 3 times. Bar graphs show mean +/− SEM, with numbers of individual spines or 

clusters represented by dots.
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Fig. 2. Synaptic vesicle proteins exhibit modular organization at synapses
(a) Representative high-contrast three-color STED images of PSD-95 nanomodules (green, 

CW STED, FWHM ~80 nm), vGlut1 (red) and Synaptophysin-1 (SYP-1, blue) nanomodules 

imaged using gated STED (FWHM ~ 50 nm) in EGFP-labeled dendritic spines of DIV21-25 

neurons imaged simultaneously in confocal mode (FWHM ~250 nm, gray and dashed white 

lines). Scale bar, 1 μm. Schematic (left panel) demonstrating the arrangement of synaptic 

profiles in individual spines from the images in the right panel. Synaptic profiles were 

determined as an apposition of co-localized vGlut1 and SYP-1 with PSD-95 (white arrows). 
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(b) Quantification of the percentage of spines containing single and multiple PSD-95 (n = 

406 spines), vGlut1 (n = 406 spines) and SYP-1 nanomodules (n = 189 spines). Data points 

indicate replicates from ≥ 3 independent transfection experiments. (c) Quantification of the 

average areas of individual PSD-95 (n= 648 clusters), vGlut1 (n= 728 clusters) and SYP-1 

nanomodules (n= 310 clusters, one-way ANOVA, Tukey’s post hoc). (d) Quantification of 

the total area of PSD-95, vGlut1 and SYP-1 spines; vGlut1; SYP-1, one-way ANOVA, 

Tukey’s post hoc). (e) Cumulative probability plots for the data in c (Kruskal-Wallis test). (f-
h) Correlation of spine size with (f) PSD-95 nanomodule number (green line, Pearson’s R2 

= 0.2992, slope = 1.957 ± 0.1490 (g) vGlut1 nanomodule number (red line, Pearson’s R2 = 

0.2755, slope = 2.212 ± 0.1785) and (h) SYP-1 nanomodule number (blue line, Pearson’s R2 

= 0.2761, slope = 1.837 ± 0.2131). Monte Carlo simulation (black line) of the relationship 

between spine size (spines without PSD-95, vGlut1 and SYP-1 puncta were not included) 

and the number of (f) PSD-95 nanomodules (simulated slope = 0.081 ± 0.02, ANCOVA,), 

(g) vGlut1 nanomodules (simulated slope = 0.474 ± 0.027, ANCOVA) and (h) SYP-1 

nanomodules (simulated slope = 0.2423 ± 0.019, ANCOVA, SYP-1-containing simulated 

spines). (i-j) A plot of the relationship between PSD-95 nanomodules with (i) vGlut1 

nanomodules (Pearson’s R2 = 0.7945) and (j) SYP-1 nanomodules (Pearson’s R2 = 0.8449). 

Graphs in b-d represent mean +/− SEM, dots show (b) percentage of spines, (c) individual 

nanomodules and (d) areas from at least three independent experiments, at least 11 different 

neurons.
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Fig. 3. Synaptic vesicle and active zone markers colocalize at spines as synaptic nanomodules
(a) Representative high-contrast three-color STED images of PSD-95 nanomodules (green, 

CW STED, FWHM ~80 nm), vGlut1 (red) and Bassoon (blue) nanomodules imaged using 

gated STED (FWHM ~50 nm) in EGFP-labeled dendritic spines of DIV21-25 neurons 

imaged simultaneously in confocal mode (FWHM ~250 nm, gray and dashed white lines). 

Scale bar, 1 μm. Schematic (left panel) demonstrating the arrangement of synaptic profiles in 

individual spines from the images in the right panel. Synaptic profiles were determined as an 

apposition of colocalized vGlut1 and Bassoon with PSD-95 (white arrows). Similar results 
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were obtained from three independent transfection experiments in spines from a total of 10 

neurons. (b-d) Quantification of the percentage of spines containing single and multiple 

PSD-95 (n = 217 spines also shown as part of Fig. 2b), vGlut1 (n = 217 spines also shown as 

part of Fig. 2b) and Bassoon nanomodules (n = 217 spines). Data points represent percent 

spines with the indicated number of nanomodules in three independent transfection 

experiments. (e) Quantification of the average areas of individual Bassoon nanomodules (n= 

379 clusters, one-way ANOVA, Tukey’s post hoc). (f) Quantification of the total Bassoon 

area at spines (one-way ANOVA, Tukey’s post hoc). Graphs in b-f represent mean +/− SEM. 

(g) Cumulative probability plots for the data in e (Kruskal-Wallis test). (h) Positive 

correlation of spine size with the number of Bassoon nanomodules (gray line, Pearson’s R2 

= 0.2524, slope = 2.065 ± 0.2430). Monte Carlo simulation (black line) of the relationship 

between spine size and the number of Bassoon nanomodules (spines without Bassoon 

puncta were not included, simulated slope = 0.2018 ± 0.018, ANCOVA). (i) A plot of the 

relationship between PSD-95 and Bassoon nanomodules (Pearson’s R2 = 0.8549).
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Fig. 4. Modular organization of dendritic spine synapses in vivo
(a) Schematic representation of the experiment. (b) 3D Imaris reconstruction (left panel) of 

the dendritic section, spines and corresponding synaptic modules of a layer 3 neuron shown 

on the right. PSD-95 and vGlut1 puncta not colocalized with spines were removed for 

clarity. Scale bar, 2 μm. A representative maximum intensity projection image (right panel) 

from a layer 3 neuron showing an EGFP-labeled apical dendrite (gray) imaged in confocal 

mode (~300 nm FWHM). Spines were analyzed for PSD-95 (green) and vGlut1 (red) 

modules by imaging in 3D STED mode (90 nm XY, 200 nm Z FWHM). Scale bar, 2 μm. (c) 
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High-resolution image and corresponding 3D reconstruction of a one-module spine. (d) 

High-resolution image and corresponding 3D reconstruction of a three-module spine. Scale 

bar, 1 μm for images in c and d. Spines in 3D rendered images in c and d were made 

transparent in order to visualize PSD-95 puncta (green) inside these structures. Scale bars, 

0.5 μm. Similar results were obtained from brain sections of three EGFP injected animals. (e 
and f) Quantification of the percentage of spines (n = 3 independent injection experiments) 

containing single and multiple (e) PSD-95 and (f) vGlut1 modules (one-way ANOVA, 

Fisher’s LSD post hoc, graphs represent mean +/− SEM, dots show percentage of spines 

from three independent experiments). (g and h) Quantification of the average areas of 

individual (g) PSD-95 (n = 171 clusters) and (h) vGlut1 (n = 167 clusters, one-way 

ANOVA) nanomodules. (i and j) Plots of the relationship between cluster number and spine 

size. A positive correlation of (i) PSD-95 (green line, Pearson’s R2 = 0.4695) and (j) vGlut1 

(red line, Pearson’s R2 = 0.5680, n = 84 spines, dots represent cluster number values of 

individual spines) nanomodules numbers with areas of individual spines was observed. 

Monte Carlo simulation (black line) of the relationship between spine size (500 simulations 

per spine size, black lines, spines without puncta were removed) and the number of (i) 
PSD-95 (simulated slope = 0.2152 ± 0.0151, measured slope 2.385 ± 0.2766, ANCOVA) 

and (j) vGlut1 (8011 total simulations, simulated slope = 0.5695 ± 0.019, measured slope = 

2.427 ± 0.2309,, ANCOVA) clusters. Simulated spines without PSD-95 or vGlut1 clusters 

were not included in the analysis. (k) A plot of the relationship between pre- and post-

synaptic nanomodules (Pearson’s R2 = 0.7265, n= number of apposed vGlut1/PSD-95 pairs 

per spine from 84 spines). Bar graphs show mean +/− SEM, with numbers of individual 

spines or clusters represented by dots.
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Fig. 5. Structural plasticity associated with cLTP is linked to synaptic module number
(a-d) Representative three-hour time-lapse images (top panels, confocal resolution) and 

retrospective high-contrast STED images (bottom panels) of the same dendritic spines 

(white squares) of tdTomato-transfected DIV21-25 cortical neurons. Spines (gray and yellow 

dashed outlines) were imaged at confocal resolution with simultaneous STED imaging of 

endogenous PSD-95 (green, arrowheads) and vGlut1 (red, arrows). Scale bars corresponding 

to all images a-d: top panel, 2 μm, inset, 1 um; lower panel, 2 μm, inset, 0.75 μm. (e) 

Schematic of the experiment showing initial cLTP live-cell imaging of spine morphology 

followed by retrospective STED imaging of endogenous proteins at the same spines. (f) 
Quantification of percent change in spine head area during the three-hour live-cell imaging 

experiment after a three-minute treatment with glycine (200 μM). Potentiated spines were 

defined by a sustained increase in spine head area of >10% over baseline (green traces, n = 

30 spines). Spines that did not increase in size were defined as non-responsive (red traces, n 

= 21 spines). Spine enlargement was blocked by treatment with the NMDAR blockers 50 

μM APV and 10 μM MK-801 (gray traces, n = 34 spines). Control spines were not subjected 

to glycine treatment (black traces, n = 56 spines). Graph represents mean +/− SEM. (g and 
h) Quantification of the average number of (g) PSD-95 and (h) vGlut1 module, one-way 

ANOVA with Fisher’s LSD post hoc) in spines from the indicated conditions following 
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retrospective STED imaging. (i and j) Distributions of spines with single and multiple 

modules in the indicated conditions, binned based on the number of PSD-95 and vGlut1 

clusters they contained. (k and l) Quantification of the average area of individual PSD- and 

vGlut1 clusters per spine in the indicated conditions, one-way ANOVA, Fisher’s LSD. (m 
and n) Quantification of the average area of individual PSD-95 and vGlut1 modules in 

single, two and three-module containing potentiated spines (One-way ANOVA). All 

experiments were repeated ≥ 3 times. Bar graphs show mean +/− SEM, with the numbers of 

individual spines or clusters represented by dots.
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Fig. 6. Rapid remodeling of aligned pre- and post-synaptic modules underlies cLTP structural 
plasticity
(a-d) Representative images of time-lapse dual-color live-cell STED of PSD-95-EGFP 

(green) and mTurquoise-2-Synaptophysin-1 (SYP-mTurq2, red). Gray shows cell 

morphology with cell-filling tdTomato in confocal mode. Green and red arrows indicate the 

appearance of new PSD-95-EGFP and SYP-mTurq2 modules, respectively. Lower ‘Track’ 

panels indicate the movement of PSD-95-EGFP (green dots and lines) and SYP-mTurq2 (red 

dots and lines) modules over the course of imaging (3 hours). Chemical LTP was induced by 

application of glycine (200 μM, 3 minutes, black arrow). Scale bar corresponding to all 

images a-d, 500 nm. (e and f) Quantification of the number of (e) PSD-95-EGFP and (f) 
SYP-mTurq2 nanomodules per spine over the course of 3 hours. Measurements were 

performed at each time point (one-way ANOVA with Fisher’s LSD post hoc, “#” = 

significant differences between all conditions, “*” = significant differences only between 

Potentiated and Non-responsive conditions). Graphs show mean +/− SEM at each time 

point). (g and h) Quantification of the total distance moved over three hours for (g) PSD-95-

EGFP (Control, n = 23; Potentiated, n = 34, Non-responsive; n = 19; APV+MK-801, n = 20 

modules) and (h) SYP-mTurq2 (Control, n = 21; Potentiated, n = 18; Non-responsive, n = 

14; APV+MK-801, n = 23 modules; one-way ANOVA with Fisher’s LSD post hoc). (i) 
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Schematic representation of the method used to determine the distance and alignment 

between PSD-95-EGFP and SYP-mTurq2 nanomodules (see Methods). (j) Quantification of 

the average distance between the centers of PSD-95-EGFP and SYP-mTurq2 (Control, n = 

18; Potentiated, n = 13; Non-responsive, n = 14; APV+MK-801, n = 20 module pairs, one-

way ANOVA). (k) Quantification of the relative alignment as described in panel i (Control, n 

= 18; Potentiated, n = 14; Non-responsive, n = 14; APV+MK-801, n = 20 aligned pairs; one-

way ANOVA) for the indicated conditions. Treatment with the NMDAR blockers APV

+MK-801 resulted in significantly better alignment between PSD-95-EGFP and SYP-

mTurq2 (two-tailed Student’s t-test). All experiments were repeated ≥ 3 times. Bar graphs 

represent mean +/− SEM with numbers of individual pre- and post-synaptic clusters (g and 
h) and numbers of aligned pairs of clusters (j and k) indicated by dots.
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Fig. 7. NMDAR-dependent plasticity is associated with fast modification of synaptic nano-
architecture
(a-b) Representative images of time-lapse dual-color live-cell STED of DIV21-25 neurons 

transfected with PSD-95-EGFP (green) and mTurquoise-2-Synaptophysin-1 (SYP-mTurq2, 

red). Gray shows cell morphology visualized by cell-filling tdTomato in confocal mode. 

Lower ‘Track’ panels indicate the movement of PSD-95-EGFP (green dots and lines) and 

SYP-mTurq2 (red dots and lines) modules over the course of imaging (1 hour). Arrows 

indicate the appearance/disappearance of PSD-95-EGFP and SYP-mTurq2 modules during 

imaging. Chemical LTP was induced by application of glycine (200 μM, 3 minutes, black 

arrow) and images were acquired every 12.5 minutes for one hour. Scale bar, 1 μm. (c) 
Quantification of the number of PSD-95-EGFP per spine (Control, n = 14; Potentiated, n = 

16; Non-responsive, n = 17 spines) over the course of 1 hour. Measurements were performed 

at each time point (one-way ANOVA with Fisher’s LSD post hoc). (d) Quantification of the 

number of SYP-mTurq2 modules per spine (one-way ANOVA with Fisher’s LSD post hoc, 

graphs in c and d show mean +/− SEM at each time point). (e) Schematic for testing the 

relationship between PSD-95-EGFP nanomodule increase and PSD-95-EGFP turnover 

immediately following cLTP. (f) Representative STED and time-lapse FRAP images of 

DIV21-25 control, enlarged and unenlarged spines in neurons transfected with cell-filling 
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tdTomato and PSD-95-EGFP. Scale bars, STED and FRAP images, 1 μm. (g) Quantification 

of PSD-95-EGFP recovery under basal condition and following cLTP. PSD-95-EGFP 

recovery rapidly increases in enlarged spines following glycine treatment and is significantly 

higher than in control and unenlarged spines (*p = 0.0119, Kruskal-Wallis, Dunn’s post-hoc, 

Control, n = 21 spines; Potentiated, n = 12 spines; Non-responsive, n =12 spines). (h) 
Quantification of PSD-95-EGFP mobile fractions (calculated from the average of three time 

points) before glycine (-5 min) and following glycine treatment (one-way ANOVA, Fisher’s 

LSD post hoc, n = number of spines as designated in g). Graphs in h represent mean +/− 

SEM. All experiments were repeated ≥ 3 times
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