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R E S E A R C H A R T I C L E

COVID-19 Infection Enhances Susceptibility to Oxidative
Stress–Induced Parkinsonism

Richard J. Smeyne, PhD,1* Jeffrey B. Eells, PhD,2 Debotri Chatterjee, BA,1 Matthew Byrne, BS,1

Shaw M. Akula, PhD,3 Srinivas Sriramula, PhD,4 Dorcas P. O’Rourke, DVM,5 and Peter Schmidt, PhD6

1Department of Neurosciences, Thomas Jefferson University Vickie and Jack Farber Institute for Neuroscience,
Philadelphia, Pennsylvania, USA

2Department of Anatomy and Cell Biology, Brody School of Medicine East Carolina University, Greenville, North Carolina, USA
3Department of Microbiology & Immunology, Brody School of Medicine East Carolina University, Greenville, North Carolina, USA

4Department of Pharmacology and Toxicology, Brody School of Medicine East Carolina University, Greenville, North Carolina, USA
5Department of Comparative Medicine, Brody School of Medicine East Carolina University, Greenville, North Carolina, USA

6Department of Neurology, Grossman School of Medicine New York University, New York, New York, USA

ABSTRACT: Background: Viral induction of neurological
syndromes has been a concern since parkinsonian-like fea-
tures were observed in patients diagnosed with encephalitis
lethargica subsequent to the 1918 influenza pandemic. Given
the similarities in the systemic responses after severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
with those observed after pandemic influenza, there is a
question whether a similar syndrome of postencephalic par-
kinsonism could follow coronavirus disease 2019 infection.
Objective: The goal of this study was to determine whether
prior infection with SARS-CoV-2 increased sensitivity to a
mitochondrial toxin known to induce parkinsonism.
Methods: K18-hACE2 mice were infected with SARS-
CoV-2 to induce mild-to-moderate disease. After 38 days
of recovery, mice were administered a non-lesion-
inducing dose of the parkinsonian toxin 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) and euthanized 7
days later. Subsequent neuroinflammation and sub-
stantia nigra pars compacta (SNpc) dopaminergic
(DA) neuron loss were determined and compared with
SARS-CoV-2 or MPTP alone.

Results: K18-hACE2 mice infected with SARS-CoV-2 or
MPTP showed no SNpc DA neuron loss after MPTP. In
mice infected and recovered from SARS-CoV-2 infection,
MPTP induced a 23% or 19% greater loss of SNpc DA
neurons than SARS-CoV-2 or MPTP, respectively (P <
0.05). Examination of microglial activation showed a
significant increase in the number of activated microglia in
both the SNpc and striatum of the SARS-CoV-2+MPTP
group compared with SARS-CoV-2 or MPTP alone.
Conclusions: Our observations have important implica-
tions for long-term public health, given the number of
people who have survived SARS-CoV-2 infection, as well
as for future public policy regarding infection mitigation.
However, it will be critical to determine whether other
agents known to increase risk for PD also have synergis-
tic effects with SARS-CoV-2 and are abrogated by vacci-
nation. © 2022 The Authors. Movement Disorders
published by Wiley Periodicals LLC on behalf of Interna-
tional Parkinson and Movement Disorder Society

Key Words: COVID-19; MPTP; Parkinson’s disease

Neurological sequalae subsequent to viral infection
have been reported since von Economo’s1 description
of a postinfluenza encephalopathy, including aspects of

parkinsonism, that was reported to the Vienna neuro-
logical society in 1917. These observations were consis-
tent with the postencephalic symptoms that followed
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the 1918 H1N1 (Spanish) influenza pandemic and per-
sisted for about 10 years subsequent to its zenith.2,3

Although the 1918 influenza was thought to be particu-
larly virulent and its sequalae particularly devastating,
it is not the only viral outbreak that has been linked to
postencephalic parkinsonian symptoms.4 The mecha-
nism for this linkage is likely a viral affinity for the
highly vascularized midbrain catecholaminergic neu-
rons in the substantia nigra and locus coeruleus5 that
are lost in Parkinson’s disease (PD). Mechanisms of
indirect action after viral infection, such as effects of
inflammatory cytokines or glia activation, have been
demonstrated previously.6,7

In 2019, a novel coronavirus outbreak was reported
in China and in the ensuing pandemic, nearly 516 mil-
lion cases have been reported worldwide.8 The virus,
severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), is a large, enveloped, nonsegmented,
positive-sense RNA virus.9 Like its related family mem-
bers, SARS-CoV-1 and Middle East respiratory syn-
drome, it predominantly presents as a respiratory
illness10; however, a number of other organ systems,11

including the nervous system, are also severely
affected.12 Relating specifically to SARS-CoV-2, it is
unclear whether these effects are direct, based on the
virus’s ability to enter the brain,13 or whether they arise
via a peripheral mechanism, such as an induction of a
cytokine storm that induces neurological changes in the
peripheral immune system that then transmits its signals
to the brain.14

Given the long history of viral infections inducing
basal ganglia disease,4 combined with the scale and
scope of the coronavirus disease 2019 (COVID-19) pan-
demic, it is incumbent to explore whether there might be
an increased risk for similar neurological sequelae
among individuals recovered from COVID-19. Recent
reports have empirically associated SARS-CoV-2 infec-
tion with development of clinical parkinsonism.15-17 To
experimentally test the hypothesis that prior infection
with SARS-CoV-2 could directly increase the risk for
parkinsonism through viral mechanisms identified previ-
ously, we evaluated nigrostriatal degeneration in a pre-
clinical mouse model where genetically tailored
susceptible animals, engineered to express the human
angiotensin-converting enzyme 2 (hACE2) receptor,18

were infected with SARS-CoV-2 (strain USA-1) and
allowed to recover. The hACE2 mouse model for studies
of central nervous system (CNS) effects of the disease,
including on the blood–brain barrier (BBB), were previ-
ously studied and found to be illustrative for human
infection/disease.19,20 Thirty-eight days after the animals
recovered from the viral infection, we challenged them
with subtoxic levels of a mitochondrial toxin, 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a chemical
that is known to block complex I and IV of the electron
transport chain and induce some of the characteristic

pathologies seen in PD.21 We found that animals that
recovered from SARS-CoV-2 infection were more sus-
ceptible to the parkinsonian effects of nonlethal levels of
MPTP than mice infected with SARS-CoV-2 or adminis-
tered MPTP alone. This preclinical study suggests that
infection with SARS-CoV-2 is likely a predisposing risk
factor for later development of PD.

Materials and Methods

All the work pertaining to the use of SARS-CoV-2
(isolate USA-WA1/2020; bei RESOURCES, Manassas,
VA, USA) was performed at BSL-3 levels at East Caro-
lina University (Greenville, NC, USA). Virus was propa-
gated in Vero cells using a 10–30% sucrose gradient in an
ultracentrifuge, and the yield was titrated using Reed and
Muench calculations.22-24 Viral studies were approved by
the Office of Prospective Health/Biological Safety for the
use of SARS-CoV-2 (registration number 20–01).

SARS-CoV-2 Infection
Working under an Institutional Animal Care and Use

Committee–approved protocol (AUP#A209) in a fully
Association for Assessment and Accreditation of Labora-
tory Animal Care–accredited facility, 6- to 8-month-old
SARS-CoV-2–susceptible mice [B6.Cg-Tg(K18-ACE2)
2Prlmn/J, Strain #034860, also known as hACE2 mice;
Jackson Labs, Bar Harbor, ME] were randomly assigned
to a dose-finding study and then four study arms.
Approximately equal numbers of male and female mice
were used in each study. Mice were anesthetized with
3% isoflurane for infection. First, nine male mice were
tested at three doses of virus (three mice each at 10,3

4 � 103, and 104 Median Tissue Culture Infectious Dose
(TCID50)). In the low dose, all survived. At the high
dose, two of three mice were euthanized because of
severe symptoms. At the intermediate dose, one of three
mice was euthanized; thus, the 4 � 103 TCID50 dose
was selected as the optimal dose (Fig. 1) with mortality
similar to the viral load in humans correlated to mortal-
ity.25 Using 4 � 103 TCID50 in 25 μl saline, an addi-
tional 16 mice (7male and 9 female for a final total of 9
male and 9 female mice) were infected intranasally with
4 � 103 TCID50 SARS-CoV-2 (divided equally into
12.5 μl in each nostril) and 12 mice (6male and 6 female)
were subjected to a sham procedure (12.5 μl saline into
each nostril). Animals were observed for signs of infec-
tion, decreases in body weight, alterations in body tem-
perature, lack of grooming, hunched posture, rapid
respiration, lethargy, and mortality and were managed
under the supervision of an American College of Labora-
tory Animal Medicine board–certified laboratory animal
veterinarian (D.P.O.). Continuous monitoring of animal
temperature and activity was provided by an RFID
(radiofrequency identification) microchip and sensors
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using the UID Mouse Matrix and UID Temperature
Microchips (https://www.uidevices.com). To confirm
infection in mice, we collected blood via cardiac punc-
ture of each animal before perfusion, placed it in KE
EDTA tubes, and isolated plasma. Antibody titers
were measured in plasma using the Mouse Anti-SARS-
CoV-2 IgG Antibody ELISA Kit (DEIASL240) from
CD Creative Diagnostics (NY, NY) according to the
manufacturer’s instructions.
Five of the 18 mice, 3 male and 2 female mice,

infected at 4 � 103 TCID50 were euthanized because of

severe symptoms, leaving 13 surviving animals. Thirty-
eight days after the infection procedure, six SARS-
CoV-2 and six sham-treated mice (three male and three
female) were challenged with MPTP, a mitochondrial
stressor known to induce some of the characteristic
pathologies of PD that has been previously used in simi-
lar studies.26,27 For the final analysis, all data from
male and female mice were combined because we found
no significant differences in males versus females in
regard to response to sublethal doses of MPTP (P <
0.47) or from SARS-CoV-2 (P < 0.43) infection. In
addition, historical data in the Smeyne lab of more than
250 animals using the acute paradigm of MPTP have
shown no sex differences in regard to SNpc dopaminer-
gic (DA) neuron loss (R.J.S., personal communication).
In this article, we used a subtoxic dose of MPTP (10
mg/kg � 4 at 2-hour intervals, intraperitoneally) that
has been shown to induce a small inflammatory
response, but no SNpc DA neuron death.27 To confirm
that the mice used were infected with SARS-CoV-2, we
injected seven mice recovered from SARS-CoV-2 (four
male and three female nice) and six sham-treated (three
male and three female) mice intraperitoneally with
equal volumes of saline.
Forty-five days after active or sham infection and 7

days after MPTP or saline administration, animals were
anesthetized and euthanized by transcardial perfusion
with 3% paraformaldehyde.

Quantitation of SNpc DA Neuron Number and
Microglial Number

After perfusion, brains were dissected from the cal-
varia, postfixed overnight, then dehydrated through
graded ethanols, defatted in xylene, and embedded in
the coronal plane in paraffin (Paraplast-Xtra; Fisher
Scientific, Waltham, MA, USA). Serial 10-μm sec-
tions (five sections per slide) were cut and all sections
mounted onto Superfrost-Plus slides (Fisher Scien-
tific). Every other slide (sampling at 100-μm inter-
vals) was immunostained for tyrosine hydroxylase
(TH, 1:250; mouse monoclonal, T1299; Sigma-
Aldrich, St. Louis, MO, USA) and ionized calcium-
binding adapter molecule 1 (Iba-1) to immunolabel
microglia (1:200; rabbit polyclonal, 019-19741;
Wako, Richmond, VA, USA)28 using a two-color
diaminobenzidine (DAB) protocol.
The total number of SNpc TH-positive DA neurons

(+ Nissl) were estimated by model-based stereology29

using the physical disector (StereoInvetigator; MBF Bio-
science, Williston, VT). On average, 40 sections per
SNpc were analyzed. We used n = 6 for each experi-
mental group, and these included equal numbers of
male and female animals. Based on historical data in
our laboratory (>250 mice treated with MPTP), the

FIG. 1. Determination of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) dose and antibody titer. (A) Kaplan–Meier survival
curve of male mice infected with three different titers of SARS-CoV-2
(USA-1). High dose (1 � 103 TCID50): n = 3; intermediate dose (4 � 103

TCID50): n = 3; low dose (1 � 104 TCID50): n = 3. (B) Antibody titers
in mice infected 45 days before testing. Vehicle: n = 10; SARS-
Co-V-2/vehicle: n = 7; SARS-CoV-2+ 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP): n = 6. ***P < 0.001 compared with control
(vehicle) group. Statistical analysis was performed using analysis of
variance with post hoc tests (Tukey) (Prism 9.0; GraphPad Software) if
overall significance was achieved. [Color figure can be viewed at
wileyonlinelibrary.com]

1396 Movement Disorders, Vol. 37, No. 7, 2022

S M E Y N E E T A L

https://www.uidevices.com
http://wileyonlinelibrary.com


n = 6 in each group will allow us a power of 0.80
accepting a type I error of 0.05.
Microglia numbers were estimated using design-based

stereology (optical disector; StereoInvestigator; MBF
Biosciences, Williston, VT).30 Microglia were deemed
as “resting” if they contained a small oval Iba-1–
positive cell body that averaged three microns or less in
diameter with long, slender processes, and as “acti-
vated” when the cell body was increased in size com-
pared with resting microglia and had an irregular shape
with shorter and thickened processes.31

Evaluation of Striatal Dopamine Terminals and
Microglia Density

After perfusions, brains were postfixed overnight in
fresh fixative, cryoprotected in 30% sucrose, and then
cryosectioned at 30 μm with all sections collected in 1�
phosphate-buffered saline (PBS). Free-floating sections
were incubated for 30minutes in 3% H2O2, washed in
PBS-0.1% bovine serum albumin (BSA), and incubated
into a 4% goat or rabbit serum (Vector, Burlingame,
CA, USA) in PBS-1% BSA-0.1%Triton X-100 for 1 h,
then incubated in primary antibody (rabbit anti-TH,
AB152, 1:5000 [Millipore Darmstadt Germany] or goat
anti–Iba-1, 1:500 [FUJIFILM Wako Chemicals] in PBS-
1% BSA-0.1% Triton X-100) overnight at 4�C. Sec-
tions were then washed five times in PBS-0.1% BSA
and placed into secondary antibody conjugated to
horseradish peroxidase (goat anti-rabbit IgG or rabbit
anti-goat IgG, 1:500 in PBS-1% BSA-0.1% Triton X-
100; Invitrogen, Rockford, IL, USA) for 2 h. Sections
were rinsed, incubated in 0.25X ImmPACT DAB solu-
tion for 4 minutes, washed and mounted on silanized
slides, dehydrated with graded ethanols, defatted in
xylene, and coverslipped using Permount. For quantifi-
cation of DA terminals, images were scanned using the
MoticEasyScan with the extended depth of focus mode.
TH axon densities were calculated using ImageJ soft-
ware (DAB measurement tool).
The density of resting and activated microglia, deter-

mined using the same criteria as used in the SNpc, was
made in the dorsolateral striatum. Density was deter-
mined in two sections spaced 100 microns apart. The
contour of the dorsolateral striatum was outlined and
using StereoInvestigator, the area was calculated. Acti-
vated and resting microglia within the contour were
counted, and using the area measurement, an average
density was determined.

Results
Effects of SARS-CoV-2 Infection on Animal

Morbidity and Mortality
B6.Cg-Tg(K18-ACE2)2Prlmn/J (K18-hACE2)

mice were infected with one of three different titers

(1 � 103 TCID50, 4 � 103 TCID50, and 1 � 104

TCID50) of SARS-CoV-2. After exposure, the mice
were examined for signs of infection, including
decreased body weight, alterations in body tempera-
ture, lack of grooming, hunched posture, rapid respi-
ration, and lethargy. We observed no animal
morbidity or mortality in mice infected with 1 � 103

TCID50, about 28% in mice infected with 4 � 103

TCID50, and 67% in animals infected with 1 � 104

TCID50 (Fig. 1A). The animals that died were found
deceased in their cage or were euthanized with >20%
weight loss and appeared moribund, hypothermic,
and/or with milky-white eye discharge. Animals that
survived showed no apparent temperature alterations
or loss of blood oxygenation. To ensure that surviving
mice in the 4 � 103 TCID50 group (n = 13) were
infected, we performed antibody titers 45 days after
infection. As shown in Figure 1B, no detectable viral
titer was measured in animals intranasally adminis-
tered the saline alone. Both the SARS-CoV-2– and
SARS-CoV-2+MPTP–treated infected mice had a
significantly increased antibody response (F2,20 = 29.56;
P < 0.001) compared with saline-treated mice, although
the response between the SARS-CoV-2– and SARS-CoV-
2+MPTP–treated infected mouse groups was not signif-
icantly different (P < 0.337). Based on these data, we
examined the effects of subtoxic levels of MPTP on neu-
roinflammation and SNpc DA neuron death at 4 � 103

TCID50.

Prior Infection with SARS-CoV-2 Increases
Susceptibility to the DA Toxin, MPTP

In this study, we administered a subtoxic dosage of
MPTP (10 mg/kg � 4, intraperitoneally every 2 hours)
that we have previously shown to induce a small
inflammatory response but no SNpc DA neuron
death.27 We examined the effects of these low levels of
MPTP on four groups of mice: (1) sham + vehicle
(n = 6), (2) SARS-CoV-2+ vehicle (n = 7), (3) sham
+ MPTP (n = 6), and (4) SARS-CoV-2+MPTP
(n = 6). Equal numbers of male and female mice were
used, and all mice survived MPTP treatment. We then
waited 7 days after MPTP and euthanized mice to
assess both SNpc DA neuron and microglia numbers.
There was an overall significant difference between
groups (F3,19 = 4.985; P < 0.010). As shown in
Figure 2A, no SNpc DA neuron loss was observed
after saline, SARS-CoV-2, or MPTP in vehicle alone
(Fig. 2B–D1). However, in mice infected with 4 � 103

TCID50 SARS-CoV-2 and allowed to recover for 38
days, this concentration (10 mg/kg MPTP � 4) induced
a significant 23% (P < 0.012) or 19% (P < 0.023)
greater loss of SNpc DA neurons than SARS-CoV-2 or
MPTP alone, respectively (Fig. 2A,E,E1).
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FIG. 2. Legend on next page.
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We also evaluated the effect of SARS-CoV-2, MPTP,
and SARS-CoV-2+MPTP on the SNpc DA neuron ter-
minals in the striatum. We found an overall significance
between the four experimental conditions (F3,20 =
7.947; P < 0.001) (Fig. 2F). Comparison between
groups shows that MPTP alone reduces the DA striatal
terminal field by 55% compared with vehicle (P <
0.012), while the SARS-CoV-2+MPTP induces a
reduction rate of 50.1% (P < 0.003) (Fig. 2G–J). Unlike
the SNpc DA neuron loss, there were no significant dif-
ferences between the terminal loss after MPTP com-
pared with the SARS-CoV-2+MPTP group. The loss
of phenotype in the striatal DA terminals in the
MPTP group in excess of neuron loss was not unex-
pected, because this dichotomy has been previously
reported,32,33 suggesting that the SNpc DA terminals
are more sensitive to oxidative stress than the soma.
Due to the restrictions of animal use in the BL3 facil-

ity, we were not able to assess whether the loss of SNpc
DA neurons and projections of these neurons to the stri-
atum had any behavioral effect. However, given the rela-
tively small loss of SNpc DA neurons and projections
compared with mice given the full acute dose of MPTP
(4 � 20mg/kg � 4), which has not produced chronic
behavioral changes, these were not expected.34-36

Prior Infection with SARS-CoV-2 Increases
Neuroinflammation

To examine whether SARS-CoV-2 infection induced
a neuroinflammatory response, we quantitated total,
resting, and activated microglia in the SNpc and resting
and activated microglia density in the dorsolateral stria-
tum following vehicle (n = 5), SARS-CoV-2 (n = 7),
10mg/kg � 4 MPTP (n = 6), and SARS-CoV-2+ 10
mg/kg MPTP (n = 6).
In the SNpc, infection with SARS-CoV-2 (with or

without MPTP) resulted in no change from control

animals in the total number of microglia in any of the
three experimental groups (F3,20 = 0.5944; P < 0.626)
(Fig. 3A). However, when we quantified resting
(Fig. 3B,G) versus activated (Fig. 3C,H) microglia
individually, we observed significant differences
between groups. Overall differences were seen in
both the number of resting microglia (F3,19 = 3.572;
P < 0.033) and activated microglia (F3,19 = 7.109;
P < 0.002).
In regard to resting microglia, we measured a sig-

nificant 36% reduction in the SARS-CoV-2+MPTP
group compared with the vehicle, SARS-CoV-2 alone,
or MPTP alone (P < 0.05). Quantitation of active
microglia showed that SARS-CoV-2 infection or
MPTP alone did not induce a significant increase
compared with vehicle (Fig. 3B). We observed a
308% (P < 0.002) increase in the SARS-CoV-2+
MPTP group compared with vehicle and a 232%
increase compared with SARS-CoV-2 alone (P <
0.006) (Fig. 3C).
In the dorsolateral striatum, infection with SARS-

CoV-2 (with or without MPTP) resulted in no
change in the density of microglia between the control
animals and any of the three experimental groups
(F3,20 = 2.918; P < 0.0595) (Fig. 3D). When examining
resting versus activated microglia, no change in density
was observed in the resting microglia (F3,20 = 2.228; P
< 0.1163) (Fig. 3E,I). However, we did measure a sig-
nificant change in the density of activated microglia
between the groups (F3,20 = 9.346; P < 0.0005)
(Fig. 3F,J). Administration of SARS-CoV-2 did not
induce a change in activated microglia. However,
MPTP alone resulted in a significant 112% increase in
the density of activated microglia compared with
vehicle (P < 0.029). SARS-CoV-2+MPTP induced a
179% increase compared with vehicle (P < 0.0003) and
a 72% increase compared with SARS-CoV-2 alone (P
< 0.0119).

FIG. 2. Synergistic effect of substantia nigra pars compacta (SNpc) DA neuron number and terminal field loss induced by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) with or without 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). (A) SNpc DA neuron loss. We observed a sig-
nificant loss of SNpc DA neurons was measured in the SARS-CoV-2+MPTP group compared with vehicle. (B) Low-power photomicrograph of the
SNpc, rostral to the medial longitudinal fasciculus, in vehicle (saline)-treated mice. (B1) Higher-power magnification of the inset in (B). SNpc DA neurons
are immunostained with antibodies directed against tyrosine hydroxylase (TH) and then visualized with the chromogen diaminobenzidine (DAB) so that
they appear dark brown. (C) Low-power photomicrograph of the SNpc, rostral to the medial longitudinal fasciculus, in SARS-CoV-2–treated mice. (C1)
Higher-power magnification of the inset in (C). (D) Low-power photomicrograph of the SNpc, rostral to the medial longitudinal fasciculus, in 10mg/kg
� 4 MPTP–treated mice. (D1) Higher-power magnification of the inset in (D). (E) Low-power photomicrograph of the SNpc, rostral to the medial longitu-
dinal fasciculus, in SARS-CoV-2+MPTP–treated mice. (E1) Higher-power magnification of the inset in (E). (F) The density of DA neurons. Optical den-
sity measurements of TH in the dorsoventral striatum of SARS-CoV-2–infected, MPTP-, and SARS-CoV-2+MPTP–treated mice. Both sublethal MPTP
and SARS-CoV-2+MPTP induce a significant phenotypic loss of SNpc DA neuron terminal fields. (G) Low-power photomicrograph of tyrosine
hydroxylase–immunostained striatum of the C57BL/6J in vehicle (saline)-treated mice. Inset: magnification of outlined area in (G). (H) Low-power photo-
micrograph of tyrosine hydroxylase–immunostained striatum of the C57BL/6J in SARS-CoV-2–treated mice. Inset: magnification of outlined area in (H).
(I) Low-power photomicrograph of tyrosine hydroxylase–immunostained striatum of the C57BL/6J mice 7 days after 4 � 10mg/kg MPTP. Inset: magni-
fication of outlined area in (I). (J) Low-power photomicrograph of tyrosine hydroxylase–immunostained striatum of the C57BL/6J mice 38 days after
SARS-CoV-2 and then 7 days after 4 � 10mg/kg MPTP. Inset: magnification of outlined area in (J). Scale bars: 150mm (B–E, G–J); 50mm (B1

–E1); 20
mm (insets, G–J). *P < 0.05 versus control; **P < 0.01 versus control; #P < 0.05 versus SARS-CoV-2. Statistical analysis was performed using analysis of
variance with post hoc tests (Tukey) (Prism 9.0; GraphPad Software) if overall significance was achieved. [Color figure can be viewed at
wileyonlinelibrary.com]
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Discussion

Through 2021, approximately 300 million people
have been infected with SARS-CoV-2, of which fewer
than 2% have died of the disease.8 The majority of
these cases involve the original strain isolated in 2020
(USA-1, also known as alpha; strain B.1.1.7), although
the recent variants, delta (strain B.1.617.2) and omi-
cron (strain B.1.1.529), have become the dominant
infective strain(s). Although the predominant symptoms
associated with this virus are respiratory, it has also
been shown that a significant proportion, estimated at
35–40%, also demonstrate neurological sequalae,38

including anosmia, headache, seizures, stroke, meningi-
tis, and acute disseminated encephalomyelitis. In addi-
tion, a subset of these infected individuals manifests
neurological symptoms that appear to have a pro-
tracted course, that is, “long haulers.” These patients
describe issues related to confusion or “brain fog,” per-
sistent headache, numbness/tingling, loss of sense of
small/taste, dizziness, and blurred vision.39 Related to
longer-term issues in the post-COVID-19 infection
period, one also needs to remain cognizant of the possi-
bility for the development of postencephalic syndromes
that are known to occur after pandemic viral out-
breaks.40 Perhaps the most famous of these is the devel-
opment of both an immediate and a postencephalic
parkinsonism that occurred subsequent to the 1918
influenza.3,41

Given recent reports of COVID-19-induced
parkinsonism,15-17 where the parkinsonian symptoms
appear similar to those described after the 1918 H1N1
outbreak, it would be derelict not to consider that these
two vastly different pandemic viruses may share a com-
mon mechanism that leads to neurological sequalae.
Both influenza and SARS-CoV-2 are respiratory viruses,
both infect epithelial cells in the lung and gut,42 and both
the 1918 H1N1 influenza virus43 and SARS-CoV-244 do
not appear to have significant inherent neurotropic
potential. Both the 1918 influenza and SARS-CoV-2

appear to induce an enhanced program of induction of
proinflammatory cytokines and chemokines, known as a
cytokine storm.45 These circulating peripheral cytokines
and chemokines can easily penetrate the BBB through
capillary beds, as well as communicate with brain paren-
chyma through brain glymphatics.46 Once these inflam-
matory proteins are in the brain, they have been shown
to activate the innate immune system of the brain
(microglia and astrocytes), which also begin to secrete
inflammatory proteins that have been shown to sensitize
neurons to later insults.47

The cellular composition of the SNpc, which is the
main CNS region that degenerates in PD, is unique in
that it contains the highest ratio of microglia/neurons
within the CNS. This skewed microglia/neuron ratio
places the SNpc at a higher risk for reactive oxygen–
induced damage48 and disruption of mitochondrial func-
tion.49 This cellular damage does not necessarily lead to
an immediate effect but can result in neurons having a
long-term diminished capacity to handle insults, that is,
the “hit and run” effect. This would then lead cells to
have a lower threshold for survival after future insults
that could include any other agent/environmental50 expo-
sure or even genetic sensitivity51 associated with PD.
In this study, we modeled in mice genetically modified

to express the human ACE2 receptor necessary for infec-
tion with SARS-CoV-2, recovery from a moderate
COVID-19 infection, and later subthreshold mitochon-
drial inhibition. Our findings that SARS-CoV-2 infection
alone did not induce CNS inflammation or SNpc neuron
death suggests that this virus, without any other pathol-
ogy that reduces BBB break, is not a direct parkinsonian
agent. However, we do find that systemic infection
appears to sensitize the SNpc DA neurons to mitochon-
drial stress that, in and of itself, does not induce neuron
loss. This sensitization appears to remain for a period of
time after resolution of the infection and without any
apparent physical manifestation of a direct viral inflam-
mation effect in the SNpc. This postinfection sensitization
of the SNpc DA neurons is similar to previous studies

FIG. 3. Synergistic effect on neuroinflammation in the substantia nigra pars compacta (SNpc) and dorsolateral striatum by SARS-CoV-2 with or without
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). (A) Quantitation of total microglia number in the SNpc. (B) Quantitation of resting microglia in the
SNpc. There is a significant decrease in the number of resting microglia in the SARS-CoV-2+MPTP–treated mice compared with the vehicle-treated
animals. (C) Quantitation of active microglia in the SNpc. There is a significant increase in the number of resting microglia in the SARS-CoV-2+MPTP–
treated mice compared with both vehicle-treated and SARS-CoV-2–treated animals. (D) Quantitation of total microglia density in the dorsolateral stria-
tum. (E) Quantitation of resting microglia density in the dorsolateral striatum. (F) Quantitation of active microglia density in the dorsolateral striatum.
There is a significant increase in the number of resting microglia in the SARS-CoV-2+MPTP–treated mice compared with vehicle-treated, MPTP alone,
and SARS-CoV-2–treated animals. MPTP alone induces a significant increase in the density of activated microglia compared with vehicle and SARS-
CoV-2 alone. **P < 0.01 compared with vehicle or SARS-CoV-2 alone; ##P < 0.01 compared with vehicle or MPTP alone; $P < 0.05 compared with vehi-
cle. (G) Appearance of resting microglia in the SNpc. We classified resting microglia as having soma less than 3mm in diameter with fine processes
emanating from the soma (white arrows). For size comparison, the SNpc DA neurons are marked by white asterisks. (H) Appearance of resting microglia
in the dorsolateral striatum. We classified resting microglia as having soma less than 3mm in diameter with fine processes emanating from the soma
(white arrows). For size comparison, the SNpc DA neurons are marked by white asterisks. (I) Appearance of activated microglia in the SNpc. We classi-
fied activated microglia as having soma greater than 5mm in diameter with thickened processes emanating from the soma (white arrowheads). For size
comparison, the SNpc DA neurons are marked by white asterisks. (J) Appearance of activated microglia in the dorsolateral striatum. Microglia in the
striatum are slightly larger than in the SNpc. Scale bars: 10mm (G–J). Statistical analysis was performed using analysis of variance with post hoc tests
(Tukey) (Prism 9.0; GraphPad Software) if overall significance was achieved.
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that have investigated other viruses associated with post-
encephalic parkinsonism, including the 2009 H1N1 influ-
enza virus pandemic.27 However, in this influenza study,
the dose of MPTP needed was double that required in
this study (4 � 20mg/kg � 4), and only at this increased
dose did they note an increased (21%) SNpc DA neurons
loss. In fact, when the animals previously infected with
CA/09 H1N1 were administered the same dose of MPTP
used in this study (10mg/kg � 4), no synergistic effects
were seen (Supporting Information Fig. S1). This suggests
that although different viruses can sensitize the brain to
later insults, the dose of SARS-CoV-2 virus used here
(4 � 103 TCID50) is a stronger sensitizing agent than the
CA/09 H1N1 influenza virus.
Although these preclinical models of infection leading

to later parkinsonism are critical to our understanding of
potential downstream outcomes of pandemics, one must
also validate the use of our preclinical model. Studies
that have examined the cytokine responses in
K18-hACE2 mice and humans after infection with
SARS-CoV-2 show a similar cell-type infectivity and a
similar induction of cytokine/chemokines.52 In both mice
and humans, the period of infectivity is similar. In addi-
tion, using a similar approach to this study, we previ-
ously showed that mice that recovered from an H1N1
influenza infection developed enhanced susceptibility to
the parkinsonian toxin MPTP.53 The role of H1N1 as a
susceptibility agent has been validated in a retrospective
study examining risk for developing PD in humans sur-
viving influenza.54 This study showed that previous
influenza infection resulted in a 73% increased risk for
developing PD compared with individuals not infected.54

This increased susceptibility was within the confidence
interval determined epidemiologically for people born
during the time of the 1918 H1N1 pandemic.55 Our pre-
clinical studies examining SARS-CoV-2 infection suggest
the possibility of a similar transient increase in parkinso-
nian incidence with an additional caveat that our pre-
clinical studies using SARS-CoV-2 increased the
susceptibility of SNpc DA neurons to low-dose mito-
chondrial stress compared with H1N1. Thus, should the
predicted risk from SARS-CoV-2 manifest, the diverse
consequences would represent a substantial burden on
patients, families, and society.
Understanding this risk should be a priority. Evalua-

tion of the sensitivity of this mechanism to viral load
and heterogeneity across new and emerging variants
are important. Although diverse environmental agents
have been associated with PD risk, characterizing the
effects of the “second hit” across the range of environ-
mental agents56,57 beyond the mitochondrial complex I
and IV inhibitor used in this study will be necessary.
We also need to examine whether SARS-CoV-2 infec-
tion, in the absence of a direct BBB breach, increases
permeability of this barrier that could, in theory, allow
greater access to both environmental agents and

immune cells into the brain. Another avenue of contin-
ued interest is to determine whether treatments for
COVID-19 infection can moderate this viral sensitiza-
tion. Previously we have shown that prior vaccination
against H1N1 or immediate treatment with oseltamivir
phosphate can eliminate the H1N1+MPTP synergy.53

Thus, vaccination and antiviral therapies directed to
COVID-19 have the potential to modify our observed
increased sensitivity to MPTP (and by inference other
environmental agents). However, for the more than
100 million people worldwide who survived COVID-
19, without the benefit of access to vaccinations, the
long-term consequences of infection, including increas-
ing the risk for developing PD, need to be understood.
It is also critical for our healthcare providers and gov-
ernmental agencies to prepare for this potential.
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