Clinical Pharmacokinetics of Midazolam and Ketamine in Critically Ill Adults on Extracorporeal Membrane Oxygenation

Julian Tanjuakio1, Edwin Lam2, Walter Kraft2, Hitoshi Hirose3, Nicholas Cavarocchi1
1Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA-19107
2Department of Pharmacy and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA-19107
3Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA-19107

Introduction and Objective

Introduction

- Extracorporeal Membrane Oxygenation is a form of life support that provides temporary mechanical cardiopulmonary support in patients who cannot provide adequate cardiac output.
- Sedation is achieved through Midazolam, a benzodiazepine, and Ketamine, an NMDA receptor antagonist.
- Use of ECMO in adults has increased recently, more than 400% from 2006-2011 (Sauer, 2015).
- Ex vivo studies show sequestration of Midazolam within the circulation (Tellor, 2015).
- Ketamine shows favorable hemodynamic effects, but use on ECMO adult patients not well described in literature (Tellor, 2015).

Objectives

- Characterize the plasma pharmacokinetic parameters (absorption, distribution, metabolism and elimination) for ketamine and midazolam in critically ill adult patients on ECMO.
- Create a population pharmacokinetic model of critically ill adult patients on ECMO.
- Investigate possible dosing strategies for the purpose of adequate sedation.

Methods

- For the duration of ketamine/midazolam infusion, blood samples will be taken at the just prior, 15 minute, 30 minute, 2 hour, 4 hour, and 6 hour time points and every 12 hour time points thereafter.
- Samples will be taken pre and post-oxygenator every 12 hours.
- Quantification in plasma performed by HPLC/MS-MS.
- Gather information from each patient regarding demographics, vital signs, laboratory parameters and details of ECMO therapy, infusion changes/boluses, concomitant medications.

Study Endpoints

- Pharmacokinetic parameters (volume of distribution and clearance) for ketamine and midazolam and their respective metabolites.
- Pharmacokinetic model describing ketamine, midazolam and their respective metabolites in critically ill adult patients on ECMO.

Results

- In-house assay developed for ketamine, midazolam and their respective metabolites in human plasma using HP/LC-MS.
- Currently have data from 11 subjects:
 - Cardiogenic shock/MI/CHF (5)
 - ARDs/Asthma exacerbation (6)
 - All male
- Example data from subject 105
 - African American male presented with Acute refractory hypercapnic respiratory failure due to asthma exacerbation
 - Placed on venovenous (VV) ECMO for 9 days

Conclusions

Preliminary data shows:

- Plasma concentrations have been successfully measured through an in-house assay for ketamine, midazolam and their respective metabolites.
- Drug concentration discrepancies are seen in pre-oxygenator samples compared to post-oxygenator samples. Discrepancies can be due to any of the following:
 - Sequestration of drug in the ECMO circuit
 - Critically-ill state causing altered kinetics
 - Concomitant drugs or illnesses

Moving forward:

- Continue to compile samples concentration data for remaining subjects.
- Continue to compile clinical data from each subject using electronic medical records (EMR).
- Establish pharmacokinetic parameters.
- Use the clinical data from EMRs to construct a population pharmacokinetic model for adult patients on ECMO.

Acknowledgements

We thank the nurses and staff in the Cardiovascular ICU at TJUH and all of the patients who participated in this study.

References