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RESEARCH ARTICLE
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Abstract

Background

Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heteroge-

neous and often present with overlapping symptomology, providing challenges in reliable

classification and treatment. Single photon emission computed tomography (SPECT) may

be advantageous in the diagnostic separation of these disorders when comorbid or

clinically indistinct.

Methods

Subjects were selected from a multisite database, where rest and on-task SPECT scans

were obtained on a large group of neuropsychiatric patients. Two groups were analyzed:

Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics

and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI

(n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs

and visual readings (VRs) were analyzed using a binary logistic regression model with pre-

dicted probabilities inputted into a Receiver Operating Characteristic analysis to identify

sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically

significant regions of increased perfusion in PTSD compared to TBI. Analysis included a

10-fold cross validation of the protocol in the larger community sample (Group 2).
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Results

For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differ-

entiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated

with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for

VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant

range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingu-

lum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes.

Conclusions

This study demonstrates the ability to separate PTSD and TBI from healthy controls, from

each other, and detect their co-occurrence, even in highly comorbid samples, using

SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of

these conditions.

Introduction
Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are complex, common-
ly comorbid disorders in which clinical symptoms often overlap, creating challenges in diagno-
sis and treatment [1–3]. Advanced neuroimaging techniques are providing insights into
underlying pathological and physiological changes, and biomarker studies offer the potential to
differentiate these disorders at acute stages, when interventions have the greatest potential to
yield effective outcomes [4, 5]. Structural imaging in acute TBI is indicated for the identifica-
tion of skull fractures, contusions and bleeds, but computed tomography (CT) or magnetic res-
onance imaging (MRI) typically do not demonstrate the subtle abnormalities associated with
TBI including perfusion deficits, diffuse axonal injury and alterations in functional anatomical
connections [6]. As mild TBI often goes undetected using conventional structural imaging [7],
the use of functional imaging techniques, including single photon emission computed tomog-
raphy (SPECT) have demonstrated a greater sensitivity and specificity for identifying mild TBI
[8]. The most commonly observed regions affected are the orbitofrontal cortex, temporal poles,
and anterior cingulum [8], which correlate with cognitive and psychiatric symptomology. In
contrast, imaging of PTSD has revealed volumetric and perfusion changes in the amygdala [9],
corpus callosum [10], insula [11], anterior cingulum [12–14] and hippocampus [15, 16]. Given
the overlapping symptomology between TBI and PTSD and the high prevalence of these disor-
ders within our active duty and post-deployment U.S. military personnel [17, 18] and civilian
population [19, 20], there is a need to identify diagnostic tools that can clearly distinguish these
disorders, so patients may be directed toward appropriate treatment. Research into the use of
SPECT has demonstrated its clinical utility for both the improved detection of TBI [8, 21–23]
and the delineation of the neural circuitry underlying PTSD [24–31], offering the potential of
this modality to identify functional biomarkers useful in differential diagnosis. The question re-
mains as to whether SPECT can distinguish PTSD from TBI or the comorbid presence of both.
The ability to address this question is complicated by the differences between these conditions
in military versus general populations which may be due to mechanisms of injury in addition
to other factors.
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TBI and PTSD in Military Personnel
Traumatic brain injury (TBI), especially from blast and blunt force trauma, has been designat-
ed as the “signature wound” of the Iraq and Afghanistan wars [32, 33]. The prevalence of these
brain disorders in active duty U.S. military personnel is on the rise, with the Department of De-
fense reporting 307,283 diagnosed cases of TBI from 2000–2014 [17] and the Congressional
Research Service reporting 103,792 diagnosed cases of PTSD from 2000–2012 [18]. The eco-
nomic costs to society for treatment of PTSD and TBI are significant, with the Rand Corpora-
tion estimating an annual cost for TBI between $591 and $910 million. Within the first two
years after returning from deployment, they estimate that costs associated with PTSD and
major depression for 1.6 million service members range between $4.0 to $6.2 billion [34].

The co-occurrence of these two disorders among military personnel also is quite frequent.
Service members exposed to TBI have been shown to have a higher incidence of PTSD [35–
37]. An observational study by Taylor et al. reported 73% of service members met the criteria
for PTSD [38]. The RAND survey of returning combat veterans also reported that 50% had
witnessed the death or injury of a friend, 10% had been injured themselves, and over 19% had
symptoms consistent with PTSD [34]. Hoge et al. found that 90% of combatants had experi-
enced a traumatizing event [35]. Soldiers who experience blast-related TBI are at greater than
double the risk for developing PTSD [36]. Over 400,000 military personnel and veterans have
been diagnosed with PTSD or TBI since 2001 [17, 18], and many have been diagnosed with
both. Indeed, the overlap of these two populations has been estimated at 33% [34, 35] to 42%
[39] among veterans.

TBI and PTSD in Civilians
Among the U.S. civilian population, approximately 7.7 million suffer from PTSD [19]. TBI is
also quite prevalent, with 2.5 million annual visits to emergency rooms for suspected TBI [40].
Research suggests that long-term consequences of seemingly innocuous head injuries may be
significant [41, 42], and it is now understood that repetitive TBI, as occurs in sport, can lead to
long-term morbidity [43–48].

The co-occurrence of TBI and PTSD in civilian populations is less clearly delineated. Studies
among civilians with TBI indicate that 49% develop a new psychiatric illness in the year subse-
quent to injury [49–51]. Victims of head injury from motor vehicle accidents also have a higher
rate of PTSD compared to those with orthopedic injuries. Bombardier and colleagues reported
that 44% of victims of TBI related to assault progressed to meeting diagnostic criteria for
PTSD, but that among a cohort of civilians with TBI from any cause only 11% developed
PTSD [52]. Research on the co-occurrence of these two disorders is scant with a PubMed
search revealing only five references on the topic.

Biomarkers to Differentiate TBI from PTSD
Given 1) the heterogeneous nature of TBI, 2) the fact that mild TBI, which is most common, is
less likely to yield obvious, specific chronic symptoms, 3) the reliance of diagnosis on self-re-
port, and 4) the overlap of physical and psychological symptoms between PTSD and TBI, bio-
markers to accurately diagnose these disorders would be a welcome adjunct to clinical acumen.
Moreover, while TBI symptoms can resolve over time, a significant proportion of cases develop
a persistent post-concussive syndrome (PCS) [3]. Some symptoms of PCS [53, 54] overlap with
those of PTSD and can include: headache, dizziness, irritability, memory impairment, slowed
reaction time, fatigue, sleep disturbances, sensitivity to light and noise, impulsivity, anxiety and
depressive symptoms [2, 3, 39, 46–48, 55–60]. Accurately distinguishing TBI from PTSD can
regularly be a clinical challenge. Recollection of traumatic events, particularly if assessment
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occurs after significant time has elapsed, can be inconsistent [61, 62]. The treatments for PTSD
and TBI/PCS are different, therefore, reliably separating them, as well as identifying cases in
which both are present, emerges as a genuine diagnostic need [56, 59, 63]. To our knowledge,
no widely accepted biomarker to distinguish TBI from PTSD has been reported.

Neuroimaging in TBI
There are a variety of neuroimaging modalities available which provide significant clinical utili-
ty in the context of TBI and PTSD. CT and MRI are used to measure changes in anatomical or
physiological parameters of TBI (hemorrhage, edema, vascular injury, intracranial pressure),
but for most cases of mild TBI, CT and MRI often show no abnormalities [7]. Diffusion tensor
imaging (DTI) has been used to detect axonal injury for mild to moderate TBI, but results are
inconsistent, highly dependent upon technique, and require further investigation [36]. Func-
tional MRI (fMRI) is often used to differentiate TBI from control groups [64] and has been
used to study activation patterns in patients with TBI [65]. Fluorodeoxyglucose positron emis-
sion tomography (FDG-PET) measures glucose uptake and metabolism and is used to detect
subtle changes in brain function from TBI that are not observed with structural imaging mo-
dalities like CT or MRI [66].

Brain perfusion SPECT is used to measure cerebral blood flow and activity patterns and is
indicated for the evaluation of TBI in the absence of anatomical findings [67]. A recent review
of three decades of research by Raji and colleagues concluded that perfusion SPECT for TBI 1)
has improved lesion detection compared to CT/MRI; 2) helps to predict clinical outcomes; and
3) can help direct treatment. Based on their review, the authors suggest that SPECT should be
part of a clinical evaluation in the diagnosis and management of TBI [8]. This review cited 19
longitudinal studies that demonstrated Level II A evidence (i.e., evidence from at least one con-
trolled trial without randomization) for perfusion SPECT in identifying lesions in the clinical
setting of TBI [8, 68–71]. SPECT has high sensitivity in TBI cases [21–23, 68]. Jacobs et al.
found a 91% sensitivity< 3 months after injury and 100% thereafter and strong (96% to 100%)
negative predictive value, thus indicating that a negative perfusion SPECT scan is a reliable in-
dicator of a positive outcome for head injury [68].

Neuroimaging in PTSD
Brain activation studies have been performed to identify the underlying circuits in PTSD
using PET, fMRI and SPECT [24–27, 72–74]. A recent meta-analysis of 19 imaging studies
using a symptom provocation paradigm showed that PTSD patients have significant activa-
tion of the mid-line retrosplenial cortex and precuneus when presented with trauma-related
stimuli [75]. Furthermore, the relationship between TBI and PTSD has been studied with
functional imaging using FDG-PET in veterans with mild TBI and/or PTSD compared to
community volunteers [76].

Network-based studies of PTSD using fMRI reviewed by Peterson report a positive associa-
tion between default mode network (DMN) activity and PTSD severity [77]. This correlation
was also reported by Lanius [78]. The DMN is postulated as a circuit active during the resting
state, involving the inferior orbital frontal cortex, anterior and posterior cingulum, hippocam-
pus, precuneus, superior parietal lobe, and the angular gyrus [79]. If a hyperactive DMN is
causal in severe PTSD, this may reflect a failure of DMN regulation which manifests clinically
as diminished affect regulation.

Perfusion SPECT also has been investigated in the evaluation of PTSD, and preliminary
data suggest it has a potential role in distinguishing PTSD from TBI [25–28]. For example, in-
creased perfusion of the caudate has been associated with PTSD [28]. A small study using both
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perfusion SPECT and FDG PET showed that women with PTSD had significant decreases in
perfusion in the left hippocampus and in the basal ganglia, and lower cerebral glucose metabo-
lism in the left hippocampus and the superior temporal and precentral gyri than in the control
group [80]. Another SPECT study showed that compared to controls, PTSD patients had in-
creased cerebral blood flow in the limbic regions along with decreased perfusion in the superior
frontal, parietal, and temporal regions [81].

Neuroimaging to Differentiate TBI, PTSD and the Comorbid Condition
While previous studies have explored the relationship between PTSD and TBI using neuroim-
aging [5, 76, 82, 83], to the best of our knowledge, no study has identified imaging biomarkers
differentiating PTSD from TBI using brain SPECT imaging In addition, one barrier to identify-
ing neuroimaging biomarkers for psychiatric disorders has been the lack of sufficiently large-
scale studies [84]. In this retrospective study, two groups were analyzed; i) a small, well-defined
group with the diagnosis of TBI and/or PTSD at one clinical site closely matched for demo-
graphics and comorbidity compared to a healthy dataset, and ii) a large, generalized group of
all TBI and/or PTSD patients regardless of comorbidity across multiple-sites which were also
compared to healthy controls. Both region of interest (ROI) and visual readings (VRs) were an-
alyzed to assess the diagnostic accuracy in using SPECT to better assess and diagnose
these conditions.

Methods

Study Subjects
This study was conducted in accordance with the STARD guidelines (http://www.stard-
statement.org/). All subjects were obtained for retrospective analysis from a large multisite psy-
chiatric database, involving 20,746 patients who came for evaluation of psychiatric and/or neu-
rological conditions to one of nine outpatient clinics (Newport Beach, Costa Mesa, Fairfield,
and Brisbane, CA, Tacoma and Bellevue, WA, Reston, VA, Atlanta, GA and New York, NY)
from 1995–2014. Diagnoses were made by board certified or eligible psychiatrists, using all of
the data available to them, including detailed clinical history, mental status examination and
DSM-IV or V criteria, consistent with the current standard of care.

The retrospective data analysis for this study was approved by the IRB IntegReview (http://
www.integreview.com/) (IRB #004) and the healthy subjects were obtained in a separate study
as approved by the Western Institutional Review Board (WIRB # 20021714). Written informed
consent was obtained from all healthy subjects and data mining of anonymous clinical data
was sanctioned in accordance with 45 CFR 46.101(b)(4).

Included in the database are n = 116 healthy adult volunteers who had resting state and on-
task SPECT studies. The exclusion criteria for the healthy subjects were: 1) current or past evi-
dence of psychiatric illnesses as determined by clinical history, mental status examinations,
and the Structured Clinical Interview for Diagnosis for DSM-IV; 2) current reported medical
illnesses or medication; 3) history of brain trauma; 4) current or past drug or alcohol abuse; 5)
first degree relative with a psychiatric illness.

Two groups were extracted from the larger database for analysis. Group 1 (n = 397) is de-
scribed in Table 1 and Fig 1.

Group 1 represents a select cohort from the Newport Beach site matched closely by demo-
graphics and co-morbidities, including the healthy cohort. In this group, variance due to co-
morbid diagnoses was minimized and Ns were matched closely (n = 104 for TBI or PTSD,
n = 73 for TBI + PTSD, n = 116 for controls) as the main inclusion criteria. The primary selec-
tion criterion for TBI in clinical trials is the GCS, which is used to assess the level of
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consciousness following a TBI [85]. It rates a patient’s level of consciousness based on the abili-
ty to open his or her eyes, talk and move. As this was a retrospective chart review and subjects
were not assessed for TBI at the time of injury, we were unable to use the GCS as an assessment
of injury severity. Therefore, subjects were classified according to injury severity categories of
mild, moderate or severe based on the Department of Defense Clinical Practice Guidelines
[86]. Further classification included type of injury (blunt, penetrating, unknown) and mode of
injury (accident, assault, fall, sport, accident, unknown) as shown in Tables 2 and 3.

Of the 104 patients with TBI only, 65 were classified as mild, 11 moderate and 18 severe
based on neuroimaging data and clinical interview. Ten patients could not be categorized
based on information provided in the chart. Of these 10 patients, 8 showed abnormal findings
on SPECT scans indicating trauma: four subjects were diagnosed with temporal lobe dysfunc-
tion; one subject with prefrontal lobe dysfunction and temporal lobe dysfunction; one subject
with cerebellar dysfunction, parietal lobe dysfunction and temporal dysfunction; one subject

Table 1. Subject Demographics for Group 1.

Variable PTSD (n = 104) TBI (n = 104) Both PTSD and TBI (n = 73) Healthy (n = 116)

Age 36.7 ± 12.9 37.2 ±12.9 40.7 ± 13.8 41.4 ± 17.9

Gender(M/F) 65/39 65/39 36/37 46/70

Race% Caucasian 57 67 66 64

Dementia% 4 5 4 0

Depression% 41 41 41 0

Bipolar% 6 6 6 0

Epilepsy% 5 4 6 0

Schizophrenia% 3 1 3 0

Substance Abuse% 16 16 16 0

ADHD% 58 58 58 0

doi:10.1371/journal.pone.0129659.t001

Fig 1. Proportional Demographics for Group 1. Demographics of Group 1 with number of patients, number
of males, number of females and age expressed in absolute numbers, and all other values expressed
as percentages.

doi:10.1371/journal.pone.0129659.g001
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Table 2. TBI Classification for Group 1.

Severity Type of Injury Mode of Injury Number of Patients

Mild blunt accident 18

blunt assault 5

blunt fall 14

blunt sports 17

penetrating accident 2

unknown unknown 9

Moderate blunt accident 4

blunt assault 1

blunt fall 5

blunt sports 1

Severe blunt accident 13

blunt assault 1

blunt fall 2

blunt sports 2

Unknown Severity blunt accident 1

blunt assault 1

blunt fall 2

blunt sports 1

unknown unknown 5

doi:10.1371/journal.pone.0129659.t002

Table 3. TBI Classification with Comorbid PTSD for Group 1.

Severity Type of Injury Mode of Injury Number of Patients

Mild blunt accident 20

blunt assault 5

blunt fall 8

blunt sports 8

blunt unknown 1

unknown accident 1

unknown unknown 4

Moderate blunt accident 3

blunt assault 1

blunt fall 1

blunt sports 2

penetrating assault 1

Severe blunt accident 5

blunt assault 1

blunt fall 1

blunt sports 1

Unknown Severity blunt accident 3

blunt assault 2

blunt fall 1

blunt sports 2

unknown accident 1

unknown unknown 1

doi:10.1371/journal.pone.0129659.t003
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with frontal lobe syndrome and prefrontal lobe dysfunction; and one subject with post-concus-
sion syndrome. Of the 73 patients with TBI+PTSD, 47 were classified as mild, 8 moderate and
8 severe. Ten patients could not be categorized based on information provided in the chart. Of
these 10 subjects, 6 had abnormal findings on SPECT scans indicating trauma: one patient
showed frontal lobe syndrome, limbic system dysfunction, parietal lobe dysfunction and tem-
poral dysfunction; one subject was diagnosed with post-concussion syndrome; one subject
showed occipital lobe hyperperfusion, parietal lobe dysfunction and temporal dysfunction; one
subject showed prefrontal lobe and temporal dysfunction; and two subjects showed frontal
lobe syndrome and temporal dysfunction.

The patients in the TBI group had a chart diagnosis of intracranial injury with a brief or ex-
tended loss of consciousness (n = 62) or concussion (n = 42). The patients with PTSD met the
DSM-IV criteria. Patients in the subgroup with TBI were compared to those with PTSD, those
with TBI+PTSD, and to healthy controls. Similarly, each of the other subgroups was compared
to the remaining subgroups in the method described below.

Group 2 consists of a generalized group with much larger cohorts of patients in each diag-
nostic area, but unmatched for demographics or comorbidity across all sites. The patients in
the TBI and PTSD groups both had a chart diagnosis for their specific disorders. Group 2 re-
flects the full range of psychiatric co-morbidities across the larger cohorts (n = 7,505 for TBI,
n = 1,077 for PTSD, n = 1,017 for TBI+PTSD, n = 11,147 which do not include TBI or PTSD).
Group 2 is described in Table 4 and Fig 2. Each subgroup was compared to the other subgroups
as described below.

SPECT Imaging Acquisition
All SPECT scans were performed using a high resolution Picker (Philips) Prism XP 3000 tri-
ple-headed gamma camera (Picker Int. Inc., Ohio Nuclear Medicine Division, Bedford Hills,
OH, USA) with low energy high resolution fan beam collimators. SPECT was performed as
previously described [87, 88]. For each procedure, an age- and weight-appropriate dose of
99mTc–hexamethylpropyleneamine oxime (HMPAO) SPECT was administered intravenously
at rest and while performing a cognitive task. For the rest scans, patients were injected while
they sat in a dimly lit room with eyes open. Patients were scanned approximately 30 minutes
after injection. For the on-task scans, patients were injected three minutes after starting the
Conners Continuous Performance Test (Conners Continuous Performance Test, CCPT-II,
Multi-Health Systems, Toronto, Ontario). Approximately 30 minutes after the injection, sub-
jects were scanned. Data was acquired in 128x128 matrices, yielding 120 images per scan with
each image separated by three degrees spanning 360 degrees. The original image matrix

Table 4. Subject Demographics for Group 2.

Variable PTSD (n = 1077) TBI (n = 7505) Both PTSD and TBI (n = 1017) Neither PTSD or TBI (n = 11147)

Age 40.7 ± 13.9 40.5 ± 15.6 41.9 ± 13.7 40.6 ± 16.5

Gender% Male 35 66 46 46

Race% Caucasian 69 68 73 65

Depression% 51 31 40 42

Bipolar% 12 7 13 8

Epilepsy% 1 1 2 1

Schizophrenia% 2 3 2 2

Drug abuse% 5 19 23 16

ADHD% 50 58 59 45

doi:10.1371/journal.pone.0129659.t004
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obtained at 128x128x29 with voxel sizes of 2.16mm x 2.16mm x 6.48mm were transformed
and resliced to a 79x95x68 matrix with voxel sizes of 2mm x 2mm x 2mm consistent with the
MNI template. Images were smoothed using an 8mm FWHM isotropic Gaussian kernel. The
slice thickness was 6mm. A low pass filter was applied with a high cutoff. Chang attenuation
correction was performed [89]. Transaxial slices oriented horizontal to the AC-PC line were
created along with coronal and sagittal images (6.6mm apart, unsmoothed).

SPECT Region of Interest Analysis
ROI counts were derived from the anatomical regions in the AAL atlas [90]. These quantitative
ROI metrics were in no way used to aid in the clinical diagnosis of PTSD or TBI. To account
for outliers, T-score derived ROI count measurements were derived using trimmed means [91]
that are calculated using all scores within the 98% confidence interval (-2.58< Z< -2.58). The
ROI mean for each subject and the trimmed mean for the sample are used to calculate T with
the following formula: T = 10�((subject ROI_mean - trimmed regional_avg)/trimmed regio-
nal_stdev)+50.

SPECT Visual Reading Analysis
All scans were read visually by experienced SPECT readers (6–23 years of experience). Meth-
ods for visual readings have been fully described in previously published work [87, 88]. Briefly,
14 cortical regions of interest (ROIs) in orthogonal planes were visually inspected and rated
using the Mai Atlas of the Human Brain [92]: left and right prefrontal poles; left and right infe-
rior orbits; left and right anterior/lateral PFC; left and right midlateral PFC; left and right pos-
terior frontal region; left and right parietal lobes; and left and right occipital lobes. In like
manner, the left and right cerebellar hemispheres and vermis were rated. In addition, subcorti-
cal regions were rated, including the dorsal, genu and ventral aspect of the anterior cingulate
gyrus; middle and posterior cingulate; left and right insula; left and right caudate nuclei; and
left and right putamen. Raters did not have access to detailed clinical information, but did

Fig 2. Proportional Demographics for Group 2. Demographics of Group 2 with number of patients with age expressed in years and all other numbers
expressed as percentages.

doi:10.1371/journal.pone.0129659.g002
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know age, gender, medications, and primary presenting symptoms (ex. depressive symptoms,
apathy, etc.). The following nonlinear scheme was used to visually rate rCBF: activity rated
above the top 95% was assigned a score of 4+; 91%-95% was scored 3+; 86%-90% was scored 2
+; 81%-85% was scored 1+; 61%-80% was scored 0; 56%-60% was scored–1; 51%-55% was
scored–2; 46%-50% was scored–3; and 41%-45% was scored–4, resulting in a rating scale rang-
ing from +4 to -4 in a-point intervals.

Statistical Analyses
The majority of statistical analyses were performed using Statistical Package for Social Science
(SPSS, version 22, IBM, Armonk, NY) with additional 10-fold cross validation analysis per-
formed in R (http://www.r-project.org/). Data were analyzed first at UCLA (CAR) with analy-
ses repeated and results verified independently at the Amen Clinics (DGA) and Thomas
Jefferson University (AN). Multiple imputation analysis did not identify any significant miss-
ing data (<10%). In doing the analyses, the following steps were invoked: First, binary logistic
regression models were built using either rest ROIs, rest VRs, on-task ROIs, or on-task VRs as
predictor variables. Cerebellar and vermis regions were averaged to carefully optimize subject
to variable ratios. Paired comparisons between the groups described in Tables 1 and 4 were
performed. Covariates in the analysis were age, gender, race and psychiatric co-morbidities
listed in Tables 1 and 4. For Group 2, an additional covariate of study site ID was included in
the analysis. Predicted probabilities from binary logistic regression models were then inputted
into a Receiver Operating Characteristic (ROC) analysis to identify sensitivity, specificity, and
accuracy in delineating between the various clinical groups with 95% confidence intervals Fi-
nally, a One Way ANOVA with Least Square Differences (LSD) for correcting for multiple
comparisons was done to identify the most diagnostically important regions in separating
PTSD from TBI. This analysis was also done to determine if increases or decreases in these di-
agnostically important regions were the main predictors of diagnostic utility of the SPECT re-
gions tested. 10-fold cross validated models [93] were compared against the main models to
assess for performance measure stability.

Results
For Group 1, rest and on-task ROIs and VRs show significant separations from PTSD, TBI and
combined conditions. The non-comorbid group separates 100% with the method described for
the ROI analysis and above 89% for accuracy for the VRs. The larger comorbid group has
lower sensitivity, specificity and accuracy, but these remain in a clinically relevant range (Ta-
bles 5 and 6).

The most significant regions separating PTSD from TBI for the Group 1 ROI analysis of
rest and on-task scans are: limbic regions (amygdala, hippocampus, anterior, middle and pos-
terior cingulum, and thalamus), anterior cerebellum, basal ganglia (caudate and putamen),
insula, areas of the prefrontal cortex (inferior orbits, operculum), and temporal lobes (middle
and superior temporal lobes and temporal poles). All PTSD-identifying regions were more ac-
tive on SPECT when compared across all groups, and the TBI-identifying regions were corre-
spondingly hypoactive (Table 7).

The most significant regions from Group 1 VRs of resting state and on-task scans are: limbic
regions (right amygdala, left hippocampus, anterior and middle cingulum, thalamus), cerebel-
lum, basal ganglia (caudate during on-task), right insula at rest, multiple areas of the prefrontal
cortex (inferior orbits and anterior lateral prefrontal cortex), and temporal lobes (temporal
poles and anterior lateral temporal lobes). All PTSD regions were more active than the TBI re-
gions (Table 8).
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The most significant regions from Group 2 ROI analysis of rest and on-task scans are: lim-
bic regions (amygdala, hippocampus, anterior, middle and posterior cingulum, thalamus), an-
terior cerebellum, basal ganglia (caudate and putamen), insula, areas of the prefrontal cortex
(inferior orbits, operculum), and temporal lobes (middle and superior temporal lobes and tem-
poral poles). All PTSD regions were more active than the TBI regions (Table 7). Group 2 base-
line ROI differences are quantified in Table 9.

The most significant regions from Group 2 VRs of rest and on-task scans are: limbic regions
(amygdala, hippocampus, and anterior and middle cingulum), cerebellum, basal ganglia (cau-
date), occipital and parietal lobes, multiple areas of the prefrontal cortex (inferior orbits,

Table 5. Group 1 ROCAnalysis of Task vs. Rest Scans.

Group 1 ROC Analysis (ROI/
VR) (%)

TBI from
PTSD

PTSD From Co-
Occurrence

TBI from Co-
Occurrence

TBI from
Control

PTSD from
Control

Co-Occurrence from
Control

Sensitivity on-
Task

100/100 100/84 100/100 100/100 100/100 100/100

Sensitivity at
Rest

100/86 100/82 100/84 100/100 100/100 100/100

Specificity on-
Task

100/100 100/80 100/100 100/100 100/100 100/100

Specificity at
Rest

100/81 100/80 100/76 100/100 100/100 100/100

Accuracy on-
Task

100/100* 100/90 100/100* 100/100* 100/100* 100/100*

(p-value,
95% C.I.)

.00, .85-.95

Accuracy at
Rest

100/94 100/92 100/89 100/100* 100/100* 100/100*

(p-value,
95% C.I.)

.00, .89-.97 .00, .88-.96 .00, .83-.93

Comparison of Quantitative ROIs with Visual Readings (VR) in Distinguishing TBI from PTSD

* p = .000, 95% C.I. = [1-1]

doi:10.1371/journal.pone.0129659.t005

Table 6. Group 2 ROCAnalysis of Task vs. Rest Scans.

Group 2 ROC Analysis (ROI/
VR) (%)

TBI from
PTSD

PTSD from Co-
Occurrence

TBI from Co-
Occurrence

PTSD from
Control

TBI from
Control

Co-Occurrence from
Control

Sensitivity on-
Task

82/80 70/70 70/70 70/70 70/67 70/70

Sensitivity at
Rest

80/80 70/70 70/70 70/70 70/70 70/70

Specificity on-
Task

60/61 61/61 55/56 58/55 54/58 58/57

Specificity at
Rest

62/60 60/62 55/56 54/54 54/54 60/59

Accuracy on-
Task

78/78 73/71 68/69 68/67 66/66 70/69

(p-value,
95% C.I.)

.00, .76-.80/

.00, .77-.80
.00, .71-.75/.00, .69-
.74

.00, .66-.70/.00,

.67-.71
.00, .65-.69/.00,
.66-.70

.00, .65-.67/.00,

.65-.67
.00, .68-.72/.00, .67-
.71

Accuracy at
Rest

78/77 72/71 68/68 67/66 67/66 70/69

(p-value,
95% C.I.)

.00, .77-.80/

.00, .75-.79
.00, .69-.74/.00, .69-
.74

.00, .66-.70/.00,

.66-.70
.00, .65-.69/.00,
.65-.68

.00, .66-.68/.00,

.65-.67
.00, .69-.72/.00, .67-
.71

Comparison Quantitative ROIs with Visual Readings (VR) in Distinguishing TBI from PTSD

doi:10.1371/journal.pone.0129659.t006
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Table 7. Regional Increases in rCBF that Differentiate PTSD from TBI using ROI Analysis in Distinguishing TBI from PTSD.

Brain Region Group 1: TBI vs PTSD At
Rest

Group 1: TBI vs PTSD On-
Task

Group 2: TBI vs PTSD At
Rest

Group 2: TBI vs PTSD On-
Task

Limbic Amygdala Amygdala Amygdala Amygdala

Hippocampus Hippocampus Hippocampus Hippocampus

Ant Cingulum Ant Cingulum Ant Cingulum Ant Cingulum

Mid Cingulum Mid Cingulum Mid Cingulum Mid Cingulum

Post Cingulum Post Cingulum Post Cingulum Post Cingulum

Thalamus Thalamus Thalamus Thalamus

Basal Ganglia Caudate Caudate Caudate Caudate

Putamen Putamen Putamen Putamen

Insula Insula Insula Insula Insula

Prefrontal
Cortex

Inferior Orbits Inferior Orbits Inferior Orbits Inferior Orbits

Operculum Operculum Operculum Operculum

Temporal Lobes Middle Temporal Lobe Middle Temporal Lobe Middle Temporal Lobe Middle Temporal Lobe

Superior Temporal Lobe Superior Temporal Lobe Superior Temporal Lobe Superior Temporal Lobe

Temporal Poles Temporal Poles Temporal Poles Temporal Poles

Cerebellum Anterior Cerebellum Anterior Cerebellum Anterior Cerebellum Anterior Cerebellum

PTSD shows increased rCBF in the limbic centers, basal ganglia, insula, prefrontal cortex, temporal lobes, cerebellum, occipital lobe and parietal lobe as

compared to TBI both at rest and during a concentration task in Groups 1 and 2 using ROI analysis. Legend for Abbreviations: Ant = Anterior;

Mid = Middle; Post = Posterior; Sup = Superior.

doi:10.1371/journal.pone.0129659.t007

Table 8. Regional Increases in rCBF that Differentiate PTSD from TBI using Visual Readings (VR) in Distinguishing TBI from PTSD.

Brain Region Group 1: TBI vs PTSD At
Rest

Group 1: TBI vs PTSD On-
Task

Group 2: TBI vs PTSD At
Rest

Group 2: TBI vs PTSD On-
Task

Limbic Amygdala Amygdala Amygdala Amygdala

Hippocampus Hippocampus Hippocampus Hippocampus

Ant Cingulum Ant Cingulum Ant Cingulum Ant Cingulum

Mid Cingulum Mid Cingulum Mid Cingulum Mid Cingulum

Thalamus Thalamus Thalamus Thalamus

Basal Ganglia Caudate Caudate Caudate

Insula Insula

Prefrontal
Cortex

Inferior Orbits Inferior Orbits Inferior Orbits Inferior Orbits

Ant Lateral Prefrontal Cortex Ant Lateral Prefrontal Cortex Ant Lateral Prefrontal Cortex Ant Lateral Prefrontal Cortex

Pole prefrontal cortex Pole prefrontal cortex

Temporal Lobes Temporal Poles Temporal Poles Temporal Poles Temporal Poles

Ant Lateral Temporal Lobe Ant Lateral Temporal Lobe Ant Lateral Temporal Lobe Ant Lateral Temporal Lobe

Mid Lateral Temporal Lobe Mid Lateral Temporal Lobe

Post Lateral Temporal Lobe Post Lateral Temporal Lobe

Cerebellum Cerebellum Cerebellum Cerebellum Cerebellum

Occipital Lobe Occipital Lobe Occipital Lobe

Parietal Lobe Parietal Lobe Parietal Lobe

PTSD shows increased rCBF in the limbic centers, basal ganglia, insula (Group 1 at rest only), prefrontal cortex, temporal lobes, cerebellum, occipital lobe

and parietal lobe as compared to TBI both at rest and during a concentration task in Groups 1 and 2 using visual readings. Legend for Abbreviations:

Ant = Anterior; Lat = Lateral; Mid = Middle; Post = Posterior

doi:10.1371/journal.pone.0129659.t008
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anterior lateral prefrontal cortex and prefrontal pole–only left side at baseline), and temporal
lobes (temporal poles and anterior, mid and posterior lateral temporal lobes). All PTSD regions
were more active than the TBI regions (Table 8). Analysis included a 10-fold cross validation of
the protocol in the larger community sample (Group 2), which confirmed the findings.
Table 10 and Table 11 show that the difference in performance between the two models pro-
duce the same sensitivity, specificity, and accuracy results in ranges from between less than.
01% and. 11%, which is within the acceptable range as defined by the 95% CI.

Table 9. Baseline ROI Differences between TBI and PTSDGroup 2.

Brain Level Brain Area TBI PTSD Statistic

Mean STDEV Mean STDEV PTSD-TBI F Sig

Cerebellum Cerebellum 3 Left 53.11 7.23 55.64 7.5 2.53 5.98 0.014461

Vermis 1 2 52.74 7.66 55.38 8.01 2.64 6.55 0.010529

Frontal Lobe Rectus Left 52.25 6.93 54.1 7.53 1.85 4.67 0.030794

Rectus Right 51.74 6.75 53.64 7.36 1.9 4.03 0.044795

Insula Insula Left 56.67 7.45 59.56 8.01 2.89 6.84 0.008915

Insula Right 57.18 7.61 60.01 8.24 2.83 4.6 0.032072

Limbic Amygdala Left 51.83 6.93 54.63 7.3 2.8 8.53 0.003509

Amygdala Right 51.76 7.05 54.43 7.36 2.66 4.38 0.036363

Cingulum Ant Left 55.26 8.09 58.59 8.48 3.33 9.04 0.002648

Cingulum Ant Right 51.82 7.54 55.05 7.92 3.23 10.93 0.000952

Cingulum Mid Left 57.19 7.8 60.17 8.32 2.98 5.48 0.019304

Cingulum Mid Right 55.1 7.5 58.01 7.9 2.9 5.9 0.015155

Cingulum Post Left 56.29 8.38 59.32 8.89 3.03 5.41 0.020045

Hippocampus Left 51.31 6.94 53.98 7.25 2.67 4.04 0.044481

Hippocampus Right 51.42 7.25 54.3 7.47 2.88 5.43 0.019775

ParaHippocampal Left 46.88 5.75 49.19 6.23 2.31 15.21 0.000097

ParaHippocampal Right 50.57 6.42 52.97 6.75 2.39 8.3 0.00398

Olfactory Olfactory Left 52.43 7.1 55.26 7.54 2.83 9.8 0.001748

Olfactory Right 53.45 7.04 56.21 7.57 2.76 7.84 0.005115

Parietal Precuneus Left 48.71 6.06 50.78 6.37 2.07 4.38 0.036363

Prefrontal Cortex Frontal Inf Orb Left 47.88 5.95 49.45 6.27 1.57 8.31 0.003963

Frontal Inf Orb Right 44.45 5.63 45.64 5.97 1.19 5.73 0.016679

Temporal Lobes Fusiform Left 52.62 6.31 54.66 6.72 2.05 4.65 0.031073

Fusiform Right 51.67 6.27 53.66 6.57 1.99 4.13 0.042155

Heschl Left 58.21 8.03 61.15 8.5 2.95 4.62 0.031683

Temporal Inf Mid Left 44.24 5.69 45.21 5.96 0.97 7.34 0.006746

Temporal Inf Mid Right 40.03 5.47 40.51 5.73 0.49 3.91 0.047952

Temporal Mid Ant Left 49.55 6.22 51.28 6.69 1.74 6.3 0.012082

Temporal Mid Mid Left 51.54 6.5 53.55 6.79 2.01 4.67 0.030794

Temporal Pole Sup Left 45.13 5.3 46.82 5.76 1.69 10.6 0.001137

Temporal Pole Sup Right 42.19 5.08 43.54 5.61 1.35 8.91 0.002853

Temporal Sup Ant Left 53.35 6.99 56.01 7.43 2.66 7.47 0.006274

Temporal Sup Mid Left 56.02 7.49 58.81 7.8 2.79 6.15 0.013179

Analysis of variance between shows higher cerebral blood flow in subjects with PTSD compared to TBI patients in the cerebellum, frontal lobes, insular

cortex, limbic system, olfactory and parietal lobes, prefrontal cortex, and temporal lobes. Significance is shown by F statistic, difference of the means and

p value (all areas with p <0.05). Legend for Abbreviations: Ant = Anterior; Inf = Inferior; Lat = Lateral; Mid = Middle; Orb = Orbital; Post = Posterior;

Sup = Superior

doi:10.1371/journal.pone.0129659.t009
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Fig 3 visually displays with 3-D rendered SPECT maps using Picker Odyssey Software
(Eclipse Systems Inc., Branford CT) the different findings in TBI versus PTSD and in persons
with both conditions. The first volume rendered row shows inferior underside surface rendered
images. The second row shows intensity projection images in which white colors represent the
top 8 percent of cerebral flow in that subject’s brain compared to their whole brain perfusion.
A healthy control shows normal higher perfusion to the cerebellum. The PTSD subject shows
increased perfusion in the brain—particularly in the frontal lobes. The TBI subject shows de-
creased perfusion throughout by comparison. The subject with both PTSD and TBI shows per-
fusion that is lower than the person with PTSD but higher than the subject with TBI.

Discussion
The present study examines resting state and on-task rCBF differences which distinguish
PTSD from TBI, either disorder from TBI+PTSD, and all three conditions from normal con-
trols. When compared in a larger population with high psychiatric morbidity, TBI, PTSD and
TBI+PTSD could be distinguished from non-TBI/non-PTSD with reasonable ROC character-
istics which are similar across rest and task states, whether using quantitative or visual analysis.

Since visual analysis of resting state brain perfusion SPECT is a routinely performed and
widely-available nuclear medicine procedure, the potential exists for the use of this test in clini-
cal settings. Furthermore, the absence of any requirement for symptom-provocation, a com-
monly employed technique in functional imaging studies of PTSD, may make a resting state
study more acceptable to individuals with active symptoms and to referring physicians. This
investigation also uses the non-distressing Conners Continuous Performance Test for an acti-
vation task in all cases.

Compared to multiple severities of TBI—incurred primarily from blunt force—our findings
showed increases in the limbic structures, cingulum, basal ganglia, insula, thalamus, prefrontal
cortex and temporal lobes in subjects with PTSD. These results are consistent with the limited
functional neuroimaging literature on PTSD. At baseline, both military and civilian PTSD sub-
jects show increased perfusion in the caudate/putamen area, right temporal, orbitofrontal cor-
tex, limbic regions, anterior cingulum, cerebellum, and medial prefrontal cortex [24–31, 94–
96]. A recent meta-analysis showed that PTSD patients had significant activation in midline
areas implicated in self-referential processing and autobiographical memory [75]. Peterson
et al.’s recent survey takes a network-based approach to findings in 11 fMRI studies which met
her quality threshold over the survey period, 2009 to mid-2013 [77]. They report a positive cor-
relation between default mode network (DMN) connectivity in PTSD severity in five studies,
negative in two. Similarly, the present data replicate SPECT findings in TBI. Specifically, hypo-
perfusion in the orbitofrontal cortex, temporal poles, and anterior cingulum are consistent
with the most frequent findings in the TBI literature [8].

Table 10. Comparative Performance Measures in a 10-Step Cross Validation in the Group 2 Diagnos-
tic Separation of TBI from PTSD.

Group 2 ROC Analysis (%) TBI from PTSD

ROI VR

Δ Sensitivity on-Task -0.29 <0.01

Δ Sensitivity at Rest -0.29 <0.01

Δ Specificity on-Task -0.78 <0.01

Δ Specificity at Rest -1.37 0.11

doi:10.1371/journal.pone.0129659.t010
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The symptoms of chronic TBI can often overlap with those of PTSD [2, 3, 32, 39, 48, 58].
About 15–19% of returning service members have probable mild TBI [34, 35], while an esti-
mated 8–19% meet criteria for PTSD [2, 59, 97, 98]. The overlap of these two populations has
been estimated at approximately 40% [34, 35, 39]. Neuropsychological testing has been unsuc-
cessful in clearly differentiating these two disorders [99, 100]. These two overlapping popula-
tions have potentially different treatment requirements and different prognoses. For example,
the treatments for PTSD may be harmful or, at best, not helpful in the case of TBI. The phar-
macological treatments for PTSD, such as benzodiazepines and atypical antipsychotics [101,
102], can impede function or be dangerous in those who have TBI [3, 103, 104]. Similarly, anti-
psychotics are often prescribed for Veterans with PTSD [103, 105–107], but have been shown
to impede recovery or be contraindicated in clinical studies and animal models of TBI [108,
109]. Other treatments for PTSD, such as transcranial magnetic stimulation [110], can be
harmful in TBI due to induction of seizures [111]. Emerging treatments for TBI are more tar-
geted and require an understanding of what portion of the individual’s brain is involved.

Table 11. Confidence Intervals.

Group 2 ROC Analysis (%) TBI from PTSD Confidence Intervals Within CI

ROI VR ROI VR ROI VR

Δ Accuracy on-Task -0.34 0.02 (-0.79,0.77) (-0.85,0.82) Y Y

Δ Accuracy at Rest -0.34 <0.01 (-0.80,0.76) (-0.87,0.84) Y Y

doi:10.1371/journal.pone.0129659.t011

Fig 3. Brain SPECT Images of Healthy, PTSD, TBI and PTSDCo-morbid with TBI Perfusion Patterns. Top row, underneath surface scans, threshold set
at 55%, looking at top 45% of brain perfusion. Bottom row, underneath active scans where blue = 55%, looking at top 45% of brain perfusion, red = 85% and
white 93%. Healthy shows full even, symmetrical perfusion with most active area in cerebellum. Classic PTSD shows increased anterior cingulate, basal
ganglia and thalamus perfusion. Classic TBI shows multiple areas of low perfusion seen on surface scans (top row). TBI and PTSD show both.

doi:10.1371/journal.pone.0129659.g003
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TBI is underappreciated as a contributing factor to the persistent symptoms experienced by
service members, athletes [112, 113], and others who experience mild TBI [114, 115]. Differen-
tiating TBI from PTSD is difficult based on symptoms alone or by neuropsychological testing.
The treatment for TBI is considerably different from that for PTSD. Therefore, a specific and
sensitive biomarker is needed that can readily distinguish TBI from PTSD [56, 59, 63].

The present study demonstrates a novel application of brain SPECT imaging to differentiate
TBI from PTSD with sufficient sensitivity, specificity and accuracy to incrementally enhance
clinical decision-making. The strengths of this work include the use of both resting state and
concentration task scans from an objectively validated functional imaging modality, detailed
quantitative analysis, and an extensively chacterized psychiatric population obtained across
multiple sites. The large sample size, while a critical attribute, is further enhanced by the sepa-
rate analysis of a carefully matched smaller cohort that still has a relatively large sample size.

This study also includes several potential limitations. First, this was a retrospective analysis,
and we acknowledge that higher levels of evidence can be derived from either prospective stud-
ies or randomized clinical trials. Second, subjects in this study had varying degrees of injury se-
verity. While this improves the overall generalizability of our results, future prospective studies
investigating a particular class of injury severity (mild, moderate, severe) within a specific co-
hort (veteran, civilian) with a specific type of injury (blast, penetrating) will be prudent in vali-
dating these findings. Third, we did not account for the effect of socioeconomic status which is
important as it is a risk factor for PTSD. And fourth, this dataset did not have accompanied
structural imaging data, which would have provided useful information on hypoperfusion-as-
sociated atrophy, particularly in TBI.

Conclusion
In summary, this is the first SPECT imaging study performed at rest and on-task demonstrat-
ing the ability to differentiate PTSD from TBI of varying degrees of severity in large patient co-
horts with multiple comorbidities using both ROI and visual analysis. A clinically relevant level
of sensitivity, specificity and accuracy was achieved. When compared to subjects with TBI, rela-
tive increases in perfusion were observed in PTSD in the limbic regions, cingulum, basal gan-
glia, insula, thalamus, prefrontal cortex and temporal lobes. These results suggest that TBI is
associated with hypoperfusion while PTSD is associated with regional hyperperfusion, provid-
ing important insights regarding pathophysiological differences between the disorders. Repli-
cation of this work, even in smaller cohorts, would provide a solid basis for identification of
biomarkers distinguishing TBI from PTSD, and has the potential to yield significant prognostic
value in treating veteran, active military and civilian populations.
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