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Abstract 

Aim: Basic fibroblast growth factor (bFGF) increases the migration and viability of bone marrow 
mesenchymal stem cells (MSCs) in vitro. Retrograde coronary venous infusion can provide both 
increased regional bFGF concentrations and homogeneous cell dissemination. We determined 
whether retrograde delivery of bFGF enhances the potency of transplanted MSCs for cardiac 
repair in a canine infarct model. 
Methods and Results: Under hypoxic conditions, cellular migration was significantly increased in 
MSCs co-cultured with bFGF compared to vascular endothelial growth factor or insulin-like 
growth factor, and bFGF promoted MSCs differentiation into a cardiomyocyte phenotype. A ca-
nine infarct model was employed by coronary ligation. One week later, animals were subjected to 
retrograde infusion of combination bFGF (200ng/mL) and MSCs (1×108 cells) (n=5), MSCs (1×108 
cells, n=5), bFGF (200ng/mL, n=5), or placebo (phosphate-buffered saline, n=3). Four weeks after 
infusion, only the bFGF+MSCs therapy exhibited significantly increased left ventricular ejection 
fraction (LVEF) by echocardiography (p<0.01 vs pre-infusion), and the treatment effect (delta 
LVEF) was greater in the bFGF+MSCs group compared to saline (7.43±1.51% versus 
-10.07±2.94%; p<0.001). Morphologic analysis revealed an increased infarct wall thickness in the 
bFGF+MSCs group compared to all others (p<0.05), accompanied by increased vascular density 
and reduced apoptosis. Immunofluorescence demonstrated increased cell engraftment and en-
hanced vascular differentiation in the bFGF+MSCs group compared to MSCs alone (p<0.05). 
Conclusions: Retrograde coronary venous bFGF infusion augments engraftment and differenti-
ation capacity of transplanted MSCs, recovering cardiac function and preventing adverse remod-
eling. This novel combined treatment and delivery method is a promising strategy for cardiac 
repair after ischemic injury. 

Key words: Cell transplantation; Growth factor; Mesenchymal stem cells; Myocardial infarction; Retrograde. 
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Introduction 
Stem-cell based therapy has emerged as a poten-

tial therapeutic modality for regeneration and repair 
of damaged myocardium after myocardial infarction 
(MI) [1]. Bone marrow mesenchymal stem cells 
(MSCs) are easily isolated and amplified, possessing 
multilineage potential and apparent immu-
no-privilege, and are therefore a promising candidate 
for cardiac regeneration therapy [2]. Numerous pre-
clinical [3-5] and clinical studies [6, 7] have demon-
strated the ability of MSCs to attenuate reverse re-
modeling and restore cardiac function following acute 
MI. The underlying mechanisms include direct dif-
ferentiation of implanted cells into new cardiomyo-
cytes and vascular cells [8], augmented paracrine 
signaling [9], and recruitment of endogenous stem 
cells [3]. However, recent studies demonstrated lim-
ited in vivo differentiation capacity due to poor en-
graftment and survival of transplanted MSCs within 
infarcted myocardium, resulting in modest therapeu-
tic effects [10]. 

The efficiency of stem cell retention within in-
jured myocardium is related to sufficient cellular ex-
travasation and local growth factor gradients [11]. 
Basic fibroblast growth factor (bFGF) is a potent mi-
togen that can stimulate migration, proliferation, and 
differentiation in various stem cell types [12]. In par-
ticular, bFGF increased the migratory activity of 
MSCs via activation of the Akt/protein kinase B 
pathway [13]. The bFGF-transfected MSCs exhibited 
enhanced viability and anti-apoptotic properties un-
der hypoxic conditions [14]. It is therefore plausible 
that bFGF administration after MI may augment 
MSCs migration and engraftment within injured tis-
sue, thus improving the efficacy of MSCs transplanta-
tion. 

Several approaches have been developed to 
achieve extensive stem cell delivery into the damaged 
heart [15, 16]. Although direct intramyocardial injec-
tion allows targeted cell delivery to ischemic regions, 
this method may cause mechanical injury and sub-
sequent acute inflammation, markedly reducing sur-
vival of engrafted cells [17]. Intracoronary admin-
istration is not ideal, as there is high risk of coronary 
embolism[18], as well as low myocardial stem cell 
retention in the face of antegrade blood flow [19]. In 
contrast, percutaneous retrograde coronary venous 
infusion represents an attractive alternative method 
because it is minimally invasive, reproducible, and 
has potential advantages of more uniform and higher 
rate of delivery [15]. This technique achieved a 2-fold 
increase in tissue binding of bFGF compared to in-
tracoronary infusion [20]. Coronary vein route may 
also provide more homogenous cell dissemination 
across the myocardium [21, 22]. Heretofore, the effi-

cacy of combination bFGF and MSCs via coronary 
vein administration has not been investigated.  

We hypothesized retrograde coronary venous 
infusion may provide a high bFGF concentration, and 
augment MSCs implantation by increasing the en-
graftment and survival of transplanted cells. To test 
this hypothesis, we employed a canine infarct model, 
and determined the effects of bFGF upon MSCs en-
graftment and differentiation via coronary vein infu-
sion, and assessed their combined efficacy in im-
proving cardiac repair via morphologic indices and 
functional outcomes. 

Methods 
An expanded Methods section is available in the 

Supplementary Materials. 
This study conformed to the Interdisciplinary 

Principles and Guidelines for the Use of Animals in Re-
search, Testing, and Education by the New York 
Academy of Sciences, Ad Hoc Animal Research 
Committee. All protocols were approved by the In-
stitutional Ethics Committee of Beijing Anzhen Hos-
pital, Capital Medical University, China. 

For this study, adult male mongrel dogs weigh-
ing 15-20 kg were subjected to MI via ligation of left 
anterior descending (LAD) coronary artery and di-
agonal branches. After one week, all surviving ani-
mals underwent retrograde infusion of 10 mL of one 
of the following: combination bFGF (200 ng/mL) and 
MSCs (1×108 cells), MSCs alone (1×108 cells), bFGF 
alone (200ng/mL), or placebo (phosphate-buffered 
saline). Transthoracic echocardiography was per-
formed at baseline, 1 week after MI (before infusion), 
and 4 weeks after infusion (just prior to euthanasia). 
After echocardiographic study, animals were eu-
thanized, and the hearts were excised for histologic 
analysis. 

In vitro migration and differentiation assays 
To assess the migration capacity of MSCs, a 

24-well transwell dishes with 8-μm pore filters was 
utilized. Cells were incubated with 50 ng/mL bFGF, 
20 ng/mL vascular endothelial growth factor (VEGF), 
2 ng/mL insulin-like growth factor (IGF-1), or me-
dium alone. The number of migrated cells was 
counted via fluorescent microscopy. All experiments 
were tested under normoxic and hypoxic conditions. 

To induce differentiation into a cardiomyocyte 
phenotype, 2×104 MSCs were incubated with or 
without 5 ng/mL bFGF. The differentiation capacity 
was verified by morphology changes and im-
munostaining for troponin I (TnI). 

Retrograde coronary venous infusion 
Retrograde coronary venous infusion was per-

formed as previously described [21]. From LAD cor-
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onary angiography, the position of over-the-wire 
(OTW) balloon catheter was consistent with the oc-
clusive site of the LAD (Figure 1). The balloon was 
inflated, and the selected perfusion medium was 
rapidly injected into the anterior interventricular vein 
(AIV). The balloon remained inflated for 10 minutes 
post injection to achieve maximum local delivery. 

Morphology and histology 
After echocardiographic study, cardiectomy was 

performed. Thereafter, the left ventricular (LV) myo-
cardium was transversely sliced along the apical-basal 
axis. For morphologic analysis, infarct wall thickness 
was measured at the level of the papillary muscle, and 
calculated as a percentage of septal wall thickness. 
Hematoxylin and eosin, and Masson trichrome stain-
ing were performed as previously described. Fibrotic 
area was calculated by the proportion of colla-
gen-stained areas to total tissue area. Blood vessel 
density was determined at the border zone of the 
myocardium by immunostaining with factor 
VIII-related antigen (FVIII) and α-smooth muscle ac-
tin (α-SMA). Apoptosis was detected with an in situ 
cell death detection kit per manufacturer protocol. 

Immunofluorescence 
The engraftment and differentiation of MSCs 

were evaluated in the MSCs (n=3) and bFGF+MSCs 
(n=3) groups. MSCs were labeled with enhanced 
green fluorescence protein (EGFP) and infused into 
the AIV. After four weeks, frozen sections (7 μm) were 
incubated with antibodies against FVIII, α-SMA, TnI, 

and cardiac myosin heavy chain (MHC). The survival 
of engrafted cells was quantified in the infarct zone by 
counting EGFP-positive (EGFP+) cells by fluorescent 
microscopy. The differentiation capacity was evalu-
ated based upon colocalization of EGFP with the en-
dothelial cell marker FVIII, smooth muscle cell marker 
α-SMA, and cardiomyocyte marker TnI. 

Statistical analysis 
All values are presented as mean±SEM unless 

otherwise indicated. Statistical assessments were 
performed using SPSS 19.0 (SPSS Science, Chicago, 
IL). GraphPad Prism (version 5.0; GraphPad Software 
Inc, La Jolla, CA) was used to plot graphs. Data were 
first tested for normality (Kolmogorov-Smirnov test) 
and equality of variance (Levene’s test). After con-
firmation of both normality and variance equality, 
comparisons between two groups were determined 
by unpaired Student t test, and comparisons among 
multiple groups were made by 1-way or 2-way anal-
ysis of variance (ANOVA), followed by Tukey post 
hoc test when appropriate. The Welch correction was 
applied when unequal variances were identified. In-
tragroup comparisons at different time points were 
performed by paired Student t test. Changes in echo-
cardiography parameters over time among different 
groups were evaluated using 2-way repeated 
measures ANOVA with Bonferroni posttests when 
appropriate. A value of 2-tailed p<0.05 was consid-
ered statistically significant. 

 

 
Figure 1. Retrograde coronary venous infusion. (A) Angiogram of the left coronary artery demonstrating occlusion of the left anterior descending (LAD) coronary artery 
(middle) (white arrow). (B) Retrograde venography of coronary sinus. (C) A 0.014-inch exchange-length extra support guide wire was advanced to the distal portion of anterior 
interventricular vein (AIV). (D) Angiogram of the left coronary artery demonstrating parallel guide wire travel to the LAD (white arrowheads). (E) An over-the-wire (OTW) 
balloon catheter (2.5×9 mm or 2.0×9 mm) was advanced and positioned in the mid-AIV. (F) Balloon inflation and simultaneous visualization of the left coronary artery showed 
that balloon position was consistent with the occlusive site of the LAD (white arrow). The delivery site was within the targeted infarct zone. 
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Figure 2. Basic fibroblast growth factor (bFGF) promotes mesenchymal stem cells (MSCs) migration and differentiation into a cardiomyocyte phenotype 
in vitro. (A) MSCs were cultured under normoxic and hypoxic conditions with 50 ng/mL bFGF, 20 ng/mL vascular endothelial growth factor (VEGF), 2 ng/mL insulin-like growth 
factor (IGF-1), or control medium. Under hypoxic conditions, the number of migrated cells increased when incubated with VEGF, IGF-1, and bFGF. (B) Myotube-like structures 
were observed in differentiated MSCs (dMSCs). (C) Cotreatment with bFGF induced MSCs differentiation into a cardiomyocyte phenotype, as indicated by increased cardiac 
troponin I positive (TnI+) cells. Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). Scale bars: 200μm (A); 100μm (B and C). Histograms represent mean±SEM. A: 
*p<0.05 vs normoxia; †p<0.05 vs control. All with 2-way ANOVA. C: *p<0.05 vs control, unpaired Student t test. 

 

Results 
Study animals 

In total, 32 animals were subjected to MI. 7 ani-
mals had refractory ventricular fibrillation during 
surgery, and could not be resuscitated. 2 animals died 
at days 2 and 5 after infarction, likely due to conges-
tive heart failure. Before infusion, 4 animals were ex-
cluded (3 with coronary vein anomalies precluding 
successful catheterization, and 1 with inadequate 
echocardiography imaging). The remaining 19 ani-
mals were randomly assigned to treatment with saline 
(n=4), bFGF (n=5), MSCs (n=5), and bFGF+MSCs 
(n=5). There were no instances of death, cardiac 
tamponade, or sustained arrhythmia during infusion. 
One animal in the saline group died 4 days post infu-
sion. Finally, 18 animals (saline [n=3], bFGF [n=5], 
MSCs [n=5], and bFGF+MSCs [n=5]) were included in 
the analysis. 

bFGF promotes MSCs migration and differen-
tiation into a cardiomyocyte phenotype in 
vitro 

The number of migrated cells was significantly 
greater when incubated under hypoxic versus 
normoxic conditions in control (p=0.006), IGF-1 

(p=0.002), and bFGF (p<0.001) groups (Figure 2A). 
During hypoxia, MSCs exhibited increased migratory 
ability when cultured with VEGF, IGF-1, and bFGF 
(all p<0.001 vs control).  

To confirm whether bFGF stimulates MSCs dif-
ferentiation into a cardiomyocyte phenotype in vitro, 
we observed the morphology and cardiac-specific TnI 
expression of MSCs with or without bFGF. Differen-
tiated MSCs showed myotube-like structure after 2 
weeks (Figure 2B). The bFGF-treated MSCs expressed 
greater TnI expression. Quantitative analysis revealed 
that the number of the TnI+ cells was significantly 
higher in the presence of bFGF versus control medi-
um (32.8±2.3% vs 27.0±1.2%; p=0.015; Figure 2C). 

Retrograde infusion of combining bFGF and 
MSCs improves cardiac function after MI 

We tested whether bFGF might enhance the po-
tential of transplanted MSCs for cardiac repair by 
serial echocardiographic analysis at baseline (before 
MI), 1 week after MI (before infusion), and 4 weeks 
after infusion (Table 1, Figure 3). The LV structure and 
function parameters at baseline and before infusion 
were comparable among the 4 groups (p>0.05) (Table 
1, Figure 3A, 3C, and 3E). LV ejection fraction (LVEF) 
was improved in the bFGF+MSCs group by 11% 
(p<0.01), but remained unchanged in the bFGF group 
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(p=0.480) and MSCs group (p=0.124), and decreased in 
the saline group (p<0.01) after 4 weeks (Figure 3A). 
The treatment effect (delta LVEF) was significantly 
greater in both the bFGF+MSCs group (7.43±1.51% 
versus -10.07±2.94%; p<0.001) and MSCs group 
(4.79±2.47% versus -10.07±2.94%; p<0.01) compared to 
saline, to greater degree in the combination group 
(Table 1, Figure 3B).  

The left ventricular end-diastolic volume 
(LVEDV) increased in all groups (all p<0.05; Figure 
3C), with modest attenuation in the intervention 
groups compared with saline group (ANOVA 
p=0.053; Table 1, Figure 3D). Furthermore, the left 

ventricular end-systolic volume (LVESV) remained 
stable in the intervention groups, but increased in the 
saline-treated group (p<0.001; Figure 3E). The abso-
lute changes suggested attenuation of LVESV in the 
intervention groups (all p<0.05 vs saline), to greatest 
degree in the combination group (Table 1, Figure 3F).  

Left ventricular end-diastolic diameter (LVEDD) 
and left ventricular end-systolic diameter (LVESD) 
demonstrated progressive chamber expansion in the 
saline group, a phenomenon not observed in the other 
treatment groups. All four groups exhibited de-
creased fractional shortening (FS) prior to treatment, 
without improvement after 4 weeks (Table 1). 

 
 

 
Figure 3. Retrograde infusion of combining basic fibroblast growth factor (bFGF) and mesenchymal stem cells (MSCs) restores cardiac function and 
prevents left ventricular (LV) remodeling.  Echocardiographic analysis of (A) LV ejection fraction (LVEF), (C) LV end-diastolic volume (LVEDV), and (E) LV end-systolic 
volume (LVESV) before infusion and 4 weeks after treatment. The treatment effect (final minus pre-infusion parameters) was also evaluated (B, D, and F). (A) LVEF was improved 
in the bFGF+MSCs group, but remained unchanged in the bFGF group and MSCs group, and decreased in the saline group. The final LVEF and (B) the treatment effect were 
increased in the MSCs and bFGF+MSCs groups, to greater degree in the latter. (C) All groups exhibited increased LVEDV after infusion, with (D) mild attenuation in the 
intervention groups (not statistically significant). (E) LVESV remained stable in the intervention groups, but increased in the saline-treated group. At 4 weeks, the combined 
therapy presented lower LVESV in comparison to saline and bFGF alone groups. (F) The delta changes of LVESV demonstrated significant attenuation in the bFGF alone, MSCs 
alone, and bFGF+MSCs groups, to greatest degree in the combination group. Histograms (A, C, and E) show pre-infusion vs 4 weeks post-infusion values. Histograms represent 
mean±SEM. A, C, and E: *p<0.05 vs pre-infusion, paired t test; †p<0.05 vs saline, ‡p<0.05 vs bFGF, between-group repeated measures ANOVA. B, D, and F: *p<0.05 vs saline, 
1-way ANOVA with Tukey post hoc test. 

 
 
 

Table 1. Echocardiographic analysis. 
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Values are mean±SEM. Treatment effect indicates final minus pre-infusion parameters. 
LVEDD indicates left ventricular end-diastolic dimension; LVESD, left ventricular end-systolic dimension; FS, fractional shortening; LVEDV, left ventricular end-diastolic 
volume; LVESV, left ventricular end-systolic volume; LVEF, left ventricular ejection fraction; bFGF, basic fibroblast growth factor; MSCs, mesenchymal stem cells. 

 
 

Combined therapy with bFGF and MSCs in-
creases infarct thickness and alleviates myo-
cardial fibrosis 

Gross morphologic analysis revealed midmural 
scars in the LV anterior and anteroseptal walls (Figure 
4A). The average infarct wall thickness was increased 
in the bFGF+MSCs group (8.2±0.2mm) compared 
with saline (4.8±0.1mm), bFGF (6.2±0.2mm), and 
MSCs (6.6±0.1mm) groups (all p<0.05; Figure 4A). 
Additionally, the percentage of infarct wall to septal 
wall thickness was greatest in the bFGF+MSCs group 
(Figure 4A). 

Masson’s trichrome staining showed decreased 
collagen content in the infarct area in the MSCs alone 
group (51.5±1.9%) and bFGF+MSCs group 
(47.3±1.6%), compared to the bFGF group (59.8±2.9%) 
and saline group (59.7±3.9%) (all p<0.05; Figure 4B), to 
greater degree in the combination group. Reduced 
border zone collagen content was observed in the 
MSCs alone group (38.1±2.3%; p<0.05) and 
bFGF+MSCs group (36.6±1.8%; p<0.05) compared to 
saline (47.7±1.7%) (Figure 4B). Interestingly, more 
myocardium islets were detected within the infarct 
scars of the combination-treated animals. 

Combined therapy with bFGF and MSCs 
stimulates new blood vessel formation and 
reduces apoptosis 

Capillary and arteriole density was determined 
(respectively by FVIII and α-SMA staining) in the in-
farct border zones. The number of FVIII+ cells was 
markedly greater in the bFGF+MSCs group 
(97.1±8.3/mm2) compared to the saline 
(40.0±5.3/mm2; p<0.001), bFGF (60.0±5.2/mm2; 
p<0.01), and MSCs (54.3±5.4/mm2; p<0.001) groups 
(Figure 5A). The arteriolar density was significantly 
greater in the bFGF+MSCs group (35.7±3.2/mm2) 
compared to the saline (15.0±2.4/mm2; p<0.05) and 
MSCs (23.6±2.4/mm2; p<0.05) groups (Figure 5B). 

Apoptosis was assessed by the proportion of 
TUNEL+ cells in the infarct border zone, which was 
significantly decreased in the animals treated with 
bFGF+MSCs (8.2±0.9%) compared to saline 
(14.6±0.9%; p<0.01) (Figure 5C), but similar to bFGF 
alone (12.5±1.7%) and MSCs alone (12.3±0.5%). 

bFGF enhances engraftment and differentia-
tion of transplanted MSCs 

To address whether bFGF improved MSCs en-
graftment and survival, the transplanted cells were 

Parameters Saline (n=3) bFGF (n=5) MSCs (n=5) bFGF+MSCs (n=5) p value (ANOVA) 
LVEDD (mm)      
 Baseline 34.24±1.73 35.62±0.65 34.38±1.38 32.90±2.28 0.659 
 Pre-infusion 36.92±0.46 36.69±0.93 35.43±1.70 34.20±2.44 0.696 
 Final 40.07±0.57 37.70±1.18 36.28±1.97 34.86±1.76 0.275 
 Treatment effect 3.14±0.67 1.01±0.89 0.85±0.93 0.66±1.00 0.351 
LVESD (mm)      
 Baseline 20.00±1.19 20.99±1.68 21.53±0.89 19.67±1.29 0.662 
 Pre-infusion 22.33±0.73 24.16±3.24 23.20±1.31 21.49±2.18 0.815 
 Final 26.50±0.36 26.36±2.53 24.08±1.63 21.73±1.90 0.273 
 Treatment effect 4.17±0.91 2.20±3.24 0.88±0.74 0.25±0.84 0.124 
FS (%)      
 Baseline 41.64±0.67 41.17±4.02 37.25±1.93 40.09±1.42 0.467 
 Pre-infusion 39.54±1.24 34.31±8.04 34.45±2.26 37.61±2.54 0.411 
 Final 33.86±0.38 30.02±6.86 33.52±3.06 37.84±3.57 0.587 
 Treatment effect -5.69±1.61 -4.29±9.40 -0.92±1.38 0.23±2.34 0.265 
LVEDV (mL)      
 Baseline 50.21±1.70 52.48±3.21 46.89±3.06 44.09±7.14 0.622 
 Pre-infusion 58.07±1.59 61.11±3.28 50.48±3.85 49.67±7.47 0.291 
 Final 71.04±1.53 67.61±2.15 58.92±5.34 56.46±6.56 0.273 
 Treatment effect 12.98±1.11 6.50±1.40 8.44±1.58 6.79±1.28 0.053 
LVESV (mL)      
 Baseline 11.93±1.61 13.18±1.91 14.63±0.59 12.40±1.87 0.607 
 Pre-infusion 18.12±0.88 19.91±3.23 17.99±0.73 15.92±1.80 0.729 
 Final 29.32±1.63 22.76±4.10 18.04±1.37 14.34±1.78 0.003 
 Treatment effect 11.20±1.57 2.84±0.90 0.05±1.26 -1.57±0.23 0.005 
LVEF (%)      
 Baseline 76.40±2.44 75.16±2.19 68.40±1.84 71.59±1.78 0.066 
 Pre-infusion 68.80±1.15 67.60±4.12 63.84±1.93 67.17±1.43 0.420 
 Final 58.73±2.07 66.59±5.07 68.63±2.92 74.61±1.14 0.016 
 Treatment effect -10.07±2.94 -1.01±1.17 4.79±2.47 7.43±1.51 <0.001 
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labeled with EGFP and observed in the myocardium 4 
weeks after delivery. The EGFP+ cells localized pri-
marily in the infarct and border zones (Figure 6A-6D). 
The number of EGFP+ cells was 1-fold higher in the 
bFGF+MSCs group (83.9±9.6/mm2) compared to the 
MSCs alone group (42.3±7.4/mm2; p<0.05) (Figure 
6E). 

Surviving MSCs mainly differentiated into vas-
cular structures, indicated by positive staining with 
FVIII (Figure 6A) and α-SMA (Figure 6B). Compared 
to the MSCs group, the bFGF+MSCs group exhibited 

more FVIII+ (30.2±3.1/mm2 vs 8.9±1.8/mm2; p<0.001) 
and α-SMA+ (9.9±0.7/mm2 vs 3.9±0.4/mm2; p<0.05) 
cells (Figure 6F). Moreover, the coexpression of TnI 
and MHC in EGFP+ cells indicated some MSCs had 
differentiated into a cardiomyocyte phenotype (Fig-
ure 6C and 6D), although no significant difference 
was found between the two groups (Figure 6F). Col-
lectively, bFGF appears to enhance the differentiation 
capability of MSCs under both hypoxic conditions 
(Figure 2C) and infarction circumstances (Figure 6). 

 

 
Figure 4. Combined administration of basic fibroblast growth factor (bFGF) and mesenchymal stem cells (MSCs) increases infarct wall thickness and 
reduces myocardial fibrosis. (A) Post-mortem morphometry revealed midmural scars in the left ventricular wall. Coronary venous infusion of bFGFs+MSCs increased infarct 
wall thickness compared to other groups. The percentage of infarct wall thickness to septal wall thickness was greatest in the bFGF+MSCs group. (B) Masson’s trichrome staining 
showed decreased collagen content in the MSCs and bFGF+MSCs groups both in the infarct and border zones. Scale bar: 100μm. Histograms represent mean±SEM. A: *p<0.05 
vs saline; †p<0.05 vs bFGF and MSCs groups. B: *p<0.05 vs saline; †p<0.05 vs bFGF. 
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Figure 5. Combined administration of basic fibroblast growth factor (bFGF) and mesenchymal stem cells (MSCs) induces neovascularization and inhibits 
apoptosis. Representative micrographs demonstrated formation of (A) new capillaries and (B) arterioles in the infarct border region after treatment. Quantitative analysis 
indicated markedly greater (A) capillary density (evidenced by factor VIII-related antigen [FVIII] staining) and (B) arteriole density (evidenced by α-smooth muscle actin [α-SMA] 
staining) in the bFGF+MSCs group. (C) Representative images of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the border region of the 
infarct myocardium. Cell nuclei were counterstained with 4,6-diamidino-2-phenylindole (DAPI). The proportion of TUNEL+ cells was significantly decreased in the bFGF+MSCs 
group. Scale bars: 50μm (A); 100μm (B); 20μm (C). Histograms represent mean±SEM. *p<0.05 vs saline; †p<0.05 vs bFGF; ‡p<0.05 vs MSCs. All with 1-way ANOVA by Tukey 
post hoc test. 

 

Discussion 
In the present study, we demonstrate the coro-

nary vein is a feasible and safe route for delivery of 
bFGF and MSCs. bFGF augments the engraftment and 
differentiation of transplanted MSCs in vivo. Retro-
grade infusion of MSCs with concomitant bFGF re-
sults in enhanced cardiac function recovery and pre-
vention of LV remodeling post-MI. Increased neo-
vascularization and reduced apoptosis are also ob-
served. Taken together, these data indicate that con-
comitant bFGF and MSCs via coronary vein infusion 
confers improved therapeutic efficacy in a canine MI 
model, thereby representing a promising future 
strategy for cardiac repair after ischemic insult. 

MSCs as a Candidate for Cardiac Regeneration 
Therapy 

In the past decade, numerous studies have been 
seeking an ideal stem-cell type suitable for cardiac 
repair. Indeed, MSCs are a desirable agent for myo-

cardial repair because of preparatory ease, advanta-
geous immunomodulatory properties, and favorable 
biological effects [2]. On the basis of encouraging 
pre-clinical studies [3-5], proof-of-concept clinical 
trials have been initiated for both acute MI [7] and 
ischemic cardiomyopathy [6] and demonstrated that 
MSCs therapy improved cardiac performance, inhib-
ited LV remodeling, and reduced scar size, with a 
remarkable safety profile. Recently, studies have fo-
cused upon the candidacy of resident cardiac stem 
cells (CSCs) for cardiac repair, due to their cardiac 
source and potent cardiomyogenic potential [23, 24]. 
In large animal models, CSCs injection improved LV 
function and reduced scar size with evidence of car-
diomyocyte and vascular regeneration [25]. However, 
recent clinical trials (SCIPIO [26] and CADUCEUS 
[27]) revealed inconsistent results in terms of LVEF, 
symptoms, or quality of life after intracoronary CSCs 
administration in patients with ischemic cardiomyo-
pathy. The CSCs ready for transplantation must be 
autologous, and require several weeks of in vitro ex-
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pansion, factors limiting their use in the acute MI set-
ting [23]. It is clinically impractical to perform endo-
myocardial biopsy immediately after infarction. 

Therefore, generic allogenic MSCs remain the most 
accessible cell product for cardiac regeneration ther-
apy at the current time. 

 
Figure 6. Retrograde infusion of basic fibroblast growth factor (bFGF) enhances mesenchymal stem cells (MSCs) engraftment and differentiation. Rep-
resentative immunofluorescence images demonstrated coexpression of (A) factor VIII-related antigen (FVIII), (B) α-smooth muscle actin (α-SMA), (C) cardiac troponin I (TnI), 
and (D) cardiac myosin heavy chain (MHC) in enhanced green fluorescence protein (EGFP) positive cells in the infarct region. Nuclei were stained with 
4,6-diamidino-2-phenylindole (DAPI). (E) The number of EGFP+ cells was 1-fold higher in the bFGF+MSCs group than in the MSCs group. (F) The number of labeled cells 
costained with FVIII and α-SMA was significantly greater in the animals treated with bFGF+MSCs (n=3) compared with MSCs (n=3), indicating enhanced neovascularization by 
combined therapy. The number of EGFP+ cells coexpressing TnI was not statistically different between the two groups. Scale bars: 100μm (A, C and D); 200μm (B). Histograms 
represent mean±SEM. *p<0.05 vs MSCs, unpaired Student t test. 
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Combined efficacy of bFGF and MSCs 
Despite the beneficial effects of MSCs, the clini-

cal application is impeded by poor engraftment and 
survival of transplanted cells in the host myocardium. 
In animal studies, the average retention rate was less 
than 10% in the acute phase of MI [19, 28], and only 
5% of implanted MSCs survived for 14 days in the 
infarcted myocardium regardless of the delivery route 
[16]. Targeted homing of MSCs towards injured tissue 
is modulated by several growth factors [11]. Our vitro 
studies demonstrated increased MSCs migratory ac-
tivity during coculture with bFGF, in consistent fash-
ion with previous studies [13]. Therefore, it is plausi-
ble the combination of MSCs with bFGF might facili-
tate increased cellular engraftment and therapeutic 
potency. Takehara et al. demonstrated controlled 
bFGF delivery promoted human cardio-
sphere-derived cell engraftment with improved ven-
tricular function [29]. In parallel, we now demonstrate 
bFGF cotreatment augments MSCs retention within 
the host myocardium with increased LVEF.  

LV remodeling is characterized by wall thinning 
and chamber dilatation and leads to worsen cardiac 
function. Previous studies have shown administration 
of stem cells can increase infarct wall thickness and 
improved ventricular remodeling, probably by alle-
viating myocardial fibrosis and reducing apoptosis. 
Ye et al. [30] used a swine MI model and presented 
that intramyocardial injection of thymosin β4 and 
MSCs significantly increased the percentage of infarct 
wall thickness to septal wall thickness compared to 
control group (50% vs. 25%, p<0.05). Houtgraaf et al. 
[31] used a sheep MI model and demonstrated intra-
coronary infusion of mesenchymal precursor cells 
significantly enhanced the average infarct wall thick-
ness compared to control group (8.0±0.3 mm vs. 
6.4±0.2mm, p<0.001). In consistent with these studies, 
our results showed the infarct wall thickness was in-
creased in the MSCs group (6.6±0.1mm) compared 
with saline (4.8±0.1mm, p<0.05), and bFGF+MSCs 
group exhibited more obvious wall thickness im-
provement (8.2±0.2mm, p<0.05 vs all the other 
groups). The combination group also exhibited alle-
viated myocardial fibrosis and apoptosis. These re-
sults can explain the significant improvement of in-
farct wall thickness in the combined treatment group. 

To further clarify the underlying mechanism of 
the beneficial effects of combined treatment, the fate 
of injected MSCs was monitored by dual labeling with 
EGFP and cardiac-specific markers. We found the 
engrafted MSCs primarily differentiated into endo-
thelial cells and smooth muscle cells, as indicated by 
coexpression of EGFP with FVIII and α-SMA, sug-
gesting vascular regeneration. This phenomenon was 

more evident in the combination bFGF+MSCs group. 
Differentiation of MSCs into cardiomyocytes was also 
observed, but was not enhanced by bFGF. In fact, the 
differentiation capacity of transplanted MSCs in the 
ischemic heart is influenced by many factors and the 
study results are conflicting. In a swine model of 
chronic ischemic cardiomyopathy, Quevedo et al. [8] 
reported the capacity of allogeneic MSCs to engraft 
and differentiate into cardiomyocytes, smooth muscle 
cells and endothelial cells. In contrast, in a canine 
chronic ischemic model, Silva et al. [4] showed that 
MSCs can differentiate into cells with a vascular 
phenotype, but few cardiomyocytes differentiated 
from MSCs were detected. Actually, the average re-
tention rate of MSCs was low in the acute phase of MI, 
and the morphology and mobility of transplanted 
MSCs were also impaired in the infarcted myocardial 
environment [32].  It thus appears that the overall 
differentiation ratio of MSCs into cardiomyocytes was 
relatively low. Therefore, in our study, although ret-
rograde infusion of bFGF significantly enhanced 
MSCs engraftment in the myocardium, the number of 
cardiomyocytes differentiated from MSCs was mod-
estly increased by bFGF, and the engrafted MSCs 
mainly differentiated into vascular cell lineage, which 
is consistent with previous studies. 

The harsh ischemic microenvironment, charac-
terized by oxidative stress, inflammation, and limited 
blood supply, hinders the survival of transplanted 
MSCs [33]. The bFGF involved in the MSCs secretome 
stimulates angiogenesis, and improves the ischemic 
surroundings [34]. Although bFGF alone promoted 
new arteriolar formation, LV functional improve-
ments could not be reached without the MSCs. Our 
study demonstrated concomitant bFGF infusion with 
MSCs ameliorated myocardial fibrosis, increased ca-
pillary/arteriolar density, and reduced apoptosis, 
effects that may stem from bFGF-induced angiogene-
sis and MSCs differentiation. Together, these obser-
vations support the notion that the interaction be-
tween bFGF and MSCs synergistically optimized 
measured outcomes. 

Mode of delivery 
Heretofore, the optimal delivery technique of 

candidate cells to the heart remains undetermined. An 
ideal system must attain a desired cell population, 
and facilitate targeted and homogeneous cell dis-
semination within the myocardium with low risk of 
complications. Direct surgical injection provides a 
great cell population per unit area, but is limited by 
non-uniform spatial distribution [17]. Intracoronary 
administration is easy to perform, but immediate cell 
retention is low due to rapid wash out [19]. Addi-
tionally, this approach carries a high risk of micro-
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vascular occlusion when large cells, such as MSCs, are 
infused [18]. Currently available transendocardial 
injection enables cell delivery into targeted myocar-
dium [35]. However, this technique may create cell 
clumps without homogeneous distribution, and my-
ocardial perforation and arrhythmias must be moni-
tored [2, 18]. 

In contrast, the retrograde route is an attractive 
mode of delivery because it employs the non-diseased 
coronary veins, which parallel the arterial system, for 
selective delivery to ischemic myocardium [36]. In-
creased tissue penetration using this method is prob-
ably due to improved access to low-pressure capillary 
beds, and less washout of cells in the presence of re-
duced anterograde blood flow [36]. Yokoyama and 
colleagues [37] demonstrated >90% of labeled mon-
onuclear cells remained in the infarct region post 
coronary vein infusion. Suzuki and colleagues [22] 
reported retrograde delivery of skeletal muscle pre-
cursor cells provided wide dissemination throughout 
the left ventricular free wall, with minimal myocardial 
damage. Our study demonstrated the balloon position 
was consistent with the occlusive LAD site (Figure 1). 
The delivery site was within the targeted infarct zone. 
As a result, the transplanted MSCs engrafted primar-
ily within the desired region downstream of the oc-
cluded LAD. 

To maximize the beneficial effects of bFGF upon 
MSCs, we utilized for the first time a retrograde ap-
proach, for the concomitant infusion of bFGF and 
MSCs. Previous study showed coronary vein infusion 
of MSCs prevents cardiac dysfunction in a chronic pig 
MI model, but with limited cell retention and differ-
entiation [38]. In our study, we employed a proximal 
balloon occlusion, achieving a bFGF reservoir, which 
exerted sustained effect upon MSCs. Our results re-
vealed combination therapy with bFGF and MSCs 
augmented cell engraftment and differentiation, with 
enhanced cardiac structural and functional perfor-
mance. 

Limitations 
The canine model employed in our study might 

limit interpretation of cardiac functional data, because 
dogs develop numerous collateral circulations in is-
chemic conditions. We attempted to decrease this 
physiologic effect as much as possible by diagonal 
branches ligation whenever appropriate. Although 
each group’s sample size is small, statistical signifi-
cances were observed between treatment groups in 
both echocardiographic parameters and histologic 
findings. More advanced modalities such as 3D 
echocardiography and cardiac magnetic resonance 
imaging should be considered for more accurate as-
sessment of cardiac morphology and function, espe-

cially when sample size is small. This study used an 
OTW balloon catheter to provide proximal occlusion 
for cell infiltration, but this technique would not 
overcome cell washout due to venovenous commu-
nications. A double-balloon catheter design is prom-
ising [19]. Free exogenous bFGF might have limited 
efficacy due to short half-life in the body. In consid-
eration of this question, we used retrograde coronary 
venous approach to achieve high local concentration 
and more uniform delivery. Further studies using 
bFGF modification technique (eg. nanoparticles) to 
increase the half-life of bFGF are needed. The cou-
pling of exogenous MSCs with native cardiomyocytes 
can better identify the engraftment and differentiation 
of transplanted MSCs within host myocardium, and 
have been investigated by several previous studies [3, 
39], although it is not the focus of our study. Im-
portantly, the signal pathway involved in the inter-
play between bFGF and MSCs for cardiac repair re-
mains unclear, and warrants rigorous investigation. 

Supplementary Materials 
Supplementary Methods. 
http://www.thno.org/v05p0995s1.pdf 

Conclusions 
The present study demonstrated retrograde 

coronary venous bFGF infusion enhances the en-
graftment and differentiation capacity of transplanted 
MSCs in response to MI injury. Co-administration of 
bFGF and MSCs significantly improves cardiac func-
tion and ameliorates adverse remodeling, which is 
accompanied by increased neovascularization and 
reduced apoptosis. Taken together, our findings sug-
gest a novel combined therapy via retrograde infusion 
may represent a promising strategy for cardiac repair 
after ischemic injury. 
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