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Mitochondrial Lysyl-tRNA Synthetase Independent
Import of tRNA Lysine into Yeast Mitochondria
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Abstract

Aminoacyl tRNA synthetases play a central role in protein synthesis by charging tRNAs with amino acids. Yeast
mitochondrial lysyl tRNA synthetase (Msk1), in addition to the aminoacylation of mitochondrial tRNA, also functions as a
chaperone to facilitate the import of cytosolic lysyl tRNA. In this report, we show that human mitochondrial Kars (lysyl tRNA
synthetase) can complement the growth defect associated with the loss of yeast Msk1 and can additionally facilitate the in
vitro import of tRNA into mitochondria. Surprisingly, the import of lysyl tRNA can occur independent of Msk1 in vivo. This
suggests that an alternative mechanism is present for the import of lysyl tRNA in yeast.
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Introduction

Aminoacyl-tRNA synthetases are a heterogeneous family of

enzymes responsible for aminoacylating tRNAs with the appro-

priate amino acids. The budding yeast, Saccharomyces cerevisiae,

contains two sets of lysyl-tRNA synthetases (Msk1 and Krs1) that

are encoded by nuclear DNA. Krs1 participates in cytoplasmic

protein synthesis while Msk1 in mitochondrial protein synthesis.

Despite the structures of the Msk1 and Krs1 being different,

functionally they are very similar. The yeast Msk1 has a bacterial

ancestry, whereas the Krs1 represents the ancestral eukaryotic

type [1,2].

Yeast Msk1 is a dual functional protein. In addition to

aminoacylation of mitochondrial tRNALys (tRK3), it has been

proposed that Msk1 plays an essential role in the import of

cytosolic tRNALys
CUU (tRK1) into mitochondria [3]. There are

two other lysine isoacceptors in yeast cells: the non-imported

nuclear encoded tRNALys
UUU (tRK2) and the mitochondrial DNA

encoded tRNALys
UUU (tRK3) [4]. Further, the imported tRK1

that was specifically mutagenized to alter amino acid specificity

was functional in yeast mitochondrial translation both in vivo and in

vitro [5]. However, for tRK1 to be eligible for mitochondrial

import, it has to go through a complex set of reactions that

includes aminoacylation of tRK1 by cytosolic lysyl-tRNA

synthetase, interaction of tRK1 with glycolytic enzyme enolase 2

(Eno2) and binding to the precursor form of Msk1 (pre-Msk1)

[3,6,7]. The subsequent translocation across the mitochondrial

membranes requires intact protein import machinery and ATP

[3,8]. The function of the imported tRNA is conditional and its

import is also regulated by ubiquitin/26S proteosome [9,10].

Further, the translocation across the mitochondrial membranes

requires intact protein import machinery, ATP and additional un-

identified cytosolic factors. However, the charged tRK1 imported

into mitochondria by the pre-Msk1p mediated mechanism is only

utilized in one cycle of translation as it cannot be re-charged by

Msk1. The utilization of tRK1 in mitochondria is dependent on

continuous action of cytosolic and mitochondrial tRNA synthe-

tases. Hence the utilization of imported tRK1 is limited by the

activity and availability of these two synthetases besides its function

being restricted to one round of translation.

Yeast tRK1 can also be imported into human mitochondria in

the presence of yeast cytosolic factors and Msk1 [5]. In addition,

human cytosolic factors can replace yeast cytosolic factors in the

presence of Msk1 to drive the import of tRK1 into human

mitochondria [5]. It was previously suggested that human Kars

might play a similar kind of role in the import of tRK1 into

mitochondria [11]. However, there was no direct evidence

showing that human Kars is indeed involved in the import of

tRK1 into either human or yeast mitochondria.

We previously have shown that human mitochondrial and

cytoplasmic lysyl tRNA-synthetases are expressed from alternative

spliced mRNAs from a single gene [12]. We are interested to see

whether human mitochondrial tRNA synthetase mitigates the role

of yeast tRNA synthetases in the import and aminoacylation of

tRK1 since the evolution and structural relatedness of these

enzymes has been a subject of intense research for many years.

Unlike yeast synthetases, both human cytosolic and mitochondrial

lysyl-tRNA synthetases (Kars) are capable of aminoacylating yeast

tRK1. Human mitochondrial Kars can substitute for yeast Msk1

for protein synthesis and tRNA import functions. Further, our

findings suggest that human Kars facilitates the import of tRK1

into isolated yeast, rat and human mitochondria. In addition,

human KARS partially suppresses the growth defects that are

associated with yeast MSK1 deletion. Interestingly, in vivo
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experiments suggest that import of tRK1 into yeast mitochondria

is independent of yeast Msk1.

Results

Human mitochondrial lysyl-tRNA synthetase suppresses
the growth defect associated with yeast MSK1 deletion

Yeast cells deleted for MSK1 do not grow on non-fermentable

carbon sources as they are unable to aminoacylate mitochondrial

tRNALys (tRK3). This results in the inhibition of mitochondrial

protein synthesis and loss of mtDNA. Before investigating the

ability of human Kars to import tRK1 into yeast mitochondria, we

determined whether Kars could substitute for the yeast Msk1 in

the aminoacylation of tRK3. To test this, we introduced the

human KARS cDNA or yeast MSK1 on a high/low copy plasmids

into a yeast strain heterozygously deleted for MSK1 by insertion of

a KANMX4 cassette (NS104). The resulting yeast strains were

sporulated on fermentable and nonfermentable carbon containing

media plates. In initial tests, all four meiotic progeny from diploid

strains that contained high copy yeast MSK1 formed colonies on

both fermentable and non-fermentable carbon sources. Progeny

from the diploid strain that contained high copy human KARS

plasmid yielded four spores on fermentable and nonfermentable

carbon sources. Out of the four spores, two were larger and wild

type for MSK1 gene while other two were smaller and positive for

MSK1 deletion (data not shown). Haploid progeny with KARS on a

low copy plasmid failed to grow on non-fermentable carbon

sources (data not shown). These results suggest that human KARS

can substitute yeast MSK1 deletion partially.

We investigated further the growth properties of the haploid

progeny of strain NS104 containing high copy plasmids expressing

human mitochondrial KARS or yeast MSK1 under respiring and

fermenting conditions. Cells were grown at 30uC in selective

medium, serially diluted and spotted on rich carbon sources

(YEPD) and on non-fermentable carbon sources (YEP plates

supplemented with 3% glycerol/ethanol). Cells expressing high

levels of human KARS partially suppressed the growth defect of

msk1D cells on both fermentable and on non-fermentable carbon

sources (Figure 1). The extent of suppression was comparable to

that achieved by high levels of ectopically expressed MSK1. Cells

deleted for MSK1 exhibited poor growth on rich carbon sources

compared to cells wild type for MSK1 (NS101; Figure 1). The

reason for the slow growth of the msk1D strain on rich carbon

sources is not known, but it could be strain specific. However, loss

of MSK1 displayed a similar phenotype on non-fermentable

carbon sources in other strain backgrounds ([3], present study).

Further, human KARS poorly complements the growth defect at

37uC caused by MSK1 deletion (unpublished results). This may be

due to requirement of Msk1 at elevated temperature for the import

of tRK1 [9].

Nevertheless, the results show that human KARS partially

complements yeast MSK1 deletion. We hypothesize that the

human Kars can be imported into yeast mitochondria and

substitute the function of yeast Msk1.

Recombinant human mitochondrial lysyl-tRNA
synthetase directs the import of tRK1 into yeast
mitochondria

We used an in vitro import system with bacterially expressed

human Kars to investigate whether human Kars can import tRK1

into yeast mitochondria. Yeast mitochondria isolated from strain

D273-10B [13] and were incubated with in vitro transcribed [32P]-

labeled tRK1 under standard import conditions and the import

efficiency was determined by RNase protection assay. tRK1 was

imported into yeast mitochondria in the presence of wild-type

yeast cytosol (Figure 2A, lane 1). Yeast cytosol is expected to

contain both the cytosolic lysyl-tRNA synthetase and trace

amounts of pre-Msk that are required for tRK1 import [3].

tRK1 was not imported into yeast mitochondria in the presence of

a yeast cytosolic extract derived from a msk1D strain (Figure 2A,

lane 2). However, the addition of purified human Kars (Figure 2A,

lanes 6 and 7) or yeast Msk1 (Figure 2A, lanes 3–5) resulted in

import of tRK1 into yeast mitochondria. A dose dependent

increase in the import of tRK1 into yeast mitochondria was

observed with increasing concentrations of added human Kars

(Figure 2A, lanes 6 and 7). tRK1 was not imported into yeast

mitochondria in the presence of yeast Msk1 or human Kars alone

(data not shown). Similar results were obtained when yeast

mitochondria substituted with mitochondria isolated from rat liver

or human 143b cells (Figures 2B and 2C). These results show that

human Kars can substitute for yeast Msk1 in targeting tRK1 into

mitochondria in vitro in the presence of cytosol.

Human cytosol can complement yeast cytosol in the
import of tRK1 into yeast or mammalian mitochondria

Cytosolic extract from human cells was used to investigate

whether human cytosol can complement the yeast cytosol in

directing the import of tRK1 into mammalian and yeast

mitochondria. Isolated mitochondria from human 143b cells, rat

liver or yeast were incubated with 32P labeled ATP and processed

as described in Methods. tRK1 was not imported into mitochon-

dria in the absence of yeast or human cytosol (Figure 2D).

Addition of mammalian cytosol to the reaction stimulated the

import of tRK1 into human, rat liver or yeast mitochondria

(Figure 2D). Cytosolic extract from a MSK1 deletion strain failed to

import the tRK1 either into yeast or mammalian mitochondria

but the addition of purified human Kars or yeast Msk1 stimulated

the import of tRK1 into mitochondria. These results show that

human Kars or yeast Msk1 are equally efficient in stimulating the

import of tRK1 and that human cytosol can substitute the role of

yeast cytosol in directing the import of tRK1 into mitochondria in

vitro.

In vivo distribution of tRK1
Next, we analyzed the distribution of tRK1 in wild type and

MSK1 deletion strains. High resolution northern blot analysis

suggested that more than 95% of the tRK1 is associated with

Figure 1. Suppression of growth defect associated with yeast
MSK1 deletion by human mitochondrial lysyl-tRNA synthetase.
Strains carrying various ectopic plasmids were grown on YEPD medium
over night. 2 0D600 unit cells were pelleted and suspended in 1 ml of
water. The culture was serially diluted in 10-fold steps and 10 ul of each
dilution was spotted onto YEPD and YEG plates. Two lanes of D/
hmtKARS represent two spores originated from the single tetrad.
doi:10.1371/journal.pone.0035321.g001

tRNA Import into Mitochondria
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cytoplasm and less than 5% is associated with mitochondria in

wild-type cells (data not shown), consistent with previous studies

[14]. Earlier studies showed the absence of tRK1 in the

mitochondria of msk1D strain [3]. However, in our preliminary

studies, a small but significant amount of tRK1 was associated

with mitochondria in the msk1D strain (data not shown).

The association of tRK1 with mitochondria isolated from msk1D
cells could be due to contamination of mitochondria preparation

with cytosol. Loss of mitochondrial DNA as a result of MSK1

deletion could change the mitochondrial morphology and result in

enhanced association with the cytosolic fraction. However, we

have observed decreased levels of mitochondrial-associated tRK1

in a rho0 strain that was generated by ethidium bromide treatment

of parental strain NS101 (data not shown). To determine whether

tRK1 was localized inside mitochondria or is a cytosolic

contaminant, we used several methods that could eliminate

cytosolic contamination with little reduction in the endogenous

mitochondrial tRNA levels. First, we selectively permeabilized the

mitochondrial membranes by digitonin detergent. Low concen-

trations of digitonin disrupt and partially solubilize the outer

mitochondrial membrane as well as removing other membranous

structures contaminating the mitochondrial fraction. To determine

the concentration of digitonin that is required to reduce the

cytosolic contamination, aliquots of mitochondria were treated

with increasing concentrations of digitonin prior to centrifugation.

Initially, the pellet and supernatant fractions were analyzed for the

selective solubilization of specific proteins that serve as markers for

the different mitochondrial subfractions. In subsequent experi-

ments, nucleic acids were isolated from the digitonin soluble

supernatant and insoluble pellet fractions and specific tRNA

species were detected and quantitated by northern analysis.

Treatment of mitochondria with 0.05% digitonin solubilized

specifically the mitochondrial outer membrane, as shown by the

release of the intermembrane space marker protein, CCPO into

the supernatant (Figure 3A). Higher concentrations of digitonin

solubilized the mitochondrial inner membrane, shown by the

release into the supernatant of the matrix marker protein Put2 and

the inner membrane protein Tim23 (Figure 3A). Endogenous

tRK3 and imported tRK1 were released into the supernatant at

the same concentrations of digitonin, which released the matrix

protein Put2 (compare Figures 3A and 3B). These results indicate

that mitochondrial membranes are intact and that the imported

tRK1 fragments are found in the same intramitochondrial fraction

as the endogenous mtDNA-encoded tRNA, tRK3. The levels of

Figure 2. Import of tRK1 into yeast (Fig. 2A), rat liver (Fig. 2B) and human mitochondria (Fig. 2C) in the presence of human
mitochondrial lysyl-tRNA synthetase. Import of tRK1 into isolated yeast or mammalian mitochondria was performed in the presence or absence
(lane 2) of either yeast or human mitochondrial lysyl-tRNA synthetase (lanes 3–7). The import efficiency was assessed by RNase protection assay
followed by polyacrylamide gel electrophoresis and phosphorimaging. Lane 1 contains wild type yeast cytosol that presumably contains both
cytosolic and mitochondrial lysyl- tRNA synthetase. Fig. 2D. Substitution of yeast cytosol with human cytosol for the import of tRK1 into either yeast
or mammalian mitochondria. Import of tRK1 was carried out into yeast (lanes 1, 2, 4 & 9) and human mitochondria (lanes 3, 5, 6, 7 & 8) in the presence
of wild type yeast cytosol (lanes 2 & 3), or mskD cytosol (lanes 4, 7 & 8) or human cytosol (lanes 5, 8 & 9). The import efficiency was assessed by RNase
protection assay followed by electrophoresis. The bands were quantified and relative tRK1 import values were mentioned by taking maximum
imported sample as a value of 1.
doi:10.1371/journal.pone.0035321.g002

tRNA Import into Mitochondria
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tRK2, a non-imported cytosolic tRNA, are reduced by 60–70%

compared to the untreated mitochondria at 0.075% concentration

(Figure 3B). It appears that digitonin resistant structures are still

associated with nonspecific cytosolic tRNAs.

We determined if treatment of mitochondria with MNase

(Micrococcal Nuclease) would reduce the contamination of

cytosolic tRNAs. However, mitochondria treated with MNase

alone showed contamination of cytosolic RNAs as evidenced by

the presence of tRK2 (Figure 3D, lanes 2–4). We therefore

developed alternative approach in which we treated mitochondria

with increased concentrations of digitonin and fixed concentration

of MNase or fixed concentration of digitonin and increasing

concentrations of MNase to reduce non-specific association of

cytosolic RNAs. It was previously shown that nuclear encoded

small RNAs non-specifically associated with highly purified

mitochondrial preparations but were sensitive to digitonin and

MNase treatment [15].

In the first approach, mitochondria were treated with increasing

concentrations of digitonin (Figure 3C, lanes 2–4) and then with a

fixed concentration of MNase (Figure 3C, lanes 6–8). Aliquots of

mitochondria were treated with increasing concentrations of

digitonin (0–0.2%) for 15 minutes on ice. Mitochondria were re-

isolated and treated with MNase at 500 U/ml for 25 minutes on

ice and processed as described in the Methods. As shown in the

figure 3C, low concentrations of digitonin (lanes 1–3) failed to

reduce the cytosolic RNA contamination whereas the higher

concentrations completely eliminates the cytosolic RNA levels but

also reduces the endogenous tRNA levels significantly (Figure 3C,

lane 4).

In another approach, aliquots of mitochondria were incubated

with 0.05% digitonin to solubilize the outer membrane and then

treated with different concentrations of MNase for 25 minutes on

ice. Total nucleic acids were isolated and the presence of various

tRNAs was detected by northern blot using specific probes. The

Figure 3. In vivo distribution of tRK1 in yeast cells. Isolated mitochondrial preparations were subjected to increasing concentrations of
digitonin (Fig. 3A & B). Digitonin soluble (sup) and insoluble fractions (pellet) were separated by centrifugation. One set was used to analyze protein
markers of outer membrane (porin), inter membrane space (CCPO), inner membrane (Tim 23) and the matrix (Put2) by SDS-PAGE followed by western
blot (3A). In parallel, the other fraction was used to extract total RNAs and analyzed by northern blot for the presence of tRK1, tRK2 and tRK3 by using
specific oligonucleotide probes. Isolated yeast mitochondrial preparations were treated with increasing concentration of digitonin from 0–0.2% (Fig.
3C) or 0.05% of digitonin (Fig. 3D) for 20 min on ice and reisolated the mitochondria by centrifugation. The pellet fraction was either treated with
250–750 units of MN (Fig. 3D) or 500 units of MN (Fig. 3C, lanes 5–8). Total RNA was extracted and analyzed by northern blot as above. Standard is the
respective in vitro transcribed unlabeled tRNA that was used as a positive control except in the case of tCys and tPhe (Fig. 3C). Cytosolic fraction
represents 2 mg of total RNA from the cytosol to show the levels of various tRNAs (Fig. 3C).
doi:10.1371/journal.pone.0035321.g003

tRNA Import into Mitochondria
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contamination of tRK2 in samples treated with MNase alone was

almost completely eliminated by treatment of the mitochondrial

fraction with 0.05% digitonin and MNase (Figure 3D, lanes 5–8).

This treatment had little effect on the amount of mitochondrial

tRNA (represented by tRK3, Figure 3), even at the highest

concentration of MNase.

The above experiments showed that neither digitonin nor

MNase treatment alone was sufficient to remove the contaminat-

ing cytosolic tRNAs. However, we could reduce the amount of

contaminating cytosolic RNAs by 97–99% without greatly

reducing the endogenous RNA levels by a combined treatment

of the mitochondrial fractions with digitonin and MNase. We used

this combined treatment to further investigate import of tRK1 into

yeast mitochondria.

Import of tRK1 in yeast cells is independent of Msk1
To further investigate whether isolated mitochondria from

msk1D strain contained any significant amounts of tRK1, we used

the combined digitonin and MNase treatment described above to

analyze the tRNAs associated with mitochondria. Mitochondria

isolated from wild type and msk1D cells were treated with 0.05%

digitonin for 30 minutes on ice, re-isolated, and treated with

MNase at 500 U/ml for 25 minutes on ice. Total mitochondrial

nucleic acids were then extracted and separated by urea-

acrylamide gel electrophoresis and examined for the presence of

representative cytosolic tRNAs (tRK1, tRK2, tRNACys, tRNAPhe)

by northern analysis (Figure 4A). In the absence of digitonin and

MNase treatment, as expected, a small portion of the cytosolic

tRNAs are associated with mitochondria isolated from wild type

and msk1D strains (Figure 4A, lanes 3 and 5). Treatment of

mitochondria with digitonin and MNase reduced the level of most

cytosolic tRNAs (tRK2, tRNACys, tRNAPhe). However, the

amount of tRK1 is at least 10-fold greater than other cytosolic

tRNAs, in both wild type and msk1D mitochondria (Figure 4A,

lanes 4 and 6; Figure 4B). In mitochondria isolated from msk1D,

the amount of tRK1 is decreased by 50% but its inaccessibility to

digitonin and MN treatment (Figure 4A, lane 6) indicates that

tRK1 is imported in these cells, despite the lack of Msk1. Results

from three independent experiments suggest that tRK1 can be

imported into mitochondria in the absence of Msk1 (Figure 4B).

We excluded the possibility that the MSK1 gene was not deleted

or partially deleted in our commercially obtained msk1D strain, by

PCR analysis. We isolated total genomic DNA from the parent

and from the msk1D strain and performed PCR with primers

flanking the open reading frame of MSK1. The putative msk1D
strain contained the larger KanMX4 marker gene as the entire

coding region of MSK1 is replaced (Figure 5, lanes 1 and 2). We

also used primers annealing to regions within the MSK1 gene. As

expected, MSK1 gene product was obtained from the parent strain;

no product was amplified from the msk1D strain (Figure 5, lanes 3

and 4). This analysis confirmed that msk1D cells indeed lacked the

MSK1 gene. We conclude that yeast mitochondrial lysyl-tRNA

synthetase does not play a significant role in the import of native

tRK1 into the mitochondrial matrix.

Discussion

Yeast Msk1 is a dual functional protein, it aminoacylates the

tRNALys (tRK3) of mitochondria, and is also involved in the

import of tRK1 into mitochondria [3]. We show here that human

mitochondrial lysyl tRNA-synthetase (KARS) cDNA, when present

in multiple copies, partially rescues the growth defect of msk1D
cells on non-fermentable carbon sources. We also show that

human Kars imports tRK1 into isolated yeast and mammalian

mitochondria in the presence of yeast or human cytosolic factors.

Our results provide genetic and biochemical evidence that human

Kars can perform the role of yeast Msk1. The results presented

here demonstrate for the first time that purified recombinant

human Kars could complement the role of yeast Msk1 in the

import tRK1 into isolated yeast mitochondria or into mammalian

mitochondria in vitro.

It had been proposed that interaction between tRK1 and pre-

Msk1 is absolutely essential for the import of tRK1 into

mitochondria, since no tRK1 was detected in mitochondria from

msk1D yeast cells [3]. However, we observe only slightly decreased

levels of tRK1 in mitochondria from msk1D strain when compared

to tRK1 levels in mitochondria isolated from a isogenic wild type

strain. We show that association of tRK1 with mitochondria

isolated from the msk1D strain is not due to non-specific

contamination of cytosolic fraction. tRK1 is still detected in

mitochondria isolated from msk1D strain and the mitochondria

had been incubated with digitonin and MNase (Figure 3). It is

clear from our results that the pre-Msk1 is not essential for import

of tRK1 into mitochondria from the cytoplasm in vivo. Our results

differ from a previous study [3] and this difference could be due to

several reasons. The possibilities include a) a different strain

background b) incomplete deletion of MSK1 and c) different

techniques to detect tRNAs. We employed high-resolution

northern blot hybridization to detect mitochondrial tRNAs,

whereas dot-blot hybridization method was used in previous

studies which may not detect small quantities of tRNAs that are

associated with mitochondria [3]. We also show that our msk1D
strain lacks the MSK1 gene by genomic PCR. However, we cannot

rule out the possibility that the association of tRK1 in

mitochondria isolated from msk1D strain is strain specific.

Our studies suggest that the in vivo import of tRK1 occurs

independently of mitochondrial lysyl-tRNA synthetase. However,

we observe that the import of tRK1 into mitochondria requires the

presence of Msk1 in vitro. The in vitro import of tRK1 differs from

other well-established systems in the requirement of many factors.

Cytosolic factors are not required for the import of tRNAs into

mitochondria of Tetrahymena [16], or in Trypanosoma [17] or in

Leishmania [18] or in plants [19]. Nevertheless, it has been shown

that aminoacylation is essential for the import of tRNAAla into

Arabidopsis thaliana mitochondria. This evidence suggested that

amino acyl-tRNA synthetases are indeed involved in the import of

tRNAs into plant mitochondria [20]. However, the over-

expression of A. thaliana alanyl-tRNA synthetase in yeast cells

was not sufficient to import its cognate tRNAAla into the yeast

mitochondria [21], indicating that the mechanism of import is

different from plants to yeast. In yeast, aminoacylated tRK1 is

essential for import, however, it is being utilized only once in the

mitochondrial translation as Msk1 does not aminoacylate the

cytosolic tRK1. The necessity of this conditional import of this

tRNA into mitochondria could be a non-essential function of

aminoacylated tRNA in mitochondrial translation as mitochon-

drial encoded tRK3 can decode both AAA and AAG codons.

However, the imported aminoacylated tRK1 plays an important

role at elevated temperature in decoding AAG codons as

mitochondrial tRK3 is defective [9]. Recently, it has been shown

that cytosolic Gln-tRNA is imported into yeast mitochondria and

its import is independent of cytosolic factors and yeast mitochon-

drial Gln tRNA synthetase [22].

Cytosolic factors are essential as Msk1 is required for the import

of tRK1 into isolated yeast mitochondria in vitro. The precise role

of cytosolic factors in the import of tRK1 into mitochondria is not

known. It was speculated that probably the cytosolic factors act to

stabilize the pre-Msk/tRK1 complex or facilitate the binding of

tRNA Import into Mitochondria
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tRK1 complex to mitochondria [23]. Our in vivo studies show the

existence of an import mechanism for the import of tRK1 that is

not dependent on Msk1.

The import of precursor proteins or tRNA into mitochondria

requires one or more outer membrane receptors [24]. It was

observed that mitochondria can import preproteins with reduced

efficiency when the cytosolic domains of the import receptors were

removed by trypsin treatment. This residual import is called

bypass import [25,26]. It is possible that the import of tRK1 can

be accomplished without the presence of Msk1 by alternative

methods in vivo. In support of this hypothesis, we find reduced

levels of tRK1 in mitochondria isolated from a msk1D strain when

compared to the parental strain. We have also observed that

cytosolic factors alone when present in large quantities, slightly

stimulates the import of tRK1 into isolated yeast mitochondria in

the absence of Msk1 in vitro (unpublished results). Our findings

indicate that the in vivo import of tRK1 differs from the in vitro

import. Our results also suggest that alternative import pathways

are present for tRNA import and yeast can serve as a model

system to study the evolutionarily divergent import pathways of

tRNAs.

Materials and Methods

Yeast strains
BY4741 (MATa/MATa his3D1 leu2D0 met15D0 ura3D0),

BY4742 (MATa his3D1 leu2D0 lys2D0 ura3D) and msk1D (MATa

msk::KAN his3D1 leu2D0 met15D0 ura3D0) strains were obtained

from Research Genetics Inc. Heterozygous diploid strain NS104

(MATa/MATa his3D1/his3D1 leu2D0/leu2D0 met15D/MET

ura3D0/ura3D0 LYS/lys2D0) was constructed by crossing strain

BY4742 with msk1D. Strain NS108 is isogenic to NS104 but

contains MSK1 on a high copy plasmid (pTEF MSK1 URA3-2m).

Strain NS112 (MATa his3D1 leu2D0 met15D0 ura3D0) contains

human KARS on URA3-2m plasmid. Standard yeast genetics and

techniques were used [27].

Plasmids and cloning
The complete coding sequence of human mitochondrial lysyl-

tRNA synthetase (KARS) cDNA was amplified by PCR using

Thermo polymerase (Ambion) with KARS-A primer (ACTAGT-

GAATTCATGTTGACGCAAGCTGCT) containing an EcoRI

site and KARS-B primer (GGATCGATCTCGAGGACA-

Figure 4. Presence of tRK1 in msk1D mitochondria. Mitochondria isolated from wild type or msk1D strains were treated with digitonin and
MNase and total nucleic acids were separated on urea-acrylamide gel and analyzed by northern blot with respective probes. Total RNA represents the
total cell RNA (2 mg) that was used to determine the levels of various tRNAs in the cytosol (Fig. 4A). Figure 4B represents the quantification of band
intensities by densitometry.
doi:10.1371/journal.pone.0035321.g004

Figure 5. Confirmation of MSK1 deletion in yeast strain by PCR
analysis. Analytical PCR was performed with isolated genomic DNA
from wild type and msk1D strain by using internal and upstream
primers to detect the loss of msk1 as mentioned in the Methods
Section. Lane 1 represents the wt MSK1 gene, lane 2 represents the KAN
marker at MSK1 locus, lane 3 represents the internal fragment
generated by using internal primer in wild type and lane 4 represents
the lack of MSK1 gene in msk1D strain.
doi:10.1371/journal.pone.0035321.g005
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GAAGTGCCAACTGT) containing a XhoI site. Human KARS

and was cloned into the pGEM-T Easy vector to generate plasmid

pNS33. pNS33 was digested with EcoRI and XhoI and the KARS

ORF was isolated and cloned into a 2m vector (pTEF-URA3) at

EcoRI and XhoI sites [28] (a kind gift from Erica Johnson, TJU) to

generate pNS37. MSK1 was amplified using yeast genomic DNA

as a template and primers MSK1-A (GGCACGTGACTAG-

TATGAATGTGCTGTTAAAA) and MSK1-B (GGATCGA-

TAAGCTTTTACTGCCTGTTTACATC) and the PCR prod-

uct was cloned into pGEM-T Easy vector to create pNS32. A

SpeI/HindIII digestion product of pNS32 containing MSK1 was

inserted into pTEF-URA to generate pNS34. PCR was performed

to check the insertion of KAN marker at MSK1 locus with sense

primer MSK1-C (TAGTCTTTTATTCGTGATAAAAGC-

GAAAAT) and antisense primer MSK1-D (CGTAGCGTAGTT-

TATTGGTGTAGAGAAAAA). To exclude the possibility of

partial deletion of MSK1 gene, PCR was performed with sense

primer MSK1-C (TAGTCTTTTATTCGTGAAAAAAGC-

GAAAAT) and antisense primer MSK1-E (AATACGCAACTC-

CAAATGGTCGAAGTC CTT).

Over expression and purification of human and yeast
mitochondrial lysyl-tRNA synthetases

The human mitochondrial lysyl-tRNA synthetase cDNA cloned

in pET 24d vector (Novagen) was expressed in E. coli BL21 (DE3)

Codon Plus (RIL) cells and purified to 80% homogeneity as

described [12]. The complete coding sequence of yeast mitochon-

drial lysyl-tRNA synthetase (MSK1) was PCR amplified and cloned

into E. coli expression vector pET24d to generate a hexahistidine

tag at the carboxyl terminal of synthetase. This construct was

expressed in E. coli BL21 (DE3) Codon Plus (RIL) (Stratagene) at

15uC for 12 hours in the presence of 0.5 mM isopropyl-1-thio-b-

D-galactopyranoside. The histidine tagged soluble pre-protein was

partially purified using Talon metal affinity resin (Clontech) and

concentrated. The purified Msk constituted approximately 70% of

the total purified protein.

Preparation of tRNA substrate and end labeling
A synthetic gene encoding tRK1 downstream from a T7

polymerase promoter was constructed by annealing ten overlap-

ping oligonucleotides and cloning into EcoRI/BamHI digested

pUC19 vector. This plasmid was linearized with Bst NI and used

as a template for in vitro transcription using T7 polymerase. The

tRK1 in vitro transcript was gel purified and stored in TE pH 8.0.

tRK1 was labeled with a-[32P]-ATP at the 39 end using E. coli

terminal nucleotidyl transferase as described [29]. Prior to import

assays, the tRNA was denatured at 80uC followed by slow cooling

to 37uC in the presence of 15 mM MgCl2.

Isolation of mitochondria and in vitro import assays
Mitochondria were isolated from yeast [30], rat liver [31] or

from 143b osteosarcoma cell lines [29] as described. Yeast

cytosolic factors were prepared as described [3]. 0.2 pmol of in

vitro synthesized [32P]-labeled tRK1 was preincubated with 2 mg of

yeast cytosolic factors with or without purified human Kars or

yeast Msk1 on ice for 10 minutes prior to the import assay. Import

of tRNA into mitochondria was performed in a volume of 100 ml

containing 100 mg of mitochondria, 20 mM HEPES-KOH

pH 7.2, 0.6 M sorbitol, 4 mM ATP, 1 mM GTP, 5 mM MgCl2,

25 mM KCl and 0.2 pmol of [32P]-labeled tRK1. The import

reaction was carried out at 30uC for 25 minutes. Following

import, mitochondria were re-isolated, suspended in import buffer

and treated with 2.5 mg/ml RNases (Roche Biochemicals) for

30 minutes on ice to remove non-imported tRK1. Then

mitochondria were reisolated and washed three times with SEM

buffer (250 mM Sucrose, 10 mM MOPS pH 7.2, 1 mM EDTA).

The washed mitochondrial pellet was resuspended in 0.1 M

potassium acetate (pH-5.2), 0.5% (w/v) SDS and mitochondrial

RNA was extracted using phenol-chloroform as described [3]. The

total RNA was resolved on 12% urea-polyacrylamide gel

electrophoresis and tRK1 was detected and quantitated by

autoradiography or phosporimaging using a Molecular Dynamics

PhosphorImager. Import of tRNA into isolated rat liver

mitochondria or human cell lines were essentially performed as

described [31]. In brief, isolated mitochondria were incubated

with tRNA in the presence of energy mix at 30uC for 30 minutes

and treated with RNases and processed as above. The Animal

Ethics Committee of the University of Hyderabad approved the

experiment protocol.

Mitoplast Preparation
For generation of mitoplast, digitonin was used to permeabilize

the outer mitochondrial membrane of mitochondria. Mitochon-

dria were suspended at a concentration of 1 mg/ml in SEM

buffer. 250 mg of mitochondria were incubated for 25 minutes on

ice in 250 ml of SEM buffer containing 0 to 0.2% digitonin. The

resulting mitoplasts were harvested by spinning at 14,000 rpm for

10 minutes and the supernatant was saved for further analysis.

The mitochondrial pellet was washed once again with SEM buffer

and was used either for micrococcal nuclease treatment or for the

isolation of mitochondrial nucleic acids. To determine the

efficiency of digitonin treatment, 100 mg of mitochondria were

treated as above with digitonin, centrifuged, and the pellet and

supernatant fractions separated by SDS-PAGE and transferred to

a polyvinylidene difluoride membrane (Immobilon P, Millipore).

Immunoblots were performed using antibodies specific for

cytochrome c peroxidase (CCPO) (intermembrane space),

TIM23 (inner membrane), delta-1-pyrroline-5-carboxylate dehy-

drogenase (Put2p) (matrix) and porin (outer membrane).

Micrococcal Nuclease treatment of Mitochondria
For the Micrococcal nuclease (MNase) treatment, aliquots

(250 mg) of mitochondria were resuspended in 2 mM CaCl2,

250 mM sucrose and 10 mM MOPS pH 7.1. MNase was added

to 500 U/ml unless otherwise specified. MNase treatment was

performed for 25 minutes on ice with occasional mixing. MNase

was then inactivated by the addition of 10 mM EGTA on ice for

5 minutes. The mitochondrial suspension was diluted with SEM

buffer containing 2 mM EGTA and centrifuged at 14000 g for

10 minutes. The reisolated mitochondrial pellet was washed one

more time in SEM buffer. The resulting pellet was used to isolate

total mitochondrial RNA.

Northern blot
Mitochondrial nucleic acids were isolated from the various

samples and were separated on 12% urea-acrylamide gels. The

transfer of nucleic acids to the nylon membranes was performed as

described [29]. Membranes were probed using T4 polynucleotide

kinase-labeled oligonucleotide probes specific for tRK1, tRK2,

tRK3, tRNAcys and tRNAPhe. To detect tRK1, we used the

oligonucleotide probe anti tRK1 (GTAGGGGGCTC-

GAACCCCTAACC) for tRK2, the probe anti tRK2

(GCCGAACGCTCTACCAACTCAGC) for tRK3, the probe

anti tRK3 (TAGCTGGAGTTGAACCAAGCATG) for cytosolic

tRNAcys, the probe anti tRNAcys (TCAGGATCGAACTAAG-

GACCAAG) and for cytosolic tRNAPhe, the probe anti tRNAPhe

(TGAGAATCGAACTACATGTAAAT).
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