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RESEARCH ARTICLE

Manganese exposure in juvenile C57BL/6

mice increases glial inflammatory responses

in the substantia nigra following infection with

H1N1 influenza virus

Collin M. Bantle1, C. Tenley French1, Jason E. CummingsID
2, Shankar Sadasivan3,

Kevin Tran1, Richard A. Slayden2, Richard J. Smeyne3, Ronald B. TjalkensID
1*

1 Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins,

Colorado, United States of America, 2 Department of Microbiology, Immunology and Pathology, Colorado

State University, Fort Collins, Colorado, United States of America, 3 Department of Neuroscience, Vickie &

Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United

States of America

* ron.tjalkens@colostate.edu

Abstract

Infection with Influenza A virus can lead to the development of encephalitis and subsequent

neurological deficits ranging from headaches to neurodegeneration. Post-encephalitic par-

kinsonism has been reported in surviving patients of H1N1 infections, but not all cases of

encephalitic H1N1 infection present with these neurological symptoms, suggesting that

interactions with an environmental neurotoxin could promote more severe neurological

damage. The heavy metal, manganese (Mn), is a potential interacting factor with H1N1

because excessive exposure early in life can induce long-lasting effects on neurological

function through inflammatory activation of glial cells. In the current study, we used a two-hit

model of neurotoxin-pathogen exposure to examine whether exposure to Mn during juvenile

development would induce a more severe neuropathological response following infection

with H1N1 in adulthood. To test this hypothesis, C57BL/6 mice were exposed to MnCl2 in

drinking water (50 mg/kg/day) for 30 days from days 21–51 postnatal, then infected intrana-

sally with H1N1 three weeks later. Analyses of dopaminergic neurons, microglia and astro-

cytes in basal ganglia indicated that although there was no significant loss of dopaminergic

neurons within the substantia nigra pars compacta, there was more pronounced activation

of microglia and astrocytes in animals sequentially exposed to Mn and H1N1, as well as

altered patterns of histone acetylation. Whole transcriptome Next Generation Sequencing

(RNASeq) analysis was performed on the substantia nigra and revealed unique patterns of

gene expression in the dual-exposed group, including genes involved in antioxidant activa-

tion, mitophagy and neurodegeneration. Taken together, these results suggest that expo-

sure to elevated levels of Mn during juvenile development could sensitize glial cells to more

severe neuro-immune responses to influenza infection later in life through persistent epige-

netic changes.
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Introduction

Parkinson’s disease (PD) is characterized by the loss of voluntary motor control due to the

degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) with

associated α-synuclein protein-aggregation, neuroinflammatory activation of glial cells, mito-

chondrial dysfunction and oxidative stress [1]. Although genome-wide association studies

(GWAS) have identified genetic variants in familial forms of the disease, these represent a very

small percentage of individuals with PD, with the majority of PD cases thought to be sporadic

or of an unknown etiology [2]. Epidemiological and experimental evidence suggests that envi-

ronmental neurotoxin exposure and viral infections are possible risk factors for sporadic PD.

Following the 1918 “Spanish Flu” pandemic, nearly every patient who had an acute episode of

encephalitis lethargica (EL) from the H1N1 infection went on to develop postencephalitic par-

kinsonism and individuals who were born between 1888 and 1924 had a two to three-fold

higher risk of developing Parkinson’s disease later in life than those born outside of that range

[3–6].

Our lab and others have recently shown that exposure to certain classes of enveloped RNA

viruses, Western equine encephalitis virus (WEEV) and H5N1 (strain, A/VN/1203/04) via

intranasal infection can induce loss of dopaminergic neurons in the SNpc [7, 8]. Infection with

viruses such as H5N1 avian influenza virus, WEEV and H1N1 induce neuronal loss in part

through the activation of microglia and astrocytes and subsequent release of glial-derived neu-

rotoxic inflammatory mediators [7–9]. Microglia and astrocytes express a variety of damage-

associated molecular patterns (DAMPs) that promote inflammation and disease progression

in postencephalitic parkinsonism [10]. Reactive microglia and astrocytes have increasingly

become the focus of studies examining the pathophysiology of PD, suggesting that neuroin-

flammation may be a link between viral encephalitis and the development of parkinsonian

neurological symptoms [11]. Additionally, astrocytes and microglia have innate immunologi-

cal memory in the brain to facilitate a rapid inflammatory response to recurrent inflammatory

stressors, and it has been postulated that this acute and exacerbated inflammatory response

from glia may have the capacity to exacerbate neuronal injury following secondary insults

[12].

How encephalitic infections from non-neurotropic H1N1 virus cause neurological dysfunc-

tion and neurodegeneration in certain individuals is not entirely clear but may be related to

the severity of the neuroinflammatory response [7, 8, 13–17]. This could be due to prior expo-

sure to environmental neurotoxins that activate innate immune inflammatory signaling in

microglia and/or astrocytes, thereby sensitizing the tissue environment of the brain to greater

inflammatory activation of glial cells during an encephalitic infection. Data from recent studies

examining innate immune memory in microglia support this possibility, where multiple injec-

tions of LPS in mice resulted in immune training that amplified activation of microglia and

astrocytes as well as levels of inflammatory cytokines upon later immunological challenge [12].

Similarly, mice infected with H1N1 prior to treatment with the neurotoxin, 1-methyl-4-phe-

nyl-1,2,3,6-tetrahydropyridine (MPTP) had significantly greater activation of microglia and

loss of dopamine neurons in the SNpc that mice treated only with MPTP [14]. Elevated levels

of Mn during juvenile development in mice can exacerbate neuroinflammatory activation of

glia and increase the production of reactive oxygen and nitrogen species and inflammatory

cytokines following a subsequent exposure to Mn [18]. Rats exposed to Mn during juvenile

development at concentrations comparable to low environmental exposure levels did not have

overt neurotoxicity but showed evidence of deficits in mitochondrial respiration, as well as oxi-

dative stress and chronic neuroinflammation [19]. Both Mn and viral infection induce inflam-

matory activation of microglia and astrocytes and mitochondrial stress in PD-relevant brain
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regions, suggesting that neuroinflammatory responses to Mn and encephalitic infections may

evoke common pathophysiological signaling mechanisms in glial cells leading to altered innate

immune responses in the brain [18, 20, 21].

Previous work suggests that glial inflammatory responses to Mn can exacerbate neuronal

injury following secondary neurotoxic insults [10, 18, 22–25] but whether Mn can also

enhance the severity of neurological damage from encephalitic viral infections with H1N1 is

unknown. In the current study we investigated whether elevated levels of an Mn during juve-

nile development could enhance neuroinflammatory damage to dopaminergic neurons after

infection with H1N1 influenza virus and increase one’s risk of developing neurological disease

later in life. We tested this hypothesis by exposing juvenile C57BL/6 mice to MnCl2 in drinking

water (50 mg/kg/day) for 30 days from days 21–51 PN, followed by intranasal infection with

H1N1 at PN72. Control mice received only drinking water followed by either mock infection

or infection with H1N1. Stereological counts of dopaminergic neurons and microglia in the

SNpc were performed. We noted pronounced microglia activation following dual treatment

with Mn and H1N1 relative to either treatment alone, as well as marked astrogliosis and

increased in the number of reactive A1 astrocytes. RNA sequencing (RNAseq) analysis

revealed activation of multiple stress response pathways involved in antioxidant activity, mito-

phagy, anti-viral activity and neurodegeneration in mice treated with Mn and subsequently

exposed to H1N1. Collectively, these findings suggest that exposure to elevated levels of Mn

during juvenile development increases neuroinflammatory activation of glia following enceph-

alitic infection with H1N1 influenza virus later in life, likely through epigenetic modification

of histones that increases secondary innate immune responses in microglia and astrocytes.

Materials and methods

Exposure protocol with manganese and H1N1

All procedures were approved by Colorado State University and St. Jude Children’s hospital

Institutional Animal Care and Use Committee (IACUC) and were conducted in compliance

of the National Institute of Health guidelines. Dosing was performed as previously published

[26]. C57Bl/6 mice were obtained from the Jackson Laboratory and housed in a temperature-

controlled room (maintained at 22–24˚C on a 12 hr light/dark cycle) with ad libitum access to

standard chow. At day P21, male and female C57BL/6 mice were administered MnCl2 (50mg/

kg/day; Sigma) or normal drinking water. The dose of MnCl2 was calculated by monitoring

water intake and weight gain for thirty days, with the concentration in drinking water adjusted

to deliver 50 mg/Kg/day according to water consumption. At P51, Mn-treated mice were

placed back on regular drinking water for a period of one month. Mice were then intranasally

infected with A/California/04/2009 (CA/09) H1N1 or mock-infected with saline. Infection

with H1N1 was performed as described previously [27]. Briefly, for infections, mice were

lightly anesthetized with isofluorane and intranasally inoculated with either 103 TCID50 of

CA/09 in 25μl of phosphate-buffered saline (PBS) or PBS alone and monitored daily for 21

days post-infection by assessing any possible neurobehavioral abnormalities or clinical signs of

illness. A clinical scoring system was used to identify any animals with untoward morbidity,

the treatments performed did not produce any overt morbidity and all animals maintained

normal body weight and feeding behavior, relative to untreated/mock-infected controls. Clini-

cal scoring was performed by laboratory staff and was supported by daily observation from

dedicated laboratory animal veterinary personnel. After 21 days, infected or mock-infected

control mice were euthanized for tissue collection. Euthanasia was performed under deep iso-

fluorane anesthesia.
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Preparation of A/California/04/2009 (CA/09) H1N1 inoculum

A detailed description of inoculum preparation and administration has been previously

reported by our group [27]. In brief, A/California/04/2009 (CA/09) H1N1 virus was passaged

in the allantoic cavity of 10-day-old specific pathogen-free embryonated chicken eggs. At 48 to

72 hours post-infection, allantoic fluid was harvested, clarified by centrifugation, and stored at

−70˚C. Tissue culture infectious dose 50% (TCID50) titers were determined using Madin-

Darby canine kidney (MDCK) cells and evaluated by the method of Reed and Muench [28].

Tissue processing for immunohistochemistry and immunofluorescence

Mice were anesthetized with Avertin and transcardially perfused with 4% paraformaldehyde in

PBS. Brains were dissected and processed for paraffin embedding. Brains were then sectioned

on the microtome at 10μm thickness and mounted on polyionic slides (Superfrost-plus, Fisher

Scientific). Deparaffinized SN sections were incubated with primary antibody for identification

of dopaminergic neurons [mouse monoclonal anti-tyrosine hydroxylase (TH; Sigma-Aldrich;

1:500), microglia [rabbit polyclonal anti-IBA1 (Wako Chemicals; 1:500), astrocytes [rabbit

polyclonal anti-S100beta (Abcam; 1:500)], complement C3 [rat monoclonal anti-C3 (Abcam;

1:100)], SerpinA3 [mouse monoclonal anti-SerpinA3 (thermos; 1:250)], IP-10 [mouse mono-

clonal anti-IP-10 (Santa Cruz; 1:500)], IP-10/Cxcl10 [mouse monoclonal anti-cxcl10 (Santa

Cruz; 1:250)], CCL2 [mouse monoclonal anti-Ccl2 (Millipore; 1:500)], and acetylated Lysine

residues [rabbit polyclonal anti-acetylated lysine (Cell Signaling; 1:500)]. For immunohisto-

chemical analysis, the secondary antibodies included biotinylated mouse IgG (for TH, 1:1000)

or biotinylated rabbit IgG (for IBA1, 1:1000). Diaminobenzidine (DAB) or a VIP kit (Vector

labs) reaction was used to yield a brown (TH) or a purple (IBA1) color, respectively. For

immunofluorescence, anti-mouse, anti-rabbit or anti-rat IgG alexa flour 555, alexa flour 488,

or alexa flour 647 were diluted in TBS (2% Triton) at 1:500. Sections were washed 5X (5 min)

and stained with DAPI in the final wash after an hour incubation period in the secondary anti-

body. Sections were then mounted with medium, coverslipped and stored at 4˚C until imaged.

Quantification of TH+ dopaminergic neurons and Iba1+ microglia in the

substantia nigra pars compacta

Quantitation of neurons and glial cells was performed as previously reported [27]. In brief, TH

+ dopaminergic neurons and IBA1+ microglia in the SNpc were estimated using standard

model-based stereological methods [16, 29]. Counts of total dopaminergic neurons and activated

microglia were estimated using Microbrightfield StereoInvestigator (MBF Biosciences, Williston,

VT) and the optical fractionator method using an Olympus BX-51 microscope and 100X objec-

tive [30, 31]. The identification of resting and activated microglia was based on defined morpho-

logical criteria, as previously reported [16, 30]. Resting microglia were defined as having a small,

oval IBA1+ cell body that averaged 3 microns in diameter with long slender processes, while

microglia were classified as activated when the cell body was slightly increased in size compared

to resting microglia and had an irregular shape, with shorter and thickener processes. The inves-

tigator was blinded from all experimental groups during imaging and cell quantitation.

Quantification of astrocyte-specific inflammatory markers in the

substantia nigra pars compacta

Formalin-fixed, paraffin-embedded 10 μm brain sections were immunofluorescently-labeled

using a Leica Bond RXM automated robotic staining system. Sections were immunohisto-

chemically stained on a Leica Bond-III IHC automated stainer. Antigen retrieval was
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performed with Bond Epitope Retrieval Solution 2 for 20 minutes. Sections were then incu-

bated with primary antibodies for S100β+ (Abcam; rabbit, 1:500), complement C3 (Abcam;

rat monoclonal, 1:100), SerpinA3 (Thermos; mouse monoclonal, 1:250), IP-10/CXCL10

(Santa Cruz; mouse monoclonal, 1:250) and CCL2 (Millipore; mouse monoclonal, 1:500).

Secondary antibodies included AlexaFluor anti-rabbit IgG AlexaFluor 488, anti-rat IgG

AlexaFluor 555 and anti-mouse AlexaFluor 647. Whole-brain immunofluorescence montage

images of labeled tissue sections were imaged using an automated Olympus BX51 fluores-

cence microscope equipped with a Hamamatsu ORCA-flash 4.0 LT CCD camera and col-

lected using Olympus Cellsens software (v 1.15). Quantitative analysis was performed on

dual- or triple-labeled fluorescent images generated by montage imaging of an entire coronal

mouse brain section compiled from individual images acquired using an Olympus Plan

Apochromat 20X air objective (0.40 N.A.). All slides were scanned under the same condi-

tions for acquisition time, magnification, exposure time, lamp intensity and camera gain.

The substantia nigra was delineated by neuroanatomical landmarks and referenced to the

Allen brain atlas, following application of an adaptive threshold with shape factor and area

(μm2) object filters for automatic S100β+ astrocyte cell detection. The number of cells was

divided over the area (μm2) of the region. To measure expression of inflammatory proteins

within S100β+ astrocytes, mean intensities of complement C3, serpinA3, IP-10/CXCL10 and

CCL2 were measured by generating automated individual ROIs around all S100β+ astrocytes

within the SNpc. We assessed the presence of the inflammatory molecules on two coronal

sections per animal that were 10 μm in thickness, spaced at 200 μm intervals within the

SNpc, with an N = 6–8 mice for each treatment group. The investigator was blinded from all

experimental groups during imaging and cell quantitation.

Quantification of histone acetylation in dopaminergic neurons, microglia

and astrocytes in the substantia nigra par compacta

Formalin-fixed, paraffin-embedded 10 μm brain sections were immunofluorescently-labeled as

described above using a Leica Bond RXM automated robotic staining system. Sections were

then incubated with primary antibodies for tyrosine hydroxylase (WAKO; goat, 1:500), S100β
(Abcam; rabbit, 1:500), IBA1 (Abcam; goat, 1:100) and lycine-acetylated histones (Cell Signal-

ing; rabbit, 1:500). Secondary antibodies included anti-goat IgG AlexaFluor 647, anti-mouse

IgG AlexaFluor 488, and anti-rabbit IgG AlexaFluor 555. To measure total lysine acetylation in

dopaminergic neurons, astrocytes and microglia in the SNpc, labeled tissue sections were

imaged using a Olympus Plan Apochromat 20X air objective (0.40 N.A.) and an automated

Olympus BX51 fluorescence microscope equipped with a Hamamatsu ORCA-flash 4.0 LT CCD

camera and collected using Olympus Cellsens software (v 1.15). Quantitative analysis was per-

formed as described above based on triple-labeled fluorescent images montage images of an

entire coronal mouse brain section. All slides were scanned under the same conditions for

acquisition time, magnification, exposure time, lamp intensity and camera gain. The substantia

nigra was delineated by neuroanatomical landmarks and referenced to the Allen brain atlas, fol-

lowing application of an adaptive threshold with shape factor and area (μm2) object filters for

automatic TH+ dopaminergic neurons, IBA1+ microglia, and S100β+ astrocyte cell detection.

Mean intensities of acetylated lysine residues were measured within TH+ dopaminergic neu-

rons, IBA1+ microglia, and S100β+ astrocytes in the SNpc by generating automated ROIs

around each cell type. We assessed total lysine histone acetylation in dopaminergic neurons,

astrocytes and microglia in two coronal sections per animal that were 10 μm in thickness, spaced

at 200 μm intervals within the SNpc, with an N = 6–8 mice for each treatment group. The inves-

tigator was blinded from all experimental groups during imaging and cell quantitation.
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RNA sequencing of the substantia nigra

This method was adapted from a previous protocol [32]. A systems-based transcriptional anal-

ysis of substantia nigra brain tissues from each treatment group was performed, and the treat-

ment conditions included control, H1N1, and Mn+H1N1. Tissue was anatomically dissected

from the basal midbrain and included the substantia nigra but not the ventral tegmental area.

Isolated tissue was immediately flash frozen in liquid nitrogen and later homogenized in Trizol

reagent (Thermo Fisher) for purification. Samples were then treated with DNAse (Fermentas,

Burlington, Ontario) for 30 minutes and purified by phenol/chloroform/isoamyl alcohol

(25:24:1) (Fisher Scientific, Pitts- burgh, PA) extraction and ammonium acetate precipitation.

Quality and integrity of total RNA was assessed using the 4200 Agilent Tapestation, and sam-

ples were confirmed to have RIN scores of>7. RNA [transcripts & non-coding RNA] was iso-

lated from total host RNA followed by library construction and template preparation with the

Ion Total RNA-Seq kit and Ion Chef system kit. Sample libraries were prepared using the Ion

Total RNA-Seq kit v2 (Life Technologies) and multiplexed on a P1 chip using Ionxpress

RNA-Seq 1–16 kit (Life Technologies). Whole mouse transcriptome sequencing was then per-

formed using the Ion Proton Next Generation Sequencer (Life Technologies) through the core

facility at the Infectious Disease Research Complex (IDRC) at Colorado State University. Fol-

lowing Next Generation RNA-seq, we used read count coverage (RPKM or FPKM values) to

compare the differential gene expression between groups. Advanced RNA-seq analysis was

done using the Tuxedo package in Linux command line, including alignments using Bowtie2

and differential gene expression analysis using Cufflinks. Local realignment and base quality

score recalibration (BQSR) methods were used as needed to reduce false-positive base calls

and improve alignments.

Analysis of next-generation sequencing data

Data analysis was performed as previously published [32]. In brief, FASTQ files were analyzed

using Galaxy for quality trimming, with minimum PHRED quality threshold set at 20 and all

read length greater than 20bp. Trimmed reads were then aligned to Mus musculus mm9 using

Bowtie2 and gene expression determined using Cufflinks. Expression output was normalized

in FPKM format (fragments per kilobase of exon per million reads). Replicate mean values

were calculated, and the data was further reduced to FPKM values greater than two. Venn dia-

grams and Pie chats were generated by comparing the reduced FPKM transcript totals for

each treatment group. PANTHER (Protein Analysis Through Evolutionary Relations) Classifi-

cation System (http://pantherdb.org/publications.jsp#HowToCitePANTHER) was used to

ascertain functional pathways driving differences in gene expression by analyzing the complete

gene lists within each treatment group for their corresponding annotations, accessed from the

Gene Ontology (GO) Consortium. Secondarily, the PANTHER statistical overrepresentation

test enabled a comparison of those GO annotations across each treatment group to identify

functionally related genes relevant to neurodegeneration. The PANTHER gene list analysis

was used to perform a functional classification of all the GO-annotated transcripts within each

treatment group. This process employed the GO Term of Molecular Function and GO-slim

annotation data sets to analyze the expression profiles of each gene list. We charted any differ-

ences between treatment groups as the number of gene hits (the % of gene hits for a GO term

/total number of annotated genes in that category). The only GO Term categories shown are

those with demonstrable differences in the number of gene hits between the treatment groups.

The exact genes returned within each GO classification were analyzed in Excel using MATCH

function and dual comparisons to find the specific transcripts unique to each treatment cate-

gory. To further classify RNAseq transcripts according to function, gene lists were analyzed
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using the PANTHER overrepresentation test. This yielded statistically over or under-repre-

sented annotations among gene lists relative to the GO Biological Process and Molecular Func-

tion Mus musculus datasets. Complete gene lists for each treatment group were imported into

the analysis tool. Fisher’s Exact test for significance was used with FDR multiple test correc-

tion. Resulting GO Terms with an enrichment score >1.5 and a FDR<0.05 were considered

significant. Genes relevant to neurodegeneration were selected from significant GO Term

gene lists. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used

to create a network diagram of functional associations between protein products of unique

genes within the H1N1+Mn treatment group. Each protein-protein association is weighted

according to evidence channels delineated by differing colors. The confidence cutoff was set

to 0.4.

Statistical analysis

All data was presented as mean +/- SEM, unless otherwise noted. Experimental values from

each mean were analyzed with a Grubb’s (α = 0.05) test for exclusion of significant outliers.

Differences between each experimental group were analyzed by a one-way ANOVA following

a Tukey post hoc multiple comparisons test. Significance was identified as ++P< 0.01,
�P< 0.05, ��P< 0.01, ���P< 0.001, ����P< 0.0001. All statistical analysis was conducted

using Prism (version 6.0; Graph Pad Software, San Diego, CA).

Results

Juvenile manganese exposure increases the number of activated microglial

following encephalitic infection with H1N1 in the SNpc

To assess if Mn exposure during juvenile development would enhance the neurological effects

of infection with H1N1 in the substania nigra, three week old C57BL/6 mice were adminis-

tered MnCl2 (50mg/kg/day) or normal drinking water for a total of 30 days and then

intranasally infected with H1N1 or mock-infected with saline at 3 months of age (Fig 1A). Ste-

reological determination of TH+ dopaminergic neurons and morphological analysis of Iba1

+ microglia at 21 DPI revealed that pre-treatment with MnCl2 during juvenile development

induced persistent morphological changes in microglia consistent with an activated phenotype

and increased their reactivity to a subsequent infection with H1N1, characterized by retraction

of cytoplasmic processes and adoption of an amoeboid phenotype (Fig 1B–1I). We did not

observe significant changes in the number of dopaminergic neurons, α-synuclein protein

aggregation, or the total number of resting microglia in the SNpc at 21 DPI (Fig 1F and 1G).

Juvenile manganese exposure increases neuroinflammatory activation of

astrocytes following encephalitic infection with H1N1 in the SNpc

Given the increased number of reactive microglia in the substantia nigra and previous work

showing that astrocytes play a significant role in microglial activation through glial-glial com-

munication [7, 22, 23, 33, 34], we examined the extent and severity of astrocyte activation in

the basal ganglia following treatment with MnCl2 (50mg/kg/day) and intranasal infection with

H1N1 at 21 DPI (Fig 2). To determine if dual treatment with Mn enhanced the inflammatory

phenotype of astrocytes and increased the number of A1 neurotoxic astrocytes in the SNpc, we

measured the level of astrogliosis (Fig 2A–2E), as well as the expression of A1-specific astrocyte

inflammatory markers (C3, SerpinA3, IP10, CCL2) in S100β+ astrocytes with immunofluores-

cence co-localization (Fig 2F–2Y). At 21 DPI, there was a significant increase in S100β+ astro-

cytes in the SNpc with dual treatment compared to control and Mn treatment alone (Fig 2E).
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Fig 1. Pre-treatment with manganese increases microglial activation in the substantia nigra following infection with

H1N1. (A) C57BL/6 mice were divided into groups with and without Mn in drinking water (50 mg/Kg) from day 21–51 PN

and then exposed to H1N1 influenza virus three weeks later. Groups: Control, Mn, H1N1, H1N1+MnCl2. (B-E) IHC labeling of

dopamine neurons (TH) and microglia (IBA1). (F) Stereological determination of the number of TH+ neurons in the

substantia nigra pars compacta (SNpc). (G) Resting microglia in the SNpc. (H) Activated microglia in the SNpc. (I) Ration of

activated/resting microglia in the SNpc. �P<0.05 ��P<0.01 ���P<0.001����P<0.0001. n = 6 mice/group.

https://doi.org/10.1371/journal.pone.0245171.g001
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Fig 2. Pre-treatment with manganese induces proliferation and inflammatory activation in astrocytes in the substantia nigra

following infection with H1N1. (A-D) IF labeling of astrocytes (s100β). Groups: Control, Mn, H1N1, H1N1+ MnCl2. (E) Cell counts

of the s100β+ astrocytes in the substantia nigra pars compacta (SNpc). (F-I) IF colocalization of astrocytes (s100β) with complement

C3 (C3). (J) C3 mean intensity measurements in s100β+ astrocytes in the SNpc. (K-N) IF colocalization of astrocytes (s100β) with

SerpinA3. (O) SerpinA3 mean intensity measurements in S100β+ astrocytes in the SNpc. (P-S) IF colocalization of astrocytes (s100β)

with complement IP-10/Cxcl10 (IP-10). (T) IP-10 mean intensity measurements in s100β+ astrocytes in the SNpc. (U-X) IF

colocalization of astrocytes (s100β) with complement Ccl2. (J) Ccl2 mean intensity measurements in s100β+ astrocytes in the SNpc.
�P<0.05 ��P<0.01 ���P<0.001����P<0.0001. n = 6 mice/group.

https://doi.org/10.1371/journal.pone.0245171.g002
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Additionally, complement C3 and SerpinA3 were significantly increased following pre-treat-

ment with Mn and H1N1 infection compared to control, Mn and H1N1 treatment alone (Fig

2J–2Y). Dual treatment did not induce any differences in expression of Interferon gamma-

induced protein 10 (IP-10) or monocyte chemotactic protein (CCL2) (Fig 2P–2Y).

Dual treatment with Mn and H1N1 alters of histone acetylation in the

substantia nigra

To examine the basis for the heightened innate immune inflammatory response observed in

glial cells in the basal ganglia following the two-hit exposure model with Mn and H1N1, we

assessed histone acetylation in glia and neurons in the substantia nigra. To quantitate the level

of cell type-specific histone acetylation in the basal midbrain, brain sections were stained for

total acetylated histone lysine residues in TH+ dopaminergic neurons (Fig 3A–3E), S100β+

astrocytes (Fig 3F–3J), and IBA1+ microglia in the SNpc (Fig 3K–3O). Infection with H1N1

alone or following Mn pre-treatment significantly decreased histone lysine acetylation in

dopaminergic neurons in the SNpc (Fig 3A–3E). Minimal differences were noted in histone

acetylation in astrocytes (Fig 3F–3J) In contrast, mice infected with H1N1 alone or following

pre-treatment with Mn had significantly increased histone acetylation in IBA1+ microglia in

the SNpc (Fig 3F–3O), consistent with previous findings in human PD brains [35].

Dual treatment with Mn and H1N1 induces a unique transcriptional

signature in the substantia nigra consistent with a neurodegenerative

phenotype

Given the differences in patterns of histone acetylation in the SNpc following treatment with

Mn and H1N1, we performed Next Generation RNA sequencing (RNAseq) of brain tissue

from the SN to assess global transcriptional patterns in control mice and those infected with

H1N1 as adults with and without Mn pre-treatment during juvenile development (Fig 3).

Given our previous findings showing minimal neuropathology in adult mice following treat-

ment with Mn during juvenile development [18, 24, 25], we directly compared H1N1 infected

mice to those infected with H1N1 + Mn in the RNA-seq analysis, with both groups referenced

to untreated control mice receiving only mock viral infection. Thus, the strategy was to deter-

mine how pretreatment with Mn would modulate the severity of infection with H1N1 with

respect to changes in gene expression in the SN. RNA was isolated from the SN at 21 DPI for

sequencing. The resulting FASTQ files were analyzed using Galaxy for quality trimming, with

minimum PHRED quality threshold set at 20 and all read length greater than 20 bp. Trimmed

reads were then aligned to the mouse genome using Bowtie2 and gene expression determined

using Cufflinks. Local realignment and base quality score recalibration (BQSR) methods were

used as needed to reduce false-positive base calls and improve alignments. The expression out-

put was normalized in FPKM format. The replicate mean values were calculated, and the data

was further reduced to FPKM values greater than two.

This unbiased global analysis of the transcriptional profile between Control, H1N1 and

H1N1+Mn treatment groups revealed that of the 13,168 transcripts annotated from the SN,

351 where unique to control, 290 were unique to H1N1 and 951 transcripts were unique to the

dual treatment group (Fig 4A). The complete list of annotated transcripts is provided in S1

Table. To assess whether the increased inflammatory phenotype of microglia and astrocytes in

the dual treatment group was a gain of function or loss of function, we next determined the

major biological pathways that were altered in each treatment group by using the Gene Ontol-

ogy (GO) Consortium and PANTHER Classification System pathway and overrepresentation

analyses. Resulting transcript annotations were quantitatively different between treatment
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Fig 3. Dual treatment with MnCl2 and H1N1 alters histone acetylation in dopaminergic neurons, microglia, and astrocytes

in the SNpc. (A-D) Immunofluorescence co-localization of dopaminergic neurons (TH) and total acetylated lysine residues (AL).

Groups: Control, Mn, H1N1, H1N1+ MnCl2. (E) AL mean intensity measurements in TH+ dopaminergic neurons in the

substantia nigra pars compacta (SNpc). (F-G) IF colocalization of astrocytes (s100β) with AL. (J) AL mean intensity

measurements in s100β+ astrocytes in SNpc. (K-N) IF colocalization of microglia (Iba1) with AL. (O) AL mean intensity

measurements in Iba1+ microglia in the SNpc. �P<0.05 ��P<0.01 ���P<0.001����P<0.0001. n = 6 mice/group.

https://doi.org/10.1371/journal.pone.0245171.g003
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groups in the following four Molecular Function GO Term categories: antioxidant activity

(GO:0016209) (Fig 4A and 4B), catalytic hydrolase activity (GO:0016788,GO:0016462,

GO:0003924) (Fig 4C), catalytic transferase activity (GO:0008168,GO:0016757,GO:0016301)

(Fig 4D), and G-protein coupled receptor activity (GO:0004930) (Fig 4E). The exact genes

returned within each GO Term classification were further analyzed to find the specific tran-

scripts unique to each treatment type. Unique transcripts are listed in Fig 4B–4E. Of note, the

dual-treatment group active transcript list includes Interferon-inducible GTPase1, Dynein

heavy chain, homeobox protein, mitochondrial hydrodoxymethylglutaryl-CoA synthase (Fig

4B–4E), as well as DJ-1/Park 7, other interferon regulatory proteins, autophagy related pro-

teins (Atg), amyloid-beta precursor bindings proteins, NFκB related inflammatory proteins

and histone acetyltransferases (S2 Table). Additionally, control and H1N1 treated mice

uniquely expressed glutathione peroxidase 8, Oasl3, glutathione-s-transferase, thioredoxin

and colony-stimulating factor receptor 1 (CSF1R) (Fig 4B–4E), suggesting that specific stress

response pathways are activated and protective mechanisms are lost following dual treatment

with Mn and H1N1 when compared to Control and H1N1 treatment alone.

GO PANTHER analyses were used to further classify and compare transcript lists according

to functional pathways. To understand system-level changes in cellular processes induced by

pre-exposure to Mn, we interrogated the protein–protein interaction networks in the dual

treatment group using the Search Tool for the Retrieval of Interacting Genes database

(STRING) (Fig 5A) [36, 37], wherein network nodes represent proteins and lines represent

functional associations between those proteins. The color of each line represents the origin

and/or type of evidence supporting that protein-protein interaction and the weights of each

line correspond to a confidence score for that evidence type (Fig 5A). From a functional per-

spective, an association can mean direct physical binding, but STRING evaluates each pro-

tein-protein interaction according to evidence from seven different classification channels:

neighborhood, co-occurrence, co-expression, experiments, textmining, database and fusion.

The neighborhood category is related by conserved and co-transcribed operons; the co-ocur-
rence category is related by phylogenetic distribution of orthologs of all proteins in a given

Fig 4. RNA sequencing of the H1N1+MnCl2 treatment group highlights uniquely transcribed genes annotated to functionally relevant biological

processes. (A) Venn diagram depicting unique and overlapping transcripts. (B-E) GO Consortium & PANTHER Classification System pathway

analysis: Pie charts describe the relative proportions of RNAseq transcripts annotated to each GO Term within the molecular function Gene Ontology.

The exact gene lists unique or uniquely absent from the H1N1+ Mn treatment group are listed for each category. Genes were classified according to

molecular function and biological process with Panther overrepresentation and Functional Enrichment analyses. Groups: Control, H1N1, H1N1+ Mn.

https://doi.org/10.1371/journal.pone.0245171.g004

PLOS ONE Manganese increases the neuroinflammatory effects of H1N1 infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0245171 January 25, 2021 12 / 24

https://doi.org/10.1371/journal.pone.0245171.g004
https://doi.org/10.1371/journal.pone.0245171


organism; the co-expression category is related by predicted association between genes based

on observed patterns of simultaneous expression of genes; the experiments category is related

by known experimental interactions; the textmining category conducts statistical co-citation

analysis across a large number of scientific texts, including all PubMed abstracts and OMIM;

the database category is expertly curated and imported from pathway databases; and the

fusion category is related by proteins that are fused in some genomes and are most likely to

be functionally linked [2, 36, 37]. The more lines shown between each protein-protein inter-

action represents a more likely biological interaction. The most highly represented interac-

tions in the current study were centralized around Lingo 2, Pak6, Tbpl1 and Ctnnb1 (Fig

5A). Analyzing the RNAseq data using STRING methods, we identified a list of genes unique

to the H1N1+Mn treatment group that are relevant to neurodegeneration (Table 1). Notable

pathways include those contributing to multiple stress responses such as neuroinflammation,

oxidative stress, protein misfolding and neurodegeneration. These included anti-oxidant

genes such as Kelch-like ECH-associated protein 1 (Keap1), the familial PD gene, Park7, and

mitogen activated protein kinase 4k4 (Map4k4), which is involved in the response to envi-

ronmental stressors and inflammatory cytokines. Other genes at highly interactive nodes

unique to the H1N1 + Mn group included Sox11 and 13, which are involved in neurogenesis,

and the eukaryotic translation initiation factor 2C1 (Eif2c1), which is involved in protein

synthesis and stress responses through post-trasncriptional silencing and damage repair

pathways.

Fig 5. Transcriptional connectome of dual treatment group with associated gene products. (A) Search Tool for the

Retrieval of Interacting Genes database (STRING) diagram of functional associations between protein products of

unique genes within the H1N1+Mn treatment group. Nodes represent proteins and edges correspond to functional

interactions. Edge colors differ according to a scored confidence scale based on the extent and type of evidence

supporting that particular association. Evidence channels: Green Line: Neighborhood, Navy Line: Co-occurrence,

Black line: Co-expression, Pink line: Experiments, Yellow line: Textmining, Light blue line: Databases, Red line:

Fusion.

https://doi.org/10.1371/journal.pone.0245171.g005
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Table 1. H1N1+Mn unique genes relevant to neurodegeneration.

Genes Protein Product description Pathway of Interest References

Park7 Parkinson disease (autosomal recessive, early onset) 7; Protein deglycase that repairs methylglyoxal-

and glyoxal-glycated amino acids and proteins and releases repaired proteins and lactate or glycolate,

respectively.

SUMOylation of transcription cofactors [59–62]

Lingo2 Leucine rich repeat and Ig domain containing 2. Genetic polymorphisms in LINGO1 and LINGO2

associated with increased risk of developing essential tremor and Parkinson Disease (PD). Lingo (1,2) is

an axonal inhibitor.

Axonal growth inhibition (RHOA activation) [56, 57, 63]

Pak6 Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase

activity is induced by various effectors including AR or MAP2K6/MAPKK6. May protect cells from

apoptosis through phosphorylation of BAD.

Activation of RAC1 [64–66]

Eif2c1 Eukaryotic translation initiation factor 2C1; Required for RNA-mediated gene silencing (RNAi). Binds

to short RNAs such as microRNAs (miRNAs) or short interfering RNAs (siRNAs), and represses the

translation of mRNAs which are complementary to them. Recent evidence indicates that small RNAs

participate in transcriptional regulation in addition to post-transcriptional silencing and damage repair.

Regulation of pTEN mRNA translation [67–76]

Keap1 Kelch-like ECH-associated protein 1; Acts as a substrate adapter protein for the E3 ubiquitin ligase

complex formed by CUL3 and RBX1 and targets NFE2L2/NRF2 for ubiquitination and degradation by

the proteasome, resulting in the suppression of its transcriptional activity and the repression of

antioxidant response element-mediated detoxifying enzyme gene expression. Retains NFE2L2/NRF2

and may also retain BPTF in the cytosol. Targets PGAM5 for ubiquitination and degradation by the

proteasome.

Ub-specific processing proteases [77–80]

Sox11 Transcriptional factor involved in the embryonic neurogenesis. May also have a role in tissue modeling

during development.

Binding of chemokine receptors [81–84]

Sox13 Member of SOX family of transcription factors. Binding of chemokine receptors [81–84]

Arc Activity regulated cytoskeletal-associated protein; Plays a role in the regulation of cell morphology and

cytoskeletal organization. Required in the stress fiber dynamics, cell migration, consolidation of

synaptic plasticity and formation of long-term memory.

Trafficking of AMPA receptors [85–87]

Iigp1 GTPase with low activity. Has higher affinity for GDP than for GTP. Plays a role in resistance to

intracellular pathogens. Mediates resistance to infection by targeting bacterial inclusions to

autophagosomes for subsequent lysosomal destruction.

Resistance to infection. [88]

Camk1 Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK1

signaling cascade and, upon calcium influx, regulates transcription activators activity, cell cycle,

hormone production, cell differentiation, actin filament organization and neurite outgrowth.

Transcriptional activation of mitochondrial

biogenesis.

[89–91]

Slc30a4 Likely involved in zinc transport out of the cytoplasm, perhaps be by sequestration into an intracellular

compartment.

Zinc efflux [92–94]

Atg9a Involved in autophagy and cytoplasm to vacuole transport (Cvt) vesicle formation. Plays a key role in

the organization of the preautophagosomal structure/phagophore assembly site (PAS), the nucleating

site for formation of the sequestering vesicle.

Macroautophagy [95–98]

Per1 Transcriptional repressor that forms a core component of the circadian clock. Circadian clock [99–103]

Gabra2 Gamma-aminobutyric acid (GABA) A receptor, subunit alpha 2; GABA, the major inhibitory

neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/

benzodiazepine receptor and opening an integral chloride channel.

Neurotransmitter receptors and postsynaptic

signal transmission

[99–103]

Gabra5 Gamma-aminobutyric acid (GABA) A receptor, subunit alpha 5; GABA, the major inhibitory

neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/

benzodiazepine receptor and opening an integral chloride channel.

Neurotransmitter receptors and postsynaptic

signal transmission

[104–106]

Ildr2 Immunoglobulin-like domain containing receptor 2; May be involved in ER stress and lipid

homeostasis.

ER stress pathway [107–110]

Tcf3 Transcription factor 3; Transcriptional regulator. Involved in the initiation of neuronal differentiation.

Heterodimers between TCF3 and tissue- specific basic helix-loop-helix (bHLH) proteins play major

roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell

differentiation.

CDO (cell-adhesion-molecule/downregulated

by oncogenes) in myogenesis

[111]

Map4k4 Serine/threonine kinase that may play a role in the response to environmental stress and cytokines such

as TNF-alpha. Appears to act upstream of the JUN N-terminal pathway. Phosphorylates SMAD1 on

Thr-322.

Oxidative stress induced senescence [112–121]

PANTHER overrepresentation analysis was used to more narrowly identify unique genes relevant to neurodegeneration. Results with FDR<0.05 and an enrichment

score >1.5 were considered significant. From among statistically significant GO Terms, genes annotated to those categories were selected according to relevance to

neurodegeneration.

https://doi.org/10.1371/journal.pone.0245171.t001
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Discussion

Although the majority of PD cases are sporadic and of unknown etiology, there is increasing

evidence that environmental stressors such as neurotoxic chemicals and encephalitic infec-

tions can increase susceptibility to this and other neurological diseases [4, 38, 39]. Chronic

inflammatory activation of glia in the nigro-striatal pathway is a well-established feature of

both sporadic PD and post-encephalitic parkinsonism and could represent a cellular mecha-

nism linking environmental exposures early to potentiation of neurodegeneration following

subsequent insults. Using a two-hit model with H1N1 and MPTP, it was recently shown that

influenza infections can enhance innate immune responses of microglia in the SNpc following

exposure to the parkinsonian agent, MPTP [16]. It is not known whether chronic exposure to

environmental metals such as Mn have a similar capacity to enhance neurological injury from

viral infection. However, earlier studies in mice reported that a single dose of Mn or Cd

enhanced the neurovirulence of infection with several alphaviruses and increased the severity

of symptoms, neuroinflammation and mortality [40]. To test if exposure to Mn during juvenile

development could similarly prime glial cells in the SNpc for a more severe neuroinflamma-

tory response following encephalitic infection with H1N1, we utilized a two-hit exposure

model with Mn and H1N1 and examined whether there were epigenetic and transcriptomic

changes in the SNpc that could explain the heightened innate immune response to viral infec-

tion in microglia and astrocytes.

Our results suggest that Mn exposure during juvenile development induces lasting neuroin-

flammatory and epigenetic alterations in glia that exacerbate the neuroinflammatory response

to H1N1 compared to mice that did not receive excess Mn as juveniles. Although we did not

observe overt loss of dopaminergic neurons or protein aggregation of α-synuclein at 21 DPI in

any treatment group (Fig 1), there was a marked increase in activation of microglia that corre-

lated with a downward trend in the number of dopaminergic neurons that would likely accel-

erate with aging, thus predisposing to neurological dysfunction. Therefore, these pathological

findings may reflect early neuropathological changes corresponding the prodromal stage of

PD or viral parkinsonism. This highlights the importance of neurotoxic environmental expo-

sures that promote a reactive inflammatory phenotype in microglia that could predispose to

injury within the nigro-striatal dopamine system. Recent studies support a critical role for Mn

in modulating innate immunity in response to viral infection through enhancing the sensitiv-

ity of pattern recognition receptors that then stimulate anti-viral gene expression [41]. Release

of Mn into the cytosol during infection with dsDNA viruses increases activation of the

cGAS-STING pathway by elevating production of cGAMP that stimulates NFκB-dependent

expression of the anti-viral interferon response. This is consistent with previous data from our

laboratory demonstrating that Mn directly stimulates soluble guanylate cyclase and thereby

enhances NFκB-induced expression of inflammatory genes through increases in cGMP [25].

Chronic neuroinflammatory activation of microglia and astrocytes is a central feature of

aging, viral encephalitis and neurodegenerative disease. Increasing evidence implicates micro-

glia-astrocyte signaling in neuroinflammatory responses that enhance neurodegeneration [42–

45]. Our lab and others have demonstrated that microgliosis precedes astrogliosis and neuro-

nal loss in models of PD [22, 46, 47], indicating that cytokine and chemokine signaling from

neuroinflammatory activation of microglia likely plays a critical role in inflammatory activa-

tion of astrocytes in the SNpc. Given that dual treatment with Mn and H1N1 potentiated

inflammatory activation of the A1 astrocyte markers, SerpinA3 and C3 (Fig 2), and also

increased the number of reactive microglia (Fig 1), these results provide additional evidence

that innate immune signaling in activated microglia plays a critical role in inflammatory acti-

vation of astrocytes. Mn directly stimulates expression of TNF in microglia that can enhance
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the production of inflammatory cytokines and chemokines in astrocytes [22], including CCL2,

that promote neuronal injury [33]. Thus, inflammatory ‘priming’ of microglia during juvenile

exposure to Mn could enhance activation of astrocytes into a neurotoxic A1 phenotype during

subsequent exposure to H1N1. The data reported in the current study supports this model,

with marked increases in expression of the A1 proteins SerpinA3 and C3 in reactive astrocytes

in dual-treated mice (Fig 3). However, Mn pre-exposure did not increase levels of IP10 and

CCL2 in astrocytes following H1N1 infection, suggesting that individual neurotoxic exposures

or pathogens likely have a unique molecular signature associated with distinct inflammatory

phenotypes in astrocytes.

The neurotoxic effects of Mn are mediated both through direct toxic effects in neurons, as

well as through activation of inflammatory signaling pathways which further injure neurons

through overproduction of reactive oxygen and nitrogen species and inflammatory cytokines

[19]. Thus, the capacity of environmental exposure to sensitize neural tissue to additional

damage from subsequent H1N1 encephalitic infection may involve persistent inflammatory

changes in glial cells [14]. It has previously been shown that juvenile exposure to Mn can

induce lasting effects on the neuroinflammatory status of astrocytes and microglia which con-

tinues into adulthood and this likely contributes increased susceptibility to secondary environ-

mental insults and infections [18, 24, 25, 48, 49]. However, the mechanisms regulating this

sustained inflammatory state after environmental insults in microglia and astrocytes are

unclear. Previous studies have reported that manganese can alter histone acetylation and gene

expression, chromatin remodeling, cell cycle progression, DNA repair and apoptosis in neu-

rons and glia [12, 50]. Glial cells possess innate immune memory to environmental stimuli

through histone acetylation that alters subsequent inflammatory responses [12]. Histone

acetylation is also altered in PD, likely associated with microglial activation in the SNpc that

increases dopaminergic neurodegeneration [35, 51, 52]. Additionally, decreased acetylation in

TH neurons has been noted in clinical PD cases, and histone acetylation is thought to be mod-

ulated in glia following exposure to other environmental insults associated with PD [35, 51–

53]. Here we observed that juvenile exposure to Mn followed by adult infection with H1N1

causes changes in histone acetylation in dopaminergic neurons, microglia and astrocytes in

the SNpc, relative to infection with H1N1 alone (Fig 3). Also, dual treatment with Mn and

H1N1 decreased histone acetylation in dopaminergic neurons, corresponding with data in

clinical cases of PD [35, 51–53]. We surmise that these epigenetic changes in glia likely play a

role in their increased inflammatory activation to infection with H1N1. However, whether

these epigenetic changes persist throughout aging remains to be determined.

It is still unclear whether neuroinflammatory activation of glia increases susceptibility to

neurodegeneration primarily through decreased release of neurotrophic factors or from exces-

sive synthesis of neurotoxic inflammatory mediators [47, 54]. Glial activation is regulated

through multiple pathways including mitogen-activated protein kinases (MAPKs), activator

protein-1 (AP-1), Janus kinase (JAK)/signal transducer and activator of transcription (STAT),

interferon regulatory factor families (IFN), as well as through the nuclear factor kappa B

(NFκB) pathway. To address this question, we performed Next Generation RNA-sequencing

to examine gene networks regulated by Mn that could predispose neurons in the substantia

nigra to injury following infection with H1N1. We found that pre-treatment with Mn prior to

infection with H1N1 increased the number of unique transcripts and significantly altered the

global transcriptional profile in the SNpc compared to H1N1 treatment alone (Fig 4). Amongst

unique transcripts in the dual treatment group, STRING analysis revealed an overrepresenta-

tion of Interferon-inducible GTPase1, dynein heavy chain, homeobox protein, mitochondrial

hydrodoxymethylglutaryl-CoA synthase (Fig 4B–4E), as well as DJ-1/Park 7, other interferon

regulatory proteins, autophagy-related proteins (Atg), amyloid-beta precursor binding
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proteins, NFκB related inflammatory proteins and histone acetyltransferases (S2 Table). Park7

(DJ1) is linked to the preservation of mitochondrial function in PD, and the unique activation

of DJ-1, Atg and interferon regulatory protein in the dual treatment group likely represents

the activation of the antioxidant activation and autophagy stress response pathways [55], possi-

bly in reponse to underrepresented transcripts involved in antioxidant activity, such as gluta-

thione peroxidase (Fig 4A). These data suggest that increased inflammatory activation of glia

in the SNpc in the Mn + H1N1 group was associated with stress reponses in this brain region

consistent with inflammation and innate immune function, as well as oxidative stress and

mitophagy. Moreover, given that viral infections can inhibit mitochondrial bioenergetics by

depressing cellular ATP content and induce oxidative stress in neurons and glia, these data

suggest that juvenile exposure to Mn could reduce glutathione-dependent anti-oxidant protec-

tion through a reduction of glutathione peroxidase that exacerbates oxidative stress during

subsequent infection with H1N1 [42].

Analysis of RNA sequencing data also identified unique patterns of gene expression within

each treatment group. Annotated of genes to specific molecular function and biological pro-

cesses (Fig 4) enabled us to generate a network summarizing predicted associations between

gene products to attain a better systems-level understanding of cellular processes in the dual

treatment group (Fig 5). Dj-1/Park7, Lingo2, Keap1, Eif2c1, and Pak6 were all unique genes

identified using overrepresentation analysis that are relevant to etiology and/or progression of

PD (Table 1). Interestingly, LINGO2 is a member of LRR gene family that, along with LRRK2,

has been linked to Essential tremor (ET) and PD and has even become a promising therapeutic

target in multiple sclerosis (MS) and PD [56–58]. Taken together, these findings support the

involvement of distinct proteins and pathways in the neurologically deleterious effects caused

by successive environmental challenge with Mn and H1N1. Although there was not significant

loss of dopaminergic neurons at the relatively early timepoint evaluated, the unique protein-

protein interactions in dual treated animals could represent an early pre-symptomatic stage of

neuronal dysfunction corresponding to prodromal disease.

The present studies used a two-hit model of successive exposure to Mn and H1N1 influenza

virus to identify mechanisms by which multiple environmental insults and microbial infection

could act in concert to increase susceptibility to PD and related neurodegenerative diseases.

Exposure to Mn from PN 21–51 did not result in significant loss of dopaminergic neurons in

the SNpc but markedly increased neuroinflammatory activation of microglia and astrocytes

that could represent a form of innate immune memory in the brain that predisposes glia cells

to a neurotoxic reactive phenotype during aging. This is consistent with the patterns of gene

expression noted in RNA-Seq studies that revealed transciptional signatures consistent with a

neurodegenerative phenotype, particularly for genes related to oxidative stress, mitophagy,

protein processing, and immune function. The unique patterns of gene expression noted in

animals exposed to both Mn and H1N1 suggests that the mechanism by which multiple envi-

ronmental exposures modulate neurotoxic injury seen in certain cases of sporadic and post-

encephalitic PD may involve epigenetic changes that favor expression of genes associated with

inflammation and protein misfolding in astrocytes and microglia.

Supporting information

S1 Table. Complete list of expressed transcripts in each experimental group. The complete

list of annotated transcripts from unbiased global analysis of the transcriptional profile of Con-

trol, H1N1 and H1N1+Mn treatment groups is presented in S1 Table.
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S2 Table. Uniquely expressed transcripts in each experimental group. Transcripts uniquely

expression in each experimental group are presented in S2 Table. Mapping these transcripts to

the major biological pathways that were altered in each treatment group was performed using

the Gene Ontology (GO) Consortium and PANTHER Classification System pathway and

overrepresentation analyses.
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