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Aleuria Aurantia Lectin (AAL)-Reactive Immunoglobulin
G Rapidly Appears in Sera of Animals following Antigen
Exposure
Songming Chen1*, Chen Lu1, Hongbo Gu2, Anand Mehta3, Jianwei Li4, Patrick B. Romano3, David Horn1,

D. Craig Hooper4, Carthene R. Bazemore-Walker2, Timothy Block1,3*

1 Institute for Hepatitis and Virus Research, Doylestown, Pennsylvania, United States of America, 2 Department of Chemistry, Brown University, Providence, Rhode Island,

United States of America, 3 Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America, 4 Departments of Cancer Biology and Neurological

Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America

Abstract

We have discovered an Aleuria Aurantia Lectin (AAL)-reactive immunoglobulin G (IgG) that naturally occurs in the
circulation of rabbits and mice, following immune responses induced by various foreign antigens. AAL can specifically bind
to fucose moieties on glycoproteins. However, most serum IgGs are poorly bound by AAL unless they are denatured or
treated with glycosidase. In this study, using an immunogen-independent AAL-antibody microarray assay that we
developed, we detected AAL-reactive IgG in the sera of all animals that had been immunized 1–2 weeks previously with
various immunogens with and without adjuvants and developed immunogen-specific responses. All of these animals
subsequently developed immunogen-specific immune responses. The kinetics of the production of AAL-reactive IgG in mice
and rabbits were distinct from those of the immunogen-specific IgGs elicited in the same animals: they rose and fell within
one to two weeks, and peaked between four to seven days after exposure, while immunogen-specific IgGs continued to rise
during the same period. Mass spectrometric profiling of the Fc glycoforms of purified AAL-reactive IgGs indicates that these
are mainly comprised of IgGs with core-fucosylated and either mono-or non-galactosylated Fc N-glycan structures. Our
results suggest that AAL-reactive IgG could be a previously unrecognized IgG subset that is selectively produced at the
onset of a humoral response.
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Introduction

Early detection of exposure to pathogens or toxins is funda-

mental to medicine and public health [1,2], but can be challenging

when the source and nature of a suspicious agent cannot be readily

identified [3–5]. This is mainly due to the inability of any detection

system to detect exposure to all known and potential pathogens

and agents of bioterrorism [2]. In this case, confirmation of

exposure to a foreign substance or invading microbe may have

utility in prompting intervention. This may be accomplished by

detection of an early host response to a toxic exposure, such as

onset of the production of target-specific antibodies. At one week

after vaccination or infection the immunogen-reactive B cell

repertoire is undergoing class-switching and affinity maturation

and higher affinity, immunoglobulin-G (IgG) antibodies are

beginning to appear in sera [6]. Detection of increasing

immunogen-specific antibody titers in sera obtained a number of

days apart is generally required to distinguish between acute and

existing immune responses but this requires time and identification

of the eliciting agent. An approach to confirm that an acute

humoral immune response is underway would have therapeutic

implications.

IgGs are glycoproteins, normally with a complex N-linked and

biantennary glycan, composed of a core heptasaccharide structure

with variable addition of fucose and outer arm sugars such as

galactose and sialic acids, attached at Asn-297 of the heavy chain

CH2 domain [7,8]. More than 20 different Fc glycoforms,

consisting of the heptasaccharide biantennary core with a

combination of different numbers of core-Fucose, Galactose

(Gal), bisecting N-Acetyl Glucosamine (GlcNAc), and terminal

sialic acids, have been found on polyclonal serum IgGs [9–11], as

well as a single monoclonal IgG, regardless of their subclass

[12,13]. These glycans play important roles in the structure and

function of proteins, such that changes in a single glycan can affect

protein folding and processing [14,15]. Differential glycosylation

clearly impacts IgG function. For example, IgG without terminal

Galactose (G0 IgG) or core Fucose exhibit higher antibody

dependent cell mediated cytotoxicity [7,16–20]. However, the

mechanisms involved in the production of different IgG glycoform

as well as processes involved in their regulation remain unclear.

Recent studies have shown that the production of specific IgG

Fc glycoforms are closely associated with the B cell environment

and that certain factors can alter the IgG elaborated glycoforms

[9,21,22]. Moreover, several diseases have been associated with
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the abnormal elevation of specific IgG Fc glycoforms. For example,

serum levels of G0 IgG are unusually high in rheumatoid arthritis,

Myositis Syndromes [23], Lambert-Eaton myasthenic syndrome

[24], Crohn’s disease, and other inflammatory diseases and are

closely correlated with disease severity [25–27]. Fucosylated G0 IgG

with anti-a-Gal specificity was found to be elevated in patients with

liver fibrosis [28]. In mice, G0 IgG levels have been found to rise

and then fall back to normal during an immune response [29], while

immunogen-specific IgGs in the sera of repeatedly immunized mice

have increased fucose content [30]. While all of these observations

suggest that IgG with diverse Fc N-glycan structures can be induced

under certain immunological or pathological conditions, a system-

atic study to explore alterations in IgG glycosylation during a

conventional immune response has not been done.

Lectin, such as Aleuria Aurantia Lectin (AAL), which specifically

binds to exposed core (a-1, 6) and outer arm (a-1, 2 or a-1, 3) linked

fucose moieties on different glycans, can be used to assess IgG

glycosylation. Although most serum IgGs contain many fucose

moieties, they do not bind to AAL in their native state; their fucose

moieties must be exposed by either denaturation or digestion with

glycosidases for this to occur. However, we have discovered an IgG

subset which are naturally produced and are greatly elevated in the

serum of people with liver diseases such as cirrhosis, which can bind

AAL without denaturation or glycosidase treatment [7]. In this

study, we assessed the sera of mice and rabbits over the course of

their responses to different immunogens to determine whether

AAL-reactive IgGs are produced in a conventional immune

response. Lectin-antibody microarray [31–34] and mass spectrom-

etry-based IgG Fc N-glycan profiling [9,23,24,35–37] were used to

assess the AAL binding properties and glycan structure of the serum

IgGs, respectively. AAL-reactive IgGs were found to be rapidly

induced by immunization, exhibiting kinetics distinct from those of

the immunogen-specific response, implying that they are markers of

an underlying immune mechanism.

Results

Development of a microarray assay for the detection and
quantitation of AAL-reactive IgG

A sandwich format, lectin-antibody microarray was developed

to detect and quantify AAL reactive IgGs from mouse or rabbit

serum samples. In this immunogen-independent assay, F(ab9)2

fragments or antibodies specific for mouse and rabbit IgG, or

recombinant protein A/G, all of which have very low affinity for

AAL, were immobilized on the microarray slide to capture serum

IgGs, and biotinylated AAL was used to detect the glycans on the

captured IgGs (as shown in Figure 1A). This format allowed us to

only measure the glycans on the captured IgGs from serum

samples without interference from AAL binding to the capture

reagents. To quantify AAL-reactive IgGs, standard curves were

prepared in each experiment using denatured mouse and rabbit

AAL-reactive IgGs as described in Methods and Materials. These

standards were used as denaturation fully exposes fucose moieties

in IgG allowing AAL access while naturally occurring AAL-

reactive IgGs are rare and not readily obtained from normal sera.

Using this AAL-antibody microarray assay, standard curves for

mouse and rabbit AAL-reactive IgGs were prepared as shown in

Figure 1B. The limits of detection (LOD) are about 10.0 ng/ml in

both assays, which is sufficient for the detection of the levels of

AAL-reactive IgG normally found in sera. To avoid saturation of

the assays, serum was diluted at least 1:100. This resulted in an

actual limit of detection of 1.0 mg/ml for AAL-reactive IgG in

serum.. Therefore, 1.0 mg/ml was considered to be the limit of the

AAL-reactive IgG concentration in serum detectable in the assay.

AAL-reactive IgG and immunogen specific IgG elicited by
immunization exhibit different kinetics in individual
animals

To study the production of AAL-reactive IgG in animals, we

serially collecting serum samples both prior to (Day 27) and

following the inoculation of Balb/c mice with 50 ug of ovalbumin

(OVA) in the absence of adjuvant (see Table 1 for the details of all

animals studied). Levels of AAL-reactive IgG and OVA-specific

IgGs at each time point were assessed by AAL-reactive IgG

microarray. As expected due to the poor immunogenicity of OVA

in the absence of adjuvant, neither OVA specific IgG nor AAL-

reactive IgG were detected in any mice. Serially-obtained sera

from a second group of Balb/c mice immunized with 50 ug OVA

in incomplete Freund’s adjuvant (OVA/IFA) and then boosted

with OVA/IFA 120 days later were similarly assessed (Figure 2).

As shown in Figure 2B, a control, non-immunized mouse

produced neither detectable AAL-reactive IgG nor OVA specific

IgGs at any time during the four-month monitoring period. On

the other hand both AAL-reactive IgG and OVA specific IgG

Figure 1. AAL-antibody microarray based AAL-reactive IgG detection assay. (A) A schematic drawing of the AAL-antibody microarray assay
for the detection of mouse (or rabbit) AAL-reactive IgG: (1) mouse or rabbit serum samples were incubated on an antibody microarray; (2) AAL lectin
was applied on the antibody microarray to detect glycans on the captured IgGs after unbound proteins were washed off; (3) Dylight 549 labeled
NeutrAvidin was incubated on the microarray to detect the biotinylated AAL. (B) Representative mouse (&) and rabbit (N) AAL-reactive IgG standard
curves. The standard used for the curve was a completely denatured mouse IgG with known concentration. The capture F(ab9)2 was Goat F(ab9)2

fragment anti-mouse IgG for mouse IgGs, and Donkey F(ab9)2 fragment anti-rabbit IgG for rabbit IgGs, respectively. The relative fluorescence intensity
of each data point was subtracted from the blank (PBS control), but were not shown in the curves due to the logarithm X-axis.
doi:10.1371/journal.pone.0044422.g001

AAL-Reactive IgG Appears in Sera after Exposure
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were detected in OVA/IFA inoculated mice (as shown in

Figure 2A). Notably, the kinetics of the appearance of AAL-

reactive IgG and OVA-specific IgG are distinct. The OVA-

specific IgG response exhibited a typical IgG development curve,

rising consistently from several days after immunization to a peak

at Day 50, then decreasing to levels close to baseline before rapidly

rising following the Day 120 boost. In contrast, AAL-reactive IgG

appeared quickly, rising to a peak at Day 5 after immunization

rapidly disappearing by day 20, then spontaneously reappearing at

high levels approximately 2 months and lower levels 3 months

after immunization. Like OVA-specific IgG, AAL-reactive IgG

levels rapidly increased following booster immunization.

AAL-reactive IgG is elicited during immune responses to
various stimuli in both mice and rabbits

To determine whether or not AAL-reactive IgG may be a more

universal indicator of the onset of a humoral immune response, we

inoculated different mouse strains and rabbits with a variety of

immunogens via different routes as summarized in Table 1. Serum

AAL-reactive IgG and immunogen specific IgG levels were

measured using AAL-reactive IgG microarrays and antigen-

specific assays as described in Methods and Materials. As shown

for C57BL/6 mice inoculated with RV (Figure 3A), C57BL/6

mice inoculated with OVA/CFA (Figure 3B), rabbits inoculated

with OVA/CFA (Figure 3C), and rabbits inoculated with KIN/

CFA (Figure 3D) the rapid rise-and-fall kinetics of AAL-reactive

IgG is a characteristic feature of the onset of an immune response.

In each case the immunogen-specific IgG response developed

considerably later than that of AAL-reactive IgG, with peak

responses occurring weeks later. Neither AAL-reactive IgG nor

immunogen-specific IgG was detected in control animals that were

not inoculated.

AAL-reactive IgG has low affinity for the immunogen that
elicited its production

To establish whether or not the AAL-reactive IgG appearing

early in the immune response is specific for the immunizing

antigen we assessed the OVA binding affinity of rabbit AAL-

reactive IgG elicited by OVA/CFA immunization (Rabbit 2 in

Table 1) using a protein/antibody microarray. Serum samples

collected at Day 9 after inoculation for AAL-reactive IgG and 11

days later for OVA specific IgG were used to assess affinity for

OVA. Immunoprecipitation (IP), as described in Methods and

Materials was used to isolate AAL-reactive and OVA-specific

antibodies. Binding affinities for OVA were measured using a

sandwich protein/antibody microarray in which anti-rabbit IgG

F(ab9)2 and pure OVA protein (Sigma Aldrich) were used as the

immobilized, capture reagents. This format allowed us to measure

concentrations of both total IgG (anti-IgG spots) and OVA-specific

IgG in single samples (OVA protein spots). The OVA binding

curves of purified AAL-reactive IgG and OVA specific IgG were

plotted with the relative fluorescence intensity of the OVA protein

spot presented as a function of the fluorescent intensity of the total

anti-IgG spot. As shown in Figure 4, due to the concentrations of

the purified antibodies neither curve reached a plateau. However,

based on the differences between the curves we estimate that the

apparent Kd value of AAL-reactive IgG for OVA is at least 100

times lower than that of the OVA-specific antibody.

Mass spectrometric glycoform profiling reveals that AAL-
reactive IgG has core-fucosylated and under-
galactosylated Fc N-glycan structures

While the specificity of AAL for fucosylated proteins or

oligosaccharides [38], indicates that AAL-reactive IgG is fucosy-

lated, AAL-affinity based analysis cannot provide details of the N-

glycan structure of AAL-reactive IgG. Therefore, we used a mass

spectrometry-based approach to provide further insight into the

glycan structures of AAL-reactive IgG. Our method takes

advantage of the fact that there is only a single N-linked

glycosylation site at Asn 297 of the CH2 domain of antibody,

and that a 9-mer glycopeptide fragment that includes both Asn

297 and glycan from trypsin-digested IgG can be directly analyzed

on a mass spectrometer. As depicted in Figure 5 and described in

Methods and Materials, the Asn 297 and N-glycan containing

peptide can be selected by the mass spectrometer, and its glycan

structure identified by MS/MS spectra. The levels of each

identified glycopeptide, twice the molar concentration of the

parent IgG glycoforms, are then determined in extracted ion

chromatograms. Since the amount of mouse serum samples that

we collected were insufficient for glycoform profiling using mass

spectrometry, we purified AAL-reactive IgG from KIN/CFA

immunized Rabbit 4 (Table 1) using AAL-Agarose immunopre-

cipitation followed by Melon gel treatment as described in

Methods and Materials. A serum sample that was incubated with

‘‘empty’’ Agarose beads (Pierce) was used as a control. The

purified AAL-reactive IgG and control samples were first

denatured, trypsin digested, and then injected into a nano flow

LC MS/MS (ABI Q-Star Élite). Glycopeptides of IgGs always

elute off the reverse phase column at the beginning of the LC

gradient as shown in Figure 5B. For quantification and kinetic

profiling of each IgG Fc-glycoform, mass spectrometry analysis

was set at MS mode, in which only the precursor ions were

scanned (Figure 5C). The extracted ion chromatogram (XIC) for

each glycoform was plotted such that the relative abundance for

each is represented by its peak area. Examples of XICs for G0F

and G0 are shown in Figures 5D and 5E respectively. To

Figure 2. Production kinetics of AAL-reactive and OVA-specific
IgG in five OVA/IFA immunized mice and one non-immunized
normal mouse measured by using AAL-antibody microarray
and normal antibody microarray methods, respectively. The
five inoculated mice were reboosted at Day 120. (A) AAL reactive IgG
and OVA specific IgG production kinetics of OVA/IFA inoculated mouse.
Each point represents the average AAL reactive concentration from 5
inoculated mice calculated according to AAL reactive IgG standard
curve. (B) AAL reactive IgG and OVA specific IgG production kinetics of
the control (non-immunized) mouse.
doi:10.1371/journal.pone.0044422.g002

AAL-Reactive IgG Appears in Sera after Exposure
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determine the glycan structure of each glycopeptide, MS/MS

analysis was performed on each XIC peak. Figure 5F shows a

representative MS/MS spectrum for the G0 glycopeptide.

A total of 22 different IgG glycoforms were identified in rabbit

IgG samples using mass spectrometric glycoform profiling

described in Methods and Materials. Prior to immunization, nine

of these glycoforms, consisting of 18.8% of the total IgG, were Fc-

fucosylated. Only 11 glycoforms were detected in purified, AAL-

reactive IgGs, with 84.5% being core-fucosylated, and the rest

non-fucosylated. Moreover, AAL-reactive IgG primarily consist of

under galactosylated forms, in which 45.9% are fucosylated mono-

galactosylated (G1F), fucosylated mono-galactosylated with bisect-

Table 1. Animals, immunogens and routes of immunogen administration that were used in the mice and rabbit immunization
studies.

Animal Group Species Gender
Number of
animals Animal ID Immunogen Dosage per animal Routes

Mouse 1 Balb/c Female 5 N/A OVA/IFA 100 mg IP

Mouse 2 Balb/c Female 5 N/A KLH 100 mg IP

Mouse 3 Balb/c Female 1 N/A N/a N/A N/A

Mouse 1 C57/BL6 Female 5 N/A OVA/CFA 100 mg IP

Mouse 2 C57/BL6 Female 5 N/A RV (108ffu) 100 ml IP

Rabbit 1 NZW Male 2 Rabbit #2
Rabbit #3

OVA/CFA 500 mg subQ

Rabbit 2 NZW Male 2 Rabbit #4
Rabbit #5

KIN/CFA 500 mg subQ

Rabbit 3 NZW Male 1 Rabbit #1 N/A N/A N/A

Abbreviations: OVA: ovalbumin; KLH: keyhole limpet hemocyanin; CFA: complete Freund’s adjuvant; IFA: incomplete Freund’s adjuvant; IP: Intraperitoneal injection;
subQ: Subcutaneous Injection; NZW: New Zealand White; RV: rabies virus (uv inactivated); KIN: Kininogen.
doi:10.1371/journal.pone.0044422.t001

Figure 3. Production kinetics of AAL-reactive IgG and immunogen specific IgG production in immunized mice and rabbits
measured by using AAL-antibody microarrays. Different animals were immunized with different immunogens as shown in Table 1. Both
immunogen specific IgG and AAL-reactive IgG were measured in the serum samples from each animal. The black bar in the graphs showed averaged
immunogen-specific IgG level (relative levels according to the fluorescence intensities); and the strip bars in the graphs showed averaged AAL-
reactive IgG levels. (A) Five mice (strain C57BL/6) were inoculated with inactivated rabies virus; (B) Five mice (strain C57BL/6) were inoculated with
OVA/CFA; (C) Two rabbits were inoculated with OVA/CFA, (D) Two rabbits were inoculated with KIN/CFA.
doi:10.1371/journal.pone.0044422.g003

AAL-Reactive IgG Appears in Sera after Exposure
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ing GlcNAc (G1BF), or fucosylated mono-galactosylated lacking

one GlcNAc (G1F-GlcNAc), and 39.4% are fucosylated agalacto-

syed (G0F), fucosylated agalactosylated lacking one GlcNAc (G0F-

GlcNAc), and fucosylated agalactosylated with bisecting GlcNAc

(G0BF). G2 species, such as fucosylated di-galalctosylated (G2F) or

fucosylated di-galactosylated with bisecting GlcNAc (G2BF) were

not found in purified AAL-reactive IgG. Fucosylated glycoforms in

AAL-reactive IgG were 3.5 times more abundant than those in

normal rabbit IgG.

Kinetics of the appearance of AAL-reactive and core-
fucosylated, under galactosylated IgG are correlated

To further probe the relationship between AAL-reactivity and

IgG glycoforms, we used mass spectrometry to quantify the

glycoforms of total serum IgG at each time point following

immunization of Rabbit 4 with KIN/CFA (Table 2) and plotted

the results against the levels of AAL-reactive IgG determined by

microarray. While the concentration of total IgG remained

constant (not shown in the figure), changes in the total level of

all fucosylated glycoforms as well as that of AAL-reactive IgGs

showed similar kinetics, both rapidly rising to peak approximately

10 days after immunization then quickly falling (Figure 6).

Discussion

To our knowledge, this is the first report of the induction by an

immune response of an IgG that, in its native form, is bound by

the fucose-selective lectin AAL. The Fc N-glycan of IgG is

commonly core fucosylated with over 30% of total mouse or

human IgGs being fucosylated G0 IgG. However, under normal

circumstances IgG is poorly reactive with AAL. The Fc N-glycan

of IgG is located in the CH2 domain close to the hinge region and,

importantly, the conformation of CH2 is stabilized through glycan-

glycan interactions between the two heavy chains. Thus, when

IgG is in its normal conformation the core-fucose is buried within

the cleft between the two Fc heavy chains and is inaccessible to

AAL lectin (Figure 7 left). Consequently a change in IgG

glycosylation or quaternary structure would be required for the

core-fucosylated Fc N-glycan structure to become accessible to

AAL, for example, alterations resulting in ‘‘open’’ or ‘‘flip-out’’

conformations [39] exposing AAL-reactive fucose moieties

(Figure 7 right). A recent study using hydrogen-deuterium

exchange suggests that glycosylation alteration of Fc N-glycan

can change conformation of CH2 domain, suggesting this ‘‘open’’

or ‘‘flip-out’’ conformation possibly exists [40]. Galactose moieties

in the glycan-glycan interactions between the two IgG heavy

chains may make important contributions to IgG conformational

stability as enzymatic removal of galactose residues makes IgG

AAL-reactive [17,31,36,39]. Based on these observations we

expect that the AAL-reactive IgG detected in the current study

is a fucosylated and under galactosylated IgG that possesses an

‘‘open’’ conformation.. However, we cannot predict as to whether

differences in the IgG amino acid sequence contribute to the

formation of an AAL-reactive structure.

Although the AAL-reactive IgGs described here are a natural

product of the immune response, it is unclear whether they are

properly folded or misfolded. Since denatured IgGs are also AAL-

reactive and do not bind to their target antigen, it is possible that

the immunogen-non-specific AAL-reactive IgGs detected in this

study are misfolded byproducts of IgG production. However, the

mass spectrometry data, which measures AAL-reactive IgG by

mass instead of binding affinity, indicates that these IgGs contain

more fucose than conventional IgG (Figure 6). Furthermore, AAL-

reactive IgG bound efficiently to immobilize protein A/G

suggesting that A/G binding site, located in the CH2 domain,

may be intact. These observations tend to suggest that the AAL-

reactive IgG described here is a novel class of IgG that is

transiently produced during an immune response and not simply a

denatured or miss-folded IgG molecule. However, it is conceivable

that the newly produced AAL-reactive IgG could be locally

misfolded, at only the N-glycan region of the CH2 domain. Further

experiments are needed to determine whether or not this may be

the case.

The rise-and-fall kinetics of the production of AAL-reactive IgG

is distinct from that of the immunogen-specific IgG produced in

the same animal. Two additional ‘‘waves’’ of AAL-reactive IgG

were observed following the initial peak detected shortly after

immunization. While the reason for these ‘‘waves’’ is unknown it is

interesting to speculate that they may have some relationship to

stages in the antigen-specific response to the immunogen. Notably,

each successive wave of AAL-reactive IgG production after

primary immunization was reduced while the response following

antigen boost had the characteristics of a conventional recall

response. Outside of the rapid appearance of AAL-reactive IgG in

the sera at the onset of an immune response, the significance of

this kinetic pattern is unknown.

Due to its lack of specificity for the inducing antigen, AAL-

reactive IgG is unlikely to contribute to the immune response.

Nevertheless, we noted a general association between the

magnitude of the peak AAL-reactive IgG response and that of

the antigen-specific response which occurred considerably later.

Further experiments are required to confirm whether or not the

level of the AAL-binding IgG may be an early predictor of the

magnitude of the specific response to an immunogen.

Figure 4. Comparison of OVA-binding affinities of AAL-reactive
IgG and OVA-specific IgG at peak levels. AAL-reactive IgG and
OVA specific IgG were purified from OVA/CAF inoculated rabbit by
using OVA Agarose and AAL Agarose beads immunoprecipitation as
described in Methods and Materials. The AAL-reactive IgG was purified
from Day 9 serum sample, and the OVA-specific IgG was purred from
Day 30 serum sample of rabbit 2 (as shown in Table 1), respectively. The
purified serum samples were serially diluted and applied onto a
protein/antibody microarray that immobilized OVA protein and donkey
F(ab9)2 anti-rabbit IgG spots. The bound IgG levels on OVA protein, and
the concentration of IgG were measured simultaneously. The OVA-
bound AAL-reactive IgG and OVA-specific IgG were plotted as a
function of their concentration measured by the immobilized donkey
F(ab9)2 anti-rabbit IgG.
doi:10.1371/journal.pone.0044422.g004
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Figure 5. Use mass spectrometric identification and glycoform profiling of the IgG glycoforms and AAL-reactive IgG. (A) Scheme of
the procedure (see details in Experiment and Methods Section); (B) A total ion chromatograph of a purified rabbit IgG; (C) A mass spectrum of the
sample at retention time 19 minutes; (D) and (E) Extracted ion chromatographs of G0F, and G0, respectively. (F) MS/MS spectrum of G0 IgG.
doi:10.1371/journal.pone.0044422.g005
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The distinct structure, lack of antigen specificity and unique

production kinetics of AAL-reactive IgG lead us to question their

genesis. There are several potential cell sources including

conventional B cells, either naı̈ve or memory, or B-1 B cells, that

are either non-specifically stimulated by cytokines or rapidly lose

antigen specificity. B-1 B cells appear unlikely since they do not

develop memory which is a characteristic of the AAL-reactive IgG

response indicated by a more rapid onset and higher levels of

serum AAL-reactive IgG at boost. On the other hand, IgGs with

different glycan structures are produced by maturing conventional

B cells [9]. However as opposed to being the direct products of B

cells, AAL-reactive IgG could be serum IgG that has been recycled

by another cell type such as dendritic cells, macrophages and

endothelial cells. This alternative hypothesis is supported by the

dynamic changes in different IgG glycoforms during AAL-reactive

IgG production. In the mass spectrometric glycoform profiling of

total IgG from a KIN/CFA immunized rabbit, greater than 20%

of the agalactosylated (G0) IgG present in serum disappeared

during the time that AAL-reactive IgG was produced (see Figure

S1). Thus, AAL-reactive IgG could be converted G0 IgG. If this is

the case, the rapid decrease in AAL-reactive IgG could result from

either a shorter half-life or recycling back into the circulation as

G0 IgG.

Our results suggest that the appearance of AAL-reactive IgG

may be a common event during the early stages of an immune

response. If so, AAL-reactive IgG may serve as a universal

biomarker for the early detection of an immune response to agents

including pathogens and toxins, even when their identity is

unknown. The production of AAL-reactive IgG may allow

discrimination between an acute and prior immune response.

Currently, raising antibody titers in consecutive serum samples is

taken as reasonable evidence of an ongoing response, a process

that can delay diagnosis. The presence of AAL-reactive IgG would

raise the possibility that any concurrently detected response may

be acute and should be considered for treatment. The more rapid

commencement of treatment based on the presumption of an

acute host response could have a large impact in disease control

and anti-bioterrism applications. Importantly, our animal immu-

nization results suggest that the appearance of AAL-reactive IgG

in sera is related to a specific antigen challenge rather than day-to-

day environmental antigen exposure. The observation that OVA-

specific IgG and AAL-reactive IgG were both elicited by OVA in

the context of adjuvant, while neither was detected in mice given

OVA alone, suggests that AAL-reactive IgG is a selective

biomarker for the onset of humoral immunity.

Materials and Methods

Animal care and immunization
All animal studies were carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the U.S. Public Health Services/National

Table 2. Fc glycoforms of total IgG purified from Day 0 serum sample and AAL-reactive IgG purified from Day 9 sample of OVA-
inoculated rabbit (rabbit# 4) were identified and quantified by using mass spectrometry method.

No Name
Glycan
composition 2+ m/z 3+ m/z

Content in non
immunized rabbit (%)

Content in AAL IP purified
IgG (%)

1 G1F H4N4F1 1365.05 910.37 3.4 22.7

2 G1BF H4N5F1 1466.5 978 1.8 13.8

3 G0F H3N4F1 1284.03 856.35 6.2 12.2

4 G0F-GlcNAc H3N3F1 1182.5 788.67 1.9 11.8

5 G0BF H3N5F1 1385.56 924.04 3.2 11.7

6 G2 H5N4 1373.05 915.7 1 7.3

7 G1F-GlcNAc H4N3F1 1263.5 842.67 0.5 6.2

8 G1B H4N5 1393.5 929.33 3.1 6.1

9 G0F-GlcNAc-Man H2N3F1 1101.5 734.67 0.8 3.7

10 G1FNeu5Gc H4N4F1S1 1518.63 1012.75 0.4 3.2

11 G2Neu5Gc H5N4S1 1474.55 983.45 0.5 0.7

12 G2FNeu5Gc H5N4F1S1 1547.67 1032.11 0.3 0.7

13 G0-2GlcNAc-Man H2N2 926.9 618.27 1.4 0

14 G0-2GlcNAc H3N2 1007.9 672.27 1.3 0

15 G0-GlcNAc-Man H2N3 1028.45 685.97 8.8 0

16 G0-GlcNAc H3N3 1109.43 739.95 16.3 0

17 G1-GlcNAc H4N3 1190.48 793.99 2.3 0

18 G0 H3N4 1210.95 807.63 20 0

19 G0B H3N5 1312.52 875.35 16.2 0

20 G1 H4N4 1291.94 861.63 9.5 0

21 G2F H5N4F1 1446.08 964.39 0.4 0

22 G1Neu5Gc H4N4S1 1445.58 964.05 1.4 0

Total Fucosylated Glyco Isoforms 18.8 84.5

Total non-fucosylated glycol isoforms 81.2 15.5

doi:10.1371/journal.pone.0044422.t002
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Institutes of Health. All studies using Balb/c mice and white

rabbits were carried out according to protocols that were approved

by the Committee on the Ethics of Animal Experiments of

Lampire Biological Laboratories (IAUF#: G0-IgG Kinetics IAUF,

protocol# IHVR-DOD-01-2009 for mice study; and IAUF#:

Core Rabbits Freunds IAUF, protocol# IHVR-DOD-01-2011).

These animals were housed in the animal facilities of Lampire

Biological laboratories, and all immunizations, blood taken, and

serum preparation were done in the facility according to Standard

Operation Procedure of Lampire Biological Laboratories. All

studies using C57BL/6 mice were carried out in accordance with

Public Health Service Policy on Humane Care and Use of

Laboratory Animals under protocols approved by the Institutional

Animal Care and Use Committee of Thomas Jefferson University

(Animal Welfare Assurance Number A3085-01). The mice were

housed in the animal facilities at TJU, and all immunizations,

blood taken, and serum preparation were done by Dr Li according

to Standard Operation Procedure of Dr Hooper’s lab and TJU.

As shown in Table 1, two strains of mouse, Balb/c and C57BL/

6 mice, and New Zealand White rabbits were used in the study.

Ovalbumin (OVA), Kininogen (Low Molecular Weight), and

inactivated rabies virus were used to inoculate the animals through

IP or sub Q. Blood was drawn by using either orbital bleeding (on

mice) or vein (rabbits) at different time points before and after

immunization. The general frequency of blood taken was between

3 to 5 days during the first month of post immunization and

reboost, then 7 to 10 days intervals after the first month. Pre-

immunization blood was taken 7 days prior to immunization done

at Lampire, but at the same day of immunization done at TJU.

The actual time points could vary 1 to 2 days due to staff schedule

changes or holidays. One mouse or rabbit, which was bred in the

same conditions but received no injection, was used as control

animals for the experiments done in Lampire. Day 0 serum

samples of C57BL/b mice were used as controls for the

experiments done in TJU.

Lectin and antibodies
Wild type Lectin AAL was purchased from Vector labs.

Recombinant AAL was constructed and expressed with 106 His

tag in E coli, and purified with Ni-NTA beads (Qiagene) [41]. All

anti-mouse or rabbit IgG antibodies, including both whole IgG,

and F(ab9)2 fragments, were purchased from Jackson ImmunoR-

esearch Laboratories, Inc.

Antibody microarray preparation and Quantification of
AAL-reactive IgG by using AAL-antibody microarray
assays

High density antibody microarray was prepared for the

detection of antigen specific IgG and AAL-reactive IgG as

described previously [42–46]. Before microarray fabrication, the

1‘‘X3’’ ultrathin nitrocellulose coated glass slides (PATH, Gentel

Biosciences, Wisconsin) were separated into 52 identical rectan-

gular areas (4 columns by 12 rows) by wax grids imprinted by

using a wax imprinter (Gel Company, CA). For the selection of an

optimal capture antibody for AAL-reactive IgG detection,

different anti-mouse, or rabbit antibodies or F(ab9)2 fragments

were printed onto each of the 52 identical subbarrays on each

PATH slide by using a Scienion FLEX ARRAYER S3 ultra low

volume piezo microarrayer. About 300 pico liters of antibody was

printed and resulted in a high density spot at the diameter of 130

micron. For mouse AAL-reactive IgG detection, we used goat

F(ab9)2 anti-mouse IgG as the capture antibody; for rabbit AAL-

reactive IgG, we used donkey F(ab9)2 anti-rabbit IgG as the

capture antibody.

To quantify AAL-reactive IgG, the printed antibody microarray

slides were pre-equilibrated to room temperature and blocked with

1% IgG-free BSA (Lampire, PA) in 10 mM phosphate saline

buffer, pH 7.2 with 0.5% Tween 20 (PBST0.5) for one hour at

room temperature. After the slides were rinsed with PBST0.5 after

the incubation and then 6 ml of 100 times diluted serum samples in

PBST0.1 were applied onto the different subarrays in a random

order. After the slides were rinsed with PBST0.1 three times for

3 minutes, biotinylated AAL was applied onto each subarray to

probe AAL-reactive IgGs. After rinse with PBST0.1, the slide was

probed with Dylight 549 labeled streptavidin (Pierce) and scanned

by using a Perkin Elmer ScanArray Lite microarray scanner at

resolution of 10 micron. The images were analyzed and the data

was extracted by using Genepix software (Molecular Device, CA).

To prepare mouse and rabbit AAL-reactive IgG standards,

1.0 mg/ml of pure mouse or rabbit IgGs (Jackson ImmunoR-

esearch Laboratories) was incubated at 50uC in 20 mM DTT in

Figure 7. A hypothetical model of non AAL-reactive IgG in
‘‘closed’’ (left) and a ‘‘flip-out or open’’ (right) conformation.
The ‘‘closed’’ conformation may not allow AAL access to the fucose
moieties on IgG Fc-glycan, but the ‘‘open’’ conformation might.
doi:10.1371/journal.pone.0044422.g007

Figure 6. Kinetics curves of fucosylated IgGs (solid line with
open circles (#) corresponding to the right Y-axis), which were
measured by using mass spectrometry, and AAL-reactive IgGs
(solid line with solid squares (&) corresponding to the left Y-
axis), which were measured by using AAL antibody microarray,
in serum samples from rabbit 4 which was inoculated with KIN/
CFA. The total fucosylated serum IgG levels were the sum of the
percentage of each fucosylated glycoform (as shown in table 2, AAL-
reactive IgG column) at each time point. The AAL-reactive IgG levels
were measured by using AAL-antibody microarray methods as
described in Methods and Materials.
doi:10.1371/journal.pone.0044422.g006
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PBS buffer for 2 hours. The reaction mixtures were desalted by

using Biospin P-6 columns that were pre-equilibrated with PBS.

The completely denatured IgGs (AAL-reactive IgG standard) were

serially diluted to concentrations from 10 mg/ml to 1 ng/ml in

PBS buffer. The serially diluted samples were applied onto

different subarrays of the microarray described above accompa-

nied with other serum samples for AAL-reactive IgG detection.

The AAL binding intensity of standards and unknown serum

samples were extracted by using software as described above.

Standard curves of AAL-reactive IgG were plotted, and AAL-

reactive IgG concentration in unknown samples were calculated.

Quantify immunogen-specific IgGs by using antibody
microarrays

In order to measure the relative level Immunogen-specific IgGs,

we immobilized 0.5 mg/ml of immunogen in PBS (Kininogen,

Ovalbumin, or rabies virus) on each subarray of the microarray

slides containing 52 identical subarrays. The microarrays were

blocked by using 1% IgG free Bovine Serum Albumin (BSA)

(Lampire Biologicals Inc.) in PBST0.5, and then were washed with

PBST0.5. Serum samples from animals were diluted 100 times by

using PBST0.1, which were applied onto each subarrays and

incubated for 1 hour at room temperature. The captured anti-

immunogen antibodies were then probed by using biotinylated

anti-mouse IgG (for mouse serum samples), or anti-rabbit IgG (for

rabbit serum samples). Dylight 549 labeled streptavidin (Pierce)

was finally applied onto each subarray to probe biotinylated anti-

IgGs. After the microarray slides were scanned on the ScanArray

Lite, the fluorescence intensity from each spot was extracted from

the microarray images by using GenePix Pro 6.0 software.

Isolation of AAL-reactive IgG and immunogen-specific
IgGs by using Immunoprecipitation

Immunoprecipitation (IP) of AAL-reactive IgG was done by

using homemade recombinant AAL Agarose beads; and IP of

OVA or KIN specific IgG was done by using homemade OVA or

KIN Agarose beads. AAL, OVA, or KIN -Agarose beads were

prepared by incubating recombinant AAL, OVA, or KIN protein

with NHS-activated Agarose beads (Pierce) according to the

manufacture instructions. After conjugation, the AAL, OVA or

KIN beads were washed withPBST0.1, and then blocked with 1%

BSA in PBST0.1 for 1 hour at room temperature. In order to

isolate AAL-reactive IgG, OVA-specific IgG, or KIN specific IgGs

from serum samples, AAL-, OVA- or KIN-Agarose beads were

incubated with rabbit serum samples at 4uC overnight with gently

shaking. The identical serum samples were incubated with the

empty control Agarose beads (Pierce) at same conditions. AAL-

reactive IgG was eluted by washing the AAL-Agarose beads with

PBS containing 150 mM of fucose. The AAL IP eluent was further

purified by using Melon Gel (Pierce) according to the manufac-

turer’s instructions. OVA and KIN specific IgGs were eluted by

washing the OVA- and KIN Agarose beads with Gly-HCl pH3.0

buffer, respectively. The eluted OVA-, or KIN- specific IgGs was

immediately neutralized by using 1 M Tris solution.

Determine antigen binding affinity of purified AAL-
reactive IgG using antibody microarrays

To determine the antigen binding affinity of purified immuno-

gen-specific IgGs and AAL-reactive IgG, pure immunogen-

antigen (such as OVA) and anti-rabbit F(ab9)2 were immobilized

onto a protein/antibody microarray. Serial diluents of purified

immunogen specific IgG and AAL-reactive IgG were applied onto

microarray, followed by probing with biotinylated goat anti-rabbit

IgG. The microarray was then probed with Dylight 549-labeled

NeutrAvidin. The relative fluorescence intensities from bound

IgGs were read out from the protein (OVA) spots. The

concentration of the AAL-reactive IgG was calculated according

to a standard curved of serial diluted AAL-reactive IgG standards.

Titration curves were plotted by using the concentrations of the

bound immunogen specific IgG or AAL-reactive IgG as a function

of the concentration of incubated immunogen specific IgG or

AAL-reactive IgG. The 50% of effective concentration (EC50),

which was considered as the apparent disassociation constant (Kd),

was obtained as a estimated Kd of the immunogen-specific IgG or

AAL-reactive IgG binding to the immunogen (OVA).

IgG Fc N-glycoform profiling by using mass spectrometry
Quantification of IgG glycol isoforms with mass spectrometry

was carried out as described previously [8], the procedure was

shown in Figure 5A. Briefly, purified rabbit IgGs from serum

samples at different days of pre- or post- immunization were

denatured and modified by using DTT and 2-Iodoacetamide,

followed by trypsin digestion in ammonium bicarbonate buffer

overnight at room temperature. Tryptic peptides were de-salted

using homemade C18 capillary column, and then re-dissolved in

solvent A (2%ACN, 0.1% formic acid). LC-MS and LC-MS/MS

analysis was performed on a QSTAR Elite QTOF mass

spectrometer (Applied Biosystems, Foster City, CA) equipped

with a Tempo nano LC system. Samples were loaded onto a pre-

column (75 um63 cm) packed with 5 um Monitor C18 particles

(Column Engineering. Ontario, CA) and then eluted by a linear

gradient from 0% to 80% solvent B (98% ACN, 0.1% formic acid)

over 80 minutes on a homemade analytical column

(75 um610 cm of 3 mm C18 Monitor particle) with 3 mm ID tip.

The ionization voltage was set at 2 kV. Precursor ions were

scanned over the mass range from 500–1800 and MS/MS spectra

were acquired for selected ions under automatic collision energy.

Ions for glycopeptides were also imported into the inclusion list for

fragmentation using fix collision energy ramp from 36 to 44.

Quantitative analysis of each glycoform was done at MS mode

only. Intensity of each subtype was obtained by adding the peak

area of +2 and +3 forms of the same glycopeptide. The

glycopeptide sequence of rabbit IgG, E248QQFNSTIR256 (Gen-

Bank#: AAA64252.1) was used for the identification and

quantitation of glycopeptide and its glycoforms. This was also

the only glycopeptide sequence we found in GenBank, other

possible subclasses were not found either in the database or in our

mass spectrometry data analysis.

Supporting Information

Figure S1 Comparison of kinetics of G0 and fucosylated IgG Fc

N-glycoforms of rabbit that was immunized with kininogen in

Complete Freund’s Adjuvants (KIN/CFA) (see rabbit 4 in

Table 1). The content of glycoform (Y-axis) represents the

percentage of these two glycoforms in total IgGs. G0 glycoforms

(solid black line with solid square symbols) is the sum of G0,

bisecting G0 (G0B), and G0 lack of one GlcNAc (G0-GlcNAc); the

fucosylated glycoform (solid red line with solid round symbols)

represents the sum of all the fucosylated glycoforms in Table 2.

Percentage of each glycoform in total IgG was measured and

calculated by using mass spectrometric glycoform profiling as

described in Methods and Materials section. Each data point is the

average of three repeated measurements of the same samples. This

result shows that content of G0 glycoforms has an oppose trend

during the first two weeks of immunization: it decreased when the
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fucosylated glycoforms increased, and increased when fucosylated

glycoform decreased.

(PDF)
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