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Emerging Drugs for Sickle Cell Anemia 

 

 Abstract 

Introduction: Sickle cell anemia (SCA) is caused by a single point mutation, which 

results in chronic vasculopathy and end organ damage. Over the past decades, 

hydroxyurea (HU) has been the standard treatment and therapies aimed at increasing fetal 

hemoglobin (Hb) F were the focus of research. Our increased understanding of the 

complex pathophysiology of SCA has led to the development of novel targets involved in 

vaso-occlusion.  

Areas covered: In this review, we describe the pathophysiology of sickle cell disease 

(SCD) and provide an in-depth analysis of the current and new pharmacologic therapies 

in the field. 

Expert opinion: SCA is a heterogeneous disease that has caused tremendous global 

morbidity and early mortality. More effective, individualized and inexpensive therapies 

are needed. New therapies targeting multiple pathways in its complex pathophysiology 

are under investigation. 

 

Keywords: Hydroxyurea, Sickle cell, Sickle cell anemia, Sickle cell disease, Sickle cell 

therapy, Sickle cell treatment 
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1. Background  

Sickle cell anemia is among the most common inherited hemolytic anemia, and affects an 

estimated 70,000–100,000 persons in the United States and likely millions worldwide. 

The true global incidence of SCD is unknown. The World Health Organization has 

estimated that each year 220,000 babies are born with SCD in Africa, and that SCD 

accounts for up to 16% of deaths of children aged <5 years in some African countries [1, 

2]. The reported prevalence of the sickle cell trait in African Americans varies from 6.7% 

to 10.1% and in Africans the range is from 10 to 40% across equatorial Africa and 

decreases to between 1 and 2% on the North African coast and less than 1% in South 

Africa [3-5]. The prevalence of the sickle cell trait varies widely worldwide and may be 

as high as 50% in certain regions [5-7]. The prevalence of SCA is approximately 1 in 600 

newborn African American infants and 150,000 to 300,000 newborn Africans [8-10]. 

 

Sickle cell anemia is a hereditary disorder of Hb where the sickle gene is inherited, 

homozygously, from both parents. The sickle mutation is the result of a single base 

change (GAT GTT) in the sixth codon of exon 1 of the β-globin 

gene responsible for the synthesis of the β-globin polypeptide of the Hb molecule (α2β2). 

This change I, in turn, results in replacement of a normal glutamic acid with valine at 

position 6 of the β-globin chain and the formation of sickle Hb. Sickle erythrocytes are 

rigid with decreased deformability and reduced life span resulting in hemolysis, vaso-

occlusive disease, vasculopathy and subsequent inflammation and end organ damage [11, 

12]. 
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Clinical manifestations of SCD includes pain syndromes, anemia and its sequelae, organ 

failure including infection/inflammation and co-morbid conditions [13]. Despite having a 

common genetic basis and similar pathophysiology, individual patients with SCA have a 

highly variable clinical phenotype. Clinical care for affected individuals has been mostly 

supportive, including red blood cell transfusions (RBC), iron chelation, intravenous 

hydration, analgesics and antibiotics. The development of drugs to increase fetal Hb has 

been the major therapeutic strategy in the treatment of this disorder. Although new fetal 

Hb–modulating agents are being studied, only HU  has shown long-term benefit and 

remains the only United States Food and Drug Administration (FDA) approved therapy 

for SCA since 1998 [14]. The major aim of this review is to describe emerging 

pharmacologic therapies for SCA. 

2. Medical Need 

The ideal drug for SCD would have analgesic properties, be able to prevent vaso-

occlusive pain crises (VOCs) or abort with a rapid onset of action, would decrease the 

severity and frequency of VOCs, have limited hazardous side effect profile and be 

effective in all patients, and available globally.  Currently HU is the only agent that fits 

certain of these criteria. It decreases the frequency of VOCs, acute chest syndrome 

(ACS), and thus improves quality of life and mortality in those with SCD. However HU 

is not effective in about 25% of those with SCD and may be teratogenic and possibly 

carcinogenic [15]. Management of patients with SCD in VOCs includes additional 

supportive measures with intravenous fluids, and analgesia and prophylaxis against 

thromboembolism when they are hospitalized.  
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3. Existing treatment 

Current approaches to management of SCD include supportive therapies such as folic 

acid, immunization and psychosocial support; symptomatic treatment which involves 

analgesics and blood transfusion; abortive therapy such as nitric oxide (NO); curative 

therapies such as bone marrow transplantation and gene therapy [13, 16]. Preventative 

therapy is another current approach to the management of SCD which involves 

prophylactic antibiotics for infants and children, immunization, avoidance of known 

precipitating factors, cellular rehydration and HU for the induction of Hb F [13, 16-21].  

 

Hydroxyurea was identified as a potent Hb F inducer and was subsequently found to be 

both a feasible and effective treatment option for SCA [12]. The mechanisms by which 

HU induces Hb F production are not fully clear. It was felt to inhibit ribonucleotide 

reductase, an intracellular enzyme that converts ribonucleotides to deoxyribonucleotides, 

necessary for DNA synthesis and repair. More complex effects involve the production of 

NO, guanylyl cyclase and cGMP-dependent protein kinase pathway important in 

inducing expression of the γ-globin gene. Additionally HU improves erythrocyte 

deformability, lowering of circulating leukocytes and reticulocytes, and reduces 

hemolysis [2, 14, 22]. Since its first clinical application reported in 1984 by Platt and 

colleagues many trials were performed [18]. The Multicenter Study of Hydroxyurea in 

SCA (MSH), a placebo controlled randomized phase III trial of 299 adults with severe 

SCA, which terminated early due to significant reductions in frequency of VOC, ACS, 

need for blood transfusion and delayed onset of first VOC [23, 24]. This study led to the 

FDA approval of HU for therapy in severely affected adults with SCA in 1998. Last year 
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witnessed the culmination of a decade-long Phase III clinical trial (BABY HUG) 

involving infants with SCA randomized either to HU (fixed dose 20 mg/kg/day) or 

placebo. BABY HUG showed that HU did not clearly prevent organ damage in a 2-year 

treatment period, but significantly decreased pain, ACS, hospitalizations, and 

transfusions in children [25-30].  

 

Additionally, some of the current approaches to the management of SCD could be 

pharmacologic or non-pharmacologic especially when it comes to pain management. 

Examples of non-pharmacologic treatments include meditation, therapeutic massage, 

transcutaneous electrical nerve stimulation, heat and cold packs, distraction, relaxation, 

music, guided imagery, self-hypnosis, acupuncture and biofeedback [13, 16]. Current 

examples of pharmacologic therapies include the use of NSAIDs, opioids, adjuvants, 

steroids, etc [13]. 

 

4. Market review 

Sickle cell disease is a global disease affecting millions of people worldwide and 

hundreds of thousands in the United States. It not only affects those of African descent, 

but also persons of Middle Eastern, Indian, Latin American, and Mediterranean descent. 

It has received very little attention and even less research funding. National Institute of 

Health (NIH) grants for sickle cell research was much less than that for less common 

inherited diseases. In 1972, the National Sickle Cell Anemia Control Act (NSCACA) was 

signed, which paved the way for more research funding and established screening and 
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education programs. The NIH dedicated $10 million to be spent on SCD research at that 

time [13]. 

The economic burden to patients with SCD is significant [31-35]. Many patients are 

living in poverty with their illness due to chronic pain, and physical disability limiting 

their ability to work and contribute to society [13]. The economic burden on society was 

estimated at $1.1 billion in 2009 [31]. This number is projected to increase as patients 

with SCD are living longer as we continue to improve supportive care. A solution to this 

problem is not simple requiring multidisciplinary action with increased funding, 

legislation, research and supportive services. Simple therapy with HU is still not available 

to the millions in Africa today. As we continue to push for new therapies for SCD, HU 

has tremendous potential on the global market.  

 

5. Current research goals 

Hydroxyurea has many qualities of the ideal agent for SCD and it is felt to be successful 

primarily through its actions of increasing fetal Hb. Increased fetal Hb has been 

associated with a less severe phenotype, which has spurred interest in the identification of 

pharmacologic agents capable of inducing Hb F expression. The sickle cell population 

has varied phenotype, which makes targeted therapy more attractive to achieve better 

outcomes. There are fewer patients with SCD in the United States where most clinical 

trials are available. There are also challenges with clinical trial enrollment since patients 

are impoverished and in pain limiting their abilities to effectively participate in a clinical 

trial. Research focus is changing to incorporate a multi-agent approach to treating 

patients and in re-engineering clinical trial design.  
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6. Scientific rationale 

Since sickled cells were first described in 1910 and mutation causing abnormal Hb S was 

identified in 1949, the complex mechanism underlying its pathophysiology continues to 

evolve [36]. A cascade of events driven by endothelial damage and inflammation leads to 

vasculopathy. The inciting event is injury to the RBC membrane. Hemoglobin S 

polymerization impairs deformability of the RBC and causes oxidative injury and 

destruction of the RBC. Red blood cell injury exposes phosphatidyl serine and releases 

Hb and other intracellular contents. This in turn depletes NO, increases endothelial 

adherence, releases pro-inflammatory cytokines and activates the coagulation cascade 

causing ischemia, reperfusion injury and vascular damage [11, 15, 36]. 

 

Damaged sickle cells are prone to adhere to the endothelium by adhesion molecules. The 

RBC membrane receptors VLA-4/α4β1 bind to endothelial receptors directly to vascular 

cell adhesion molecule 1 (VCAM-1) and interacts with subendothelial matrix proteins 

(BCAM/LU, α4β1 with the laminin and VWF) [37, 38]. Red blood cell interactions with 

the vascular endothelium also lead to the production of oxygen radicals by activating 

transcription factor NF-κB. Nuclear factor kappa-light-chain-enhancer of activated B 

cells up-regulates the production of endothelial adhesion molecules such as E-selectin, 

VCAM-1, and intracellular adhesion molecule-1 (ICAM-1). P-selectin and E-selectin on 

endothelial cells have been suggested to participate in VOC [39, 40]. In preclinical 

studies an anti–P-selectin molecule showed increased microvascular flow and reduced 

adhesion of leukocytes to the endothelium [39].  Intracellular adhesion molecule-4 
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(ICAM-4), another RBC membrane protein, participates in adhesion can be activated by 

epinephrine to adhere to endothelial membrane and exacerbate vasoocclusive disease and 

also increased leukocyte adhesion to endothelium [40]. When treated with Propranolol (a 

β-adrenergic receptor antagonist) VOCs were diminished [41, 42]. In addition to 

adherence to endothelial cells, RBCs in SCA also adhered strongly to leukocytes in veno-

occlusive crises via interactions with P-selectin and E-selectin. This interaction is 

propagated by TNF-alpha. Selectins function in adhesion to the vessel wall by recruiting 

rolling particles and cells and also contribute to cell activation.  

 

Patients with SCD have chronic elevation of proinflammatory cytokines at baseline, 

including C-reactive protein, TNF, IL-1, IL-8. Damaged RBCs, activated endothelial 

cells, leukocytes and platelets contribute to a proinflammatory environment. Sickled 

RBCs stimulate endothelial cells to release TNF-alpha and IL1-beta. There is increased 

production of placental growth factor, which activates monocytes to release reactive 

oxygen species which enhances inflammation. Additionally invariant natural killer T 

(iNKT) cells are activated in patients with SCD suggesting that iNKT cells may play a 

critical role in mediating inflammation. Intravascular hemolysis results in release of cell 

free Hb in plasma, and hemin release that contribute to the inflammation [38, 43]. 

 

Nitric oxide is produced by the endothelium from arginine and causes vasodilation by 

binding to endothelin-1, a vasoconstrictor. Intravascular hemolysis releases Hb, which 

scavenges NO in the plasma and subendothelial spaces. Depletion of NO leads to 

vasoconstriction and formation of reactive oxygen species. Nitric oxide also 
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downreguates adhesion molecules, (VCAM-1), ICAM-1 and E-selectin. Erythrocyte 

arginase released during hemolysis decreases arginine levels and decreases NO 

production. The byproducts of these reactions: urea, proline, polyamines and free radicals 

cause vascular remodeling and vasculopathy. Patients with SCD have elevated 

asymmetric dimethylarginine, which inhibits arginine transport, promotes endothelial 

dysfunction [15, 44, 45]. 

 

These inflammatory processes activate the coagulation cascade. Phosphatidylserine 

expression on RBC surface and microparticles activates tissue factor and in turn, the 

extrinsic coagulation cascade. Tissue factor also promotes inflammation and endothelial 

damage. In preclinical studies in transgenic sickle mice, lowering tissue factor levels 

resulted in lower plasma levels of IL-6 and soluble VCAM-1 [46]. 

 

Sickle cell disease is a chronic inflammatory state and reactive oxygen species (ROS) are 

increased at baseline compared with normal controls. Hemolysis releases Hb, and iron 

products, which increase ROS that generate superoxide (O2
-) and peroxynitrate 

(ONOO−), which promotes an inflammatory response and causes cell death. Patients 

with SCD have impaired buffer system with decreased glutathione, and other antioxidants 

[47-49]. 

 

7. Competitive environment 

7.1 Fetal Hemoglobin Inducing agents 

Two novel Hb F-inducing agents, pomalidomide and sodium dimethylbutyrate , are 
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promising targets to increase fetal Hb. Pomalidomide is an orally active thalidomide 

analogue. Preclinical studies showed that it induced Hb F production in a SCD model 

with similar efficacy as HU. Surprisingly, pomalidomide improved erythropoiesis in 

comparison to myelosuppresion seen with HU. However, when given in combination 

with HU, this effect was lost and fetal Hb levels were suppressed [50]. A phase I study of 

pomalidomide in SCD was completed. Twelve patients enrolled and data has not been 

published (clinicaltrials.gov, trial identification NCT01522547). 

 

HQK-1001, sodium dimethylbutyrate is an orally-active short chain fatty acid derivative, 

under development by HemaQuest ™ for the treatment of SCA and beta-thalassemia. It 

was found to increase fetal Hb and Hb levels in Phase I trials [51]. A randomized, 

placebo-controlled Phase II trial enrolled 77 patients with SCD in Canada, Egypt, 

Jamaica, Lebanon and the US and has been terminated. The primary objective was to 

evaluate for increase in fetal Hb levels. Interim analysis was expected in late 2013 and 

this data has not been yet been published. A phase III trial is expected in 2015 [51]. 

Additionally L-arginine, a substrate for NO, was evaluated in combination with HU in a 

small randomized trial of 21 adult patients with SCD.  There was a greater response in 

fetal Hb levels and reticulocyte count in the group receiving combination therapy versus 

HU alone. This study suggests that fetal Hb synthesis depends on NO effect on erythroid 

progenitors [52]. 

 

Decitabine is an intravenous cytosine analog 5-aza-2′-deoxycytidine which 
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hypomethylates DNA by inhibiting DNA methyltransferase. It is approved for treatment 

of myelodysplastic syndrome. It increases fetal Hb by reactivating the silenced γ-globin 

through hyomethylation at it’s promoter site. In a small study of 8 patients refractory or 

intolerant to HU, it increased Hb F and Hb levels when administered subcutaneously 

[53]. Ongoing trials will further clarify its efficacy and tolerability. A phase II study with 

planned enrollment of 40 patients with high risk SCD is recruiting (NCT01375608). A 

phase 1 combination study of oral decitabine with tetrahydrouridine, a competitive 

inhibitor of cytidine deaminase, is also recruiting and its aim is to evaluate oral 

bioavailability of decitabine in combination therapy [54] (NCT 01685515). 

Vorinostat, also known as suberanilohydroxamic acid (SAHA) is inhibitor of histone 

deacetylases (HDAC). Vorinostat is marketed under the name Zolinza ™ for the 

treatment of cutaneous T cell lymphoma (CTCL). In preclinical studies, HDAC inhibitor 

trichostatin A (TSA) inhibited pulmonary vascular endothelial VCAM-1 and tissue factor 

expression, prevented vascular stasis in sickle mice, served as an iron chelator, and 

increased Hb F. Vorinostat, a TSA analogue exhibits the same effects [55]. Vorinostat is 

currently being evaluated in a Phase II clinical trial with target enrollment of 15 patients 

with SCD (NCT01000155). 

 

7.2 Targeting adhesion 

Rivipansel sodium, GMI-1070, is a small molecule pan-selectin inhibitor that binds to 

E,P and L selectin that was developed by GlycoMimetics to target inflammation in sickle 

VOCs. It improves blood flow by inhibiting E-selectin and neutrophil activation. A 

randomized, double-blind, adaptive Phase II trial of rivipansel in pediatric SCD patients 

http://en.wikipedia.org/wiki/Histone_deacetylase
http://en.wikipedia.org/wiki/Histone_deacetylase
http://en.wikipedia.org/wiki/Cutaneous_T_cell_lymphoma
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with VOC of age 12-18yr is complete. There was >50% reduction in time to transition to 

oral pain medications, as well as a reduction in time to hospital discharge, in each case 

compared to standard treatment for pain was observed. Statistical significance was 

achieved for time to transition to oral pain medication, however results for time to 

discharge and time to resolution of VOC, the primary endpoint, were not statistically 

significant. Safety results for the pediatric patients were consistent with prior findings in 

treatment of adult patients [56].  

A randomized, double-blind, placebo-controlled Phase II trial in 76 subjects hospitalized 

for sickle cell VOC assessing GMI-1070 is complete. Data showed that the patients 

treated with rivipansel sodium experienced reduction in duration of VOC, length of 

hospital stay and reduction in the use of opioids for pain relief. Both adult and pediatric 

patients demonstrated improvement and adverse event rates were comparable between 

rivipansel sodium and placebo (NCT01119833). Results of these studies have not yet 

been published in a peer-reviewed journal [57]. 

Intravenous immunoglobulin (IVIG) also inhibits leukocyte adhesion and activation by 

binding to FcγRIII expressed on neutrophils [58]. A Phase I/II trial is currently recruiting 

to evaluate Gamunex (Intravenous Gammaglobulin) versus normal saline in sickle cell 

acute pain (NCT 01757418). 

 

Endothelial P selectin is involved in microvascular blood flow. Heparin, in addition to its 

anticoagulant effects, decreases adhesion of sickled erythrocytes by inhibiting P-selectin. 

Two clinical trials are evaluating the effect of prophylactic dose low-molecular-weight 

heparin (LMWH) to ameliorate the vaso-occlusive process and unfractionated heparin in 
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ACS (NCT 01419977, NCT02098993). 

 

In a randomized clinical trial of 253 patients, Tinzaparin, a low-molecular-weight 

heparin, showed reduced duration of VOC and no severe bleeding complications [59]. 

These results need to be validated in a multicenter study. A recent phase II trial of an oral 

P-selectin inhibitor (pentosan polysulfate sodium) similar to heparin but with greater P-

selectin blocking ability than heparin showed improved microvascular flow in SCD 

patients in a phase 1 study [60]. The efficacy of SelG1, a humanized anti-P-selectin 

monoclonal antibody, in preventing VOC will be evaluated in an upcoming phase 2 trial 

in combination with HU (NCT01895361). 

 

Studies suggest stress related adrenergic stimuli like epinephrine may contribute to vaso-

occlusion. De Castro and colleagues conducted preclinical and phase I studies to evaluate 

the role of propranolol, a beta adrenergic blocker, in SCD. 

 

Propranolol significantly reduced RBC adhesion in a dose-dependent manner. Adverse 

events were not severe, did not vary with the dose administered and no elevation in heart 

rate was noted. These results imply that β-blockers have a potential role in inhibiting 

RBC adhesion [61]. A phase 2 study of propranolol in SCD has been completed and no 

data has been reported at the time that this manuscript was written (NCT 01077921). 

 

The importance of activated platelets on the vasculopathy of SCD have led to clinical 

trials with antiplatelet therapy [62].  Eptifibatide, a synthetic GPIIb/IIIa peptide 
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antagonist which inhibits platelet aggregation, was initially developed to treat acute 

arterial thrombosis.  It was launched in the US in 1998 as Integrillin to treat angina, acute 

coronary syndromes and for use in percutaneous coronary angioplasty and it is approved 

in Europe.  It has decreased platelet activation and increased vasodilation in the sickle 

cell population in clinical trials [63].  A placebo controlled phase 2 trial was completed. 

Thirteen patients with SCD were randomized to receive either eptifibatide or placebo. 

There were no major bleeding episodes in either arms and one minor bleeding episode in 

the eptifibatide arm. There were no differences in the median times to discharge, median 

times to crisis resolution or the median total opioid use. In this small study, eptifibatide 

appeared to be safe, but did not improve the times to crisis resolution or hospital 

discharge. Adequately powered studies are required to evaluate the safety and efficacy of 

eptifibatide in SCD [64]. 

 

Investigational therapies targeting multiple pathways are being studied. Rivaroxaban, a 

new orally active  direct Factor-Xa inhibitor and serine protease inhibitor was FDA 

approved in the US as an anticoagulant for prophylaxis and treatment in acute coronary 

syndromes, cerebral ischemia, pulmonary embolism and venous thrombosis.  It is 

currently being evaluated in a Phase II clinical trial in SCD to reduce inflammation, 

coagulation, endothelial cell activation, and improve microvascular blood flow in patients 

during the non-VOC, steady state (NCT02072668). 

 

7.3 Targeting inflammation 

In SCA patients there is increase in the number of activated invariant natural killer T 
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(iNKT) cells. Regadenoson is an A2A receptor (A2AR) agonist reduces iNKT activation 

and thus decreases inflammation. A phase 1 study in 27 adults with SCD showed a 48% 

decrease in activation of iNKT cells compared to baseline after regadenoson was 

administered with no toxicities identified [65]. NKTT-120 is a humanized monoclonal 

antibody designed to target invariant Natural Killer T cells. Preclinical studies showed 

depletion of iNKT cells and no effect on other natural killer cells. The T cell antibody 

response was not impaired in reponse to a KLH challenge [66]. A phase I trial planned to 

enroll 21 patients with SCD is currently recruiting (NCT 01783691). 

 

Carbon monoxide inhibits inflammation and hypoxia-induced vasoocclusion in 

transgenic mice [67]. MP4-CO is a human Hb conjugated to carbon monoxide via an 

MP4 molecule. It decreased mortality in sickle cell mice from hypoxia reperfusion injury 

and has anti-inflammatory properties [68]. A phase I study that enrolled 32 patients with 

SCD is complete. Data is not yet available (NCT01356485). A phase II study in patients 

with SCD has been withdrawn prior to enrollment.  

 

The vascular injury seen in SCD has been described to share similarities with that of 

atherosclerosis. Statins decrease inflammation and improve endothelial function in 

cardiovascular disease and is under study in SCD. A pilot study of 26 patients treated 

with simvastatin showed a dose related decrease in inflammatory biomarkers (C-reactive 

protein and IL-6 levels) and increased NO metabolite levels [69]. A phase II trial of 

atorvastatin is enrolling by invitation (NCT01732718). 

 

http://asheducationbook.hematologylibrary.org/external-ref?link_type=CLINTRIALGOV&access_num=NCT01356485


16 
 

 

Omega-3 fatty acids, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic 

acid), are noted for their antiadhesive, anti-inflammatory, and vasodilatory effects. 

These are decreased in patients with SCD. A single institution study in Sudan was 

designed to evaluate its therapeutic effects in patients with SCD in a randomized, 

placebo-controlled, trial. One hundred and forty patients received omega-3 capsules for 1 

year and omega-3 treatment reduced the rate of VOC events, red blood cell transfusions, 

and white blood cell count. The therapy was well tolerated and warrants further study 

[70].  

 

Sickle cell disease patients have elevated levels of 5-lipoxygenase, a potent inflammatory 

leukotriene. Zileuton, a specific inhibitor of 5-lipoxygenase, is FDA approved for asthma. 

Beneficial effects in the SCD animal model have led to a phase 1 trial in SCD 

(NCT01136941).  

 

N-acetylcysteine (NAC), is the rate limiting substrate for glutathione generation, an 

important antioxidant with pleiotropic effects on inflammation [71]. NAC inhibits dense 

cell formation and restores glutathione levels toward normal. In pilot studies the 

administration of N-Acetylcysteine resulted in a reduction of oxidative stress. A phase 2 

double-blind, randomized clinical trial was completed to determine the efficacy of NAC 

in decreasing dense cell and irreversible sickle cell formation and VOC episodes in SCD. 

NAC inhibited dense cell formation, restored glutathione levels toward normal, and 

decreased VOC episodes [72]. A phase III trial is underway (NCT01849016).  

 

http://asheducationbook.hematologylibrary.org/external-ref?link_type=CLINTRIALGOV&access_num=NCT01136941
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Prasugrel (Effient ™) is a member of the thienopyridine class of ADP receptor 

antagonist, like clopidogrel (Plavix ™), which inhibits ADP induced platelet activation 

and aggregation by irreversibly binding to P2Y12 receptors. It is FDA approved for use in 

acute coronary syndromes. In randomized trials in SCD, platelet activation was prevented 

and preliminary results suggest a decrease in pain rate [73, 74]. A phase 2 randomized, 

double-blind, placebo-controlled study examined safety of prasugrel measured by 

hemorrhagic events. Patients were randomized to prasugrel 5 mg daily or placebo for 30 

days. There were no hemorrhagic events requiring medical intervention in either study 

arm. Platelet surface P-selectin and plasma soluble P-selectin, both biomarkers of platelet 

activation, were significantly reduced in SCD patients receiving prasugrel compared with 

placebo. This study showed a decrease in platelet activation biomarkers and a trend 

toward decreased pain [75]. A phase II trial to determine dosing was completed in 

children and results are pending (NCT01476696). A phase 3 study in children is currently 

recruiting (NCT01794000).  

 

Dysregulation of NO metabolism is a common denominator in the pathogenesis of 

vasculopathy. Inhaled NO in SCD has resulted in variable clinical responses. A recent 

phase 2 trial for adult SCD patients treated with NO for painful VOCs showed no benefit 

[76]. A phase II trial to evaluate NO to treat acute VOCs was completed. Results showed 

a longer time to resolution of VOCs with NO, however statistical analysis is not yet 

available (NCT00094887). Two trials in adults with SCA were completed and results 

have not been reported (NCT0009581, NCT00352430). Another study evaluating NO 

therapy for VOCs and ACS in children with SCD is recruiting (NCT01089439, 

http://en.wikipedia.org/wiki/Thienopyridine
http://en.wikipedia.org/wiki/ADP_receptor
http://en.wikipedia.org/wiki/Clopidogrel
http://en.wikipedia.org/wiki/P2Y12
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NCT00142051). 

 

Arginine is depleted in hemolysis due to the release of arginase and leads to decreased 

NO formation. In SCD patients with pulmonary hypertension, arginine supplementation 

increases plasma NO and rapidly decreases pulmonary artery pressure by 15% [77]. A 

recent randomized, double-blind, placebo-controlled study of high-dose arginine 

supplementation in hospitalized SCD patients with VOC was completed and found a > 

56% reduction in narcotic use in patients receiving arginine compared with controls [78]. 

A phase II randomized trial in 38 children showed a significant reduction in opioid use 

and lower pain scores at discharge in those treated with arginine in comparison to the 

placebo arm. There was no significant difference in hospital length of stay and no toxicity 

was noted [79]. A study was just completed in children with SCD to evaluate the 

effectiveness of arginine at increasing NO levels, improving RBC function, and reducing 

hospitalizations and pain medication use. This was done by measuring gardos channel 

activity, mean corpuscular Hb concentration (MCHC) and NO levels.  There was only 

statistically significant difference in low dose arginine with decreased MCHC versus 

placebo. Data is available but has not been published (NCT00513617). Other studies 

have been completed and awaiting analysis and 2 are currently recruiting 

(NCT01142219, NCT00056433, NCT00029731, NCT00004412). 

 

7.4 Targeting oxidative injury 

The primary buffer for reactive oxygen species is reduced glutathione. Glutamine is 

metabolized to glutamate, the glutathione precursor, and preserves intracellular 
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nicotinamide adenine dinucleotide (NAD), which is necessary for glutathione recycling. 

Oral supplementation of glutamine in SCD increases the NAD redox potential and may 

improve sickle erythrocyte adhesiveness [80, 81]. Oral glutamine is also used as a dietary 

supplement and it decreases the resting energy expenditure in children with SCD. A 

multicenter phase III trial of glutamine supplementation in 230 children to prevent VOC 

is completed and results are not available (NCT01179217). Two phase II trials are also 

complete and results have not been posted (NCT00125788, NCT00131508). 

 

Alpha-lipoic acid augments cellular stress response by increasing the transcription of 

antioxidant genes, decreasing NF-κB, and increasing glutathione synthesis. Acetyl-l-

carnitine is an essential nutrient that facilitates the entry of long-chain fatty acids into the 

mitochondria and decreases lipid peroxidation in tissue. Alpha-lipoic acid and acetyl-L-

carnitine have a synergistic antioxidant effect [82].  A recent Phase II trial combining 

antioxidants enrolled 42 patients to determine whether alpha-lipoic acid and acetyl-L-

carnitine will lower systemic inflammation in patients with SCD. This study is complete, 

however data is not available for review (NCT01054768).  

 

Aes-103, 5-hydroxymethyl-2-furfural (5HMF), is a naturally occurring oral aldehyde that 

interacts with Hb S in red blood cells increasing oxygen affinity and decreasing Hb S 

polymerization. A preclinical study showed that 5-HMF decreased RBC dehydration in a 

deoxygenated state and inhibited activation of the Gardos channel and 

phosphatidylserine. We are awaiting results of two completed phase I trials and a phase II 

trial is currently recruiting [83-85] (NCT01597401, NCT01871142, NCT01987908). 
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8. Potential development issues 

The ideal drug to decrease the global disease burden would be an oral agent with no 

special handling and storage requirements. Many new drugs currently in clinical trial 

would mainly provide benefit for patients in the developed world. Additionally certain 

drugs like the hypomethylating agents may only be ideal in certain patient populations, 

more specifically in adults. Studies in the pediatric population are lacking and will 

warrant further study. It has been studied in children with acute myelogenous leukemia, 

however further long term data to evaluate long term side effects are needed. Its potential 

teratogenic and carcinogenic potential may limit applicability in women of childbearing 

age and in children. When looking at combining therapies, potential for hazardous side 

effects can be preventative. For example, bleeding risk is increased with antiplatelet 

therapy such as prasugrel, in combination with anticoagulation, such as heparin [13, 60, 

75].  

 

9. Conclusion 

Hydroxyurea has proven to be effective in SCD and has decreased morbidity and 

mortality in randomized phase III trials in adults and children. It is available both in the 

US and the rest of the world. Access in Africa still remains a challenge. Our improved 

understanding of the pathophysiology and its protean pathways led to many new drug 

targets. We reviewed 27 new drugs in development for the treatment of patients with 

SCD. Table 1 includes all the drugs discussed in this paper as well as others. 
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The agents that primarily increase fetal Hb include pomalidomide, sodium 

dimethylbutyrate, decitabine and vorinostat.  Pomalidomide, a thalidomide analog, is in a 

phase I trial and the hypomethylating agent, decitabine, and the HDAC inhibitor, 

vorinostat, are in phase II trials. Sodium dimehtylbutyrate, a short chain fatty acid, has 

completed phase II studies and a phase III trial is expected.  

 

The drugs targeting adhesion primarily inhibit selectins and include rivipansel sodium, 

heparin, tinzaparin, pentosan polysulfate and SelG1. These are all in phase I and II trials. 

IVIG, propranolol, eptifibatide, and rivaroxaban also prevent adhesion to the vascular 

endothelium and are in phase II trials in the sickle cell population. We have long term 

experience and data with use of heparin, IVIG, tinzaparin, propranolol, eptifibatide and 

rivaroxaban for other hematologic illnesses and in the field of cardiology where they 

were studies in phase III trials and approved for many other indications. 

 

Targets of the inflammatory process include regadenoson, carbon monoxide, simvastatin, 

atorvastatin, omega-3 fatty acids, zileton, N-acetylcysteine, prasugrel, NO and arginine. 

Prasugrel and N-acetylcysteine have reached phase III trials. Nitric oxide and arginine 

also function indirectly as fetal Hb induction agents. Arginine, a natural amino acid, is 

being evaluated in adults and children and has reached phase III studies.  

 

Drugs under study to prevent oxidative injury include glutamine, alpha-lipoic acid, 

acetyl-L-carnitine and Aes-103. Glutamine, a dietary supplement, had reached phase III 

studies in children. Alpha-lipoic acid and acetyl-L-carnitine are studied as combination 
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therapy in phase II studies.  

 

10. Expert Opinion 

 

There has been tremendous advance in our knowledge of the pathophysiology of sickle 

cell vascular injury over the past decade resulting in new therapeutic targets. The field is 

witnessing promising translational studies hoping to replace or use with HU as the 

primary pharmacologic therapy for patients with SCD. We reviewed therapies targeting 

increases in fetal Hb and the complex pathways in adhesion and inflammation. 

 

Hydroxyurea is an oral agent that has decreased morbidity and mortality in adults and 

children with SCA. It decreases recurrent VOCs, ACS, blood transfusion requirements, 

and improves quality of life mainly through increasing fetal Hb production. It is 

inexpensive and potentially available worldwide. It is cytotoxic, which may cause 

myelosuppresion and it is contraindicated in pregnancy due to potential teratogenicity. 

It’s carcinogenic effects are unknown and long term studies have failed to document this.  

 

Decitabine is an attractive agent as it induced fetal Hb with similar disadvantageous risk 

profile like HU with potential myelosuppression, teratogenicity and carcinogenicity. It is 

already approved therapy for myelodysplastic syndrome, and acute myeloid leukemia; 

conditions more prevalent in the elderly. It is being evaluated in oral form and in 

combination therapy currently and further testing is warranted in the pediatric population. 



23 
 

 

The oral HDAC inhibitor, vorinostat, is appealing for its potential multiple effects. In 

preclinical studies, its analogue TSA, not only induced Hb F, but reduced endothelial 

activation, prevented vascular stasis and exhibited iron chelation properties. Both of these 

agents are in phase II trials.  

 

Glutamine, prasugrel, and N-acetylcysteine have reached phase III trials. These work 

differently, targeting oxidative injury and inflammation and do not share the same side 

effect profile. A combination of any of these agents together or in combination with a 

fetal Hb inducing agent such as HU or vorinostat is a potential strategy to combat this 

disease.  

Studies involving NO so far have been disappointing in the sickle cell population. It is 

surprising that arginine therapy was more promising than NO since its role is to increase 

NO. Nevertheless this natural amino acid is an ideal agent for a combination regimen. 

Similarly, omega-3-fatty acids has multiple effects, is effective in other illnesses, has a 

good side effect profile making it an ideal agent to combine with other therapies.  

In the sickle cell population, there are challenges with clinical trial enrollment since it is a 

relatively rare and clinically heterogeneous disease. A paradigm shift in clinical trial 

design would improve outcome. Due to the complex pathophysiology of the disease, 

clinical trials targeting a multi-agent approach may be more successful as in oncology 

where combination chemotherapy regimens have been more efficacious. Trial design in 

SCD over the past 3 decades has historically incorporated all patients with SCA. 

Vichinsky proposed reassessing endpoints to see a benefit in a targeted phenotype and 
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including quality of life measures. A modification of this concept is to target the different 

phenotypes upfront as in recent successful lung cancer drug trials, which incorporated 

biomarkers in patient selection.  

In summary, our greater understanding of the pathophysiology of SCD has led to many 

new targets for drug therapy and with a paradigm shift in clinical trial design, we are in 

an exciting position to improve care for the millions who suffer with SCD.  
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Table 1. Emerging Drug Therapies for the Treatment of Sickle Cell Disease 

 
KEYWORDS SYNONYMS ABBREV. CONTEXT 
Decitabine 5-aza-2'-deoxycytidine 5-aza-dCyd; DAC; Dacogen; 

Dacogen (IV); Dacogen (SC); 

deoxyazacytidine; dezocitidine; 
E7373; E7373 (IV); E7373 (oral); 

E7373 (SC); JNJ-30979754 (IV); 

NSC-127716 

Hemoglobin F induction 

Sodium butyrate Butyric acid sodium salt SB Hemoglobin F induction 

Vorintostat Suberanilohydroxamic acid rINN;  L-001079038; MK-0683; 

MSK-390; SAHA (IV); 

suberoylanilide hydroxamic acid;  
VOR; vorinostat; Zolinza 

Hemoglobin F induction 

Panobinostat (2E)-N-Hydroxy-3-[4-[[[2-(2-methyl-1H-indol-3-

yl)ethyl]amino]methyl]phenyl]-2-propenamide 

Faridak; LBH-589;  

panobinostat lactate;  

Hemoglobin F induction 

Rivipansel Sodium GMI-1070 GMI-1010; GMI-1011; GMI-1043; 

GMI-1070; PF-06460031; 

PF06460031; selectin inhibitors, 

GlycoMimetics 

Inhibits cellular adhesion 

Intravenous immunoglobulin Intravenous immunoglobulin IVIG Inhibits cellular adhesion 

Low molecular weight heparin Low molecular weight heparin LMWH Inhibits cellular adhesion 

Dalteparin Dalteparin sodium Fragim Inhibits cellular adhesion 

SelG1 PselhmAb PselhmAb; SelG1 Inhibits cellular adhesion 

Propranolol 1-(isopropylamino)-3-(1-naphthyloxy)propan-2-ol INN; Verex; Problok; Yissum Inhibits cellular adhesion 

Adenosine 2A receptor 
antagonist 

ADORA2A CVT-3146 Anti-inflammatory agent 

ADP receptor antagonist Ticlopidine, Tagren; ticlopidine; anagregal;  KRKA; DE-4160; CS-747; LY-

640315; HL-006 

Anti-inflammatory agent 

Omega-3-acid ethyl esters Omega-3-acid ethyl esters Lovaza Anti-inflammatory agent 

N-acetyl cysteine Acetyl Cysteine EN-3285; RK-0202 Anti-inflammatory agent 

Alpha lipoic acid Acetate Replacing Factor Thioctic acid, Meda Anti-inflammatory agent 

Nonionic polyoxyethylene-

polyoxypropylene 

Poloxamer 188 ANX-188; CRL-5861; Flocor; MST-

188; MST188; P-188; P188; 
poloxamer 188, purified-1, CytRx; 

purified poloxamer 188, CytRx; 

vepoloxamer 

Surfactant 

Purified Poloxamer 188 MST-188 CytRX; RheothRx   Reduces viscosity 

Niacin Pyridine-3-carboxylic acid Vitamin B3 Increases levels of HDL 

Rivaroxaban BAY 59-7939 JNJ-39039039; Xarelto Antiplatelet agent 

Abciximab c7E3 Fab 7E3; anti-GPIIb/IIIa MAb; CentoRx; 

ReoPro 

Platelet aggregation inhibitor 

Eptifibatide Integrilin Velofibatide Antiplatelet agent 

Acetylsalicylic acid Aspirin; Benzon; Acetard; Eurand; Levius BAN; ASA Antiplatelet agent 

Dipyridamole Dipyridamine Elan Red blood cell hydration 

Magnesium Magnesium citrate, magnesium sulfate, magnesium 

carbonate 

Mg Red blood cell hydration 

Nitric oxide Nitrogen oxide NO Vasodilator 

Sodium Nitrate Caliche NaNO3 Vasodilator 

Cholecalciferol 25-hydroxyvitamin D3 Vitamin D3 Supplementary vitamin 

Saproterin dihydrochloride (6R)-2-Amino-6-[(1R,2S)-1,2-dihydroxypropyl]-

5,6,7,8-tetrahydro-4(1H)-pteridinone dihydrochloride 

Kuvan Phenylalanine Hydroxylase activator 

Senicapoc ICA 17043 ICA-17043; KCa3.1 programme, 
Icagen; senicapoc 

Gardos channel inhibitor 

Arginine 2-Amino-5-guanidinopentanoic acid Arg Vasodilator 

HQK 1001 2,2-Dimethylbutyrate Sodium ST20 Gamma globin gene promoter 

MP4CO Pegylated hemoglobin saturated with carbon 
monoxide 

Haemoglobin, Sangart-3; MP-4, 
Sangart; MP4; MP4-CO; MP4CO; 

PEG carboxyhemoglobin, Sangart; 

Pegylated carboxyhemoglobin, 
Sangart 

Prevents microvascular stasis 

L-citrulline 2-amino-5-(carbamoylamino)pentanoic acid Asklepion; citrupress Vasodilator 

NKTT120 NKTT-120 NKTT-120 Reduce chronic inflammation associated with 

sickle cell disease 

AES-103 5-hydroxymethyl-2-furfural 5-HMF; Xechem Anti-sickling agent 

Varespladib sodium A-001 A-001; LY-315920; LY-315920Na; Inhibitor of secretory  phospholipases A2 (sPLA2) 
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LY315920-Na; LY315920/S-5920 ; 

S-5920; varepladib sodium; 

TRF-1101 Pentosan polysulfate sodium TRF-1101 Anti-sickling agent 

Glutamine Glutamine Gin, Q Anti-sickling agent 

PF 04447943 6-[(3S,4S)-4-methyl-1-(pyrimidin-2-

ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-

yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one 

PDE-IX; PDE9i; phosphodiesterase 

9A inhibitor; PF-4447943 

Selective PDE 9 inhibitor 
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