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New Functions for Alpha-Catenins in Health and Disease: From 
Cancer to Heart Regeneration

Alexia Vite, Jifen Li, and Glenn L. Radice#

Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, 
Philadelphia, PA, USA

Abstract

Strong cell-cell adhesion mediated by adherens junctions is dependent on anchoring the 

transmembrane cadherin molecule to the underlying actin cytoskeleton. To do this, cadherin 

cytoplasmic domain interacts with catenin proteins, which include α-catenin that binds directly to 

filamentous actin. Originally thought to be a static structure, the connection between the cadherin/

catenin adhesion complex and the actin cytoskeleton is now considered to be dynamic and 

responsive to both intercellular and intracellular signals. Alpha-catenins are mechanosensing 

proteins that undergo conformational change in response to cytoskeletal tension thus modifying 

the linkage between the cadherin and the actin cytoskeleton. There are three α-catenin isoforms 

expressed in mouse and human: αE-catenin (CTNNA1), αN-catenin (CTNNA2), and αT-catenin 

(CTNNA3). This review summarizes recent progress in understanding the in vivo function(s) of α-

catenins in tissue morphogenesis, homeostasis, and disease. The role of α-catenin in the regulation 

of cellular proliferation will be discussed in the context of cancer and regeneration.
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Introduction

Alpha-catenins are mechanosensing proteins associated with the cytoplasmic domain of 

classical cadherins, a family of transmembrane cell adhesion molecules, found in adherens 

junctions (AJs) of well-polarized cells (e.g., epithelial cells). Three α-catenin subtypes are 

present in mouse and human: CTNNA1 (αE-catenin, epithelial), CTNNA2 (αN-catenin, 

neural), and CTNNA3 (αT-catenin, testis). Alpha-catenins contain three vinculin homology 

domains, N-terminal α-catenin-binding site, and a C-terminal domain that interacts with F-

actin facilitating linkage of the cadherin/α-catenin complex with the actin cytoskeleton 

(Kobielak and Fuchs, 2004). The α-catenin homolog, plakoglobin (α-catenin), is also 

capable of binding the C-terminus of cadherins and interacting with α-catenins. In addition 
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to vinculin, α-catenins can interact with myriad actin-binding proteins either directly or 

indirectly thus regulating actin dynamics and assembly at the AJ (Fig. 1). Recent studies are 

beginning to elucidate the molecular mechanism(s) by which α-catenins and its actin-

binding partners, particularly vinculin, transduce mechanical force from the cadherin/catenin 

complex to the cytoskeleton (Barry et al., 2014; Leerberg et al., 2014; Thomas et al., 2013; 

Yonemura et al., 2010). Change in actomyosin contractility or tension at the AJ alter the 

conformation of α-catenin allowing it to interact with vinculin and thus strengthening the 

link between the AJ and the actin cytoskeleton (Yonemura et al., 2010).

Phylogenetic studies indicate αN-catenin is the common ancestor of αE- and αT-catenins 

(Hulpiau et al., 2013; Zhao et al., 2011). αE-catenin arose from a vertebrate-specific 

subphylum duplication whereas αT-catenin resulted from an amniote-specific gene 

duplication event. The functional significance of this latest CTNNA gene duplication will be 

discussed later in light of a specialized junctional complex recently identified in hearts of 

higher vertebrates. Interestingly, α-catenin predates cadherin as it was recently identified in 

the non-metazoan Dictyostelium discoideum that lacks a cadherin homolog (Dickinson et al., 

2011). Like metazoan α-catenin, Ddα-catenin bind and bundle actin filaments and bind the 

α-catenin-related protein Aardvark. Most importantly, knockdown of Ddα-catenin disrupted 

the polarized organization of the tip epithelium demonstrating the requirement for the 

catenin complex for epithelial polarity in D. discoideum, a function conserved in metazoans. 

The role of α-catenin in embryonic morphogenesis has been studied in invertebrates 

including C. elegans and Drosophila (Maiden and Hardin, 2011). This review highlights 

genetic studies in mice investigating the requirement of the different α-catenin subtypes in 

various tissues and the significance of α-catenins in human disease.

αN-catenin and CNS development

αN-catenin expression is restricted to the central nervous system (CNS) in mice, suggesting 

a unique role in mammalian brain development where cadherin function is required for 

normal synaptic activity (Takeichi and Abe, 2005). It was discovered that the spontaneous 

cerebellar deficient folia (cdf) mutation identified in a mouse colony at The Jackson 

Laboratory (Cook et al., 1997) is caused by a 150 kb deletion that includes the 3 end of the 

Ctnna2 gene encoding the F-actin-binding site (Park et al., 2002). The cdf mutant mice 

exhibit cerebellar ataxia and other abnormal behaviors including a deficit in fear-potentiated 

startle. Another group reported that in a conventional knockout of Ctnna2, the majority of 

the mutant mice die within 24 hours after birth (Togashi et al., 2002). The phenotypes 

reported include abnormal migration of Purkinje cell precursors in the cerebellum (Park et 

al., 2002; Togashi et al., 2002). They also include impaired dendritic spine morphogenesis in 

the hippocampal neurons that causes the formation of unstable synaptic junctions (Abe et al., 

2004; Togashi et al., 2002). Transgenic expression of αN-catenin was able to restore normal 

cerebellar architecture in the cdf/cdf mice thus confirming that deletion of Ctnna2 was 

responsible for the cdf mutant phenotype (Park et al., 2002). Despite the widespread 

expression of αN-catenin in the brain, neuronal defects are restricted to specific regions in 

the αN-catenin mutant brain. αE- and/or αT-catenin may compensate, at least partially, for 

loss of αN-catenin in the brain. αE-catenin is primarily expressed in neural progenitors 

whereas αN-catenin is expressed later in differentiated neurons (Lien et al., 2006; Stocker 
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and Chenn, 2006). Like αN-catenin, αT-catenin is also expressed in the mouse cerebellum 

(Vanpoucke et al., 2004). To understand the overall requirement for α-catenins in the adult 

brain it will be necessary to generate neuronal-specific double and triple α-catenin knockout 

mouse models.

αE-catenin in cancer development

Originally identified as an αE-cadherin-associated protein in epithelial cells (Nagafuchi and 

Takeichi, 1989; Ozawa et al., 1989), it is now appreciated that αE-catenin is expressed in 

most if not all cell types including neuron and muscle. Germline deletion of Ctnna1 in mice 

disrupts development of the trophoblast epithelium resulting in mutant blastocysts incapable 

of hatching from the zona pellucida and implanting in the uterus (Torres et al., 1997). 

Despite the presence of αE-cadherin/α-catenin complex at the plasma membrane, the mutant 

embryos are unable to generate a blastocoelic cavity. αE-cadherin-null embryos exhibit a 

similar trophectoderm defect (Larue et al., 1994). Taken together, these data support an 

essential role for αE-catenin in αE-cadherin-mediated adhesion in the early preimplantation 

embryo.

To bypass the requirement for αE-catenin in the early embryo, several groups have used 

Cre/lox technology to investigate its function in a tissue-specific manner during embryonic 

morphogenesis and in the adult (Table 1). The Fuchs group initially reported deleting 

Ctnna1 in the mouse epidermis beginning at embryonic day 13.5 (E13.5) using the 

keratin14-Cre (K14-Cre) transgene (Vasioukhin et al., 2001). Newborn αE-catfl/fl; K14-Cre 

mice exhibit multiple defects including loss of large patches of epidermis and decrease in 

hair follicles. Despite the presence of αE-cadherin/α-catenin complexes at the plasma 

membrane, ultrastructural examination of the epidermis showed intercellular gaps with a 

decrease in desmosomes and tight junctions. Remarkably, dividing keratinocytes were not 

only observed in the basal but also the suprabasal layers leading to a thick, disorganized αE-

cat-null epidermis. The partial loss of cell polarity, hyperproliferation, large multinucleated 

keratinocytes, and mitoses in multiple cell layers resembled squamous cell carcinoma in 

situ, a precancerous condition observed in humans. The proliferation phenotype is not 

simply due to a cell adhesion defect or injury response as desmoplakin knockout skin 

displayed similar epidermal separation and peeling phenotype but no increase in 

keratinocyte proliferation. Furthermore, it was shown that loss of αE-catenin caused 

sustained activation of the Ras-MAPK pathway, and Erk1/2 pathway inhibitors were 

capable of blocking the hyperproliferation of the epidermal keratinocytes in vitro 

(Vasioukhin et al., 2001). Depending on the cellular context, α-catenins can modulate 

different signal transduction pathways involved in cell growth and survival. In the 

developing CNS, deletion of Ctnna1 at E10.5 using Nestin-Cre resulted in mice with 

enlarged brains that die between 2 and 3 weeks of age (Table 1)(Lien et al., 2006). 

Expansion of the cerebral cortex in the mutant embryos is due to increased proliferation and 

decreased apoptosis in neural progenitors. Similar to the αE-cat-null epidermis (Vasioukhin 

et al., 2001), the loss of cell polarity did not affect neuronal differentiation in the αE-cat-null 

brains. Using microarray gene expression analysis, the Vasioukhin group found that Gli1, a 

downstream effector of the Hedgehog (Hh) pathway, was upregulated in the αE-cat-null 

brains. They showed that administration of cyclopamine, an inhibitor of the Hh pathway, to 
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αE-catfl/fl; Nestin-Cre embryos at E12.5 rescue the hyperplasia and apoptosis abnormalities 

in the cerebral cortex. Together, these data suggest that αE-catenin can regulate proliferation 

of epidermal and neural progenitor cells via distinct signaling pathways.

The Hippo pathway is critical for controlling organ growth in Drosophila and vertebrates 

(Barry and Camargo, 2013; Halder and Johnson, 2011). The core Hippo pathway consists of 

a cascade that signals from kinase Mst1/2 (Hippo in flies) to kinase Lats1/2 (Warts in flies) 

to limit the activity of the Yes-associated protein (Yap, Yorki in flies), a transcriptional 

coactivator that binds to the TEAD transcriptional factors to induce expression of cell cycle 

regulators and other target genes. The discovery that Yap activity in the epidermis does not 

depend on the canonical Hippo pathway kinases led the Camargo group to examine 

alternative regulatory mechanisms (Schlegelmilch et al., 2011). To identify novel Yap 

regulatory proteins, Yap immunoprecipitation was performed on high-density keratinocyte 

cultures followed by mass spectrometry analysis. This screen identified αE-catenin as the 

most common interaction partner with Yap. αE-catenin binds indirectly to Yap via the 

adaptor protein 14-3-3, which was also identified in the Yap complexes by mass 

spectroscopy, suggesting a tripartite complex composed of αE-catenin, 14-3-3, and Yap. 

The cellular localization of Yap is very much dependent on the cell’s interactions with its 

neighbors (i.e., low versus high cell density). In high-density keratinocyte cultures, Yap is 

no longer localized to the nucleus but primarily cytoplasmic along with co-localization with 

αE-catenin at AJs. Knockdown in cultured keratinocytes or genetic depletion of αE-catenin 

in epidermis (i.e. αE-catfl/fl; K14-Cre) caused Yap to translocate to the nucleus resulting in 

hyperproliferation. Conversely, overexpression of αE-catenin in low-density keratinocyte 

cultures caused relocalization of Yap from the nucleus to the membrane. Interestingly, 

knockdown of other AJ components such as αE-cadherin or α-catenin did not affect the 

localization or activity of Yap suggesting that Yap hyperactivation is not due simply to loss 

of AJ-mediated cell adhesion. Phosphorylation of Yap at Ser127 causes cytoplasmic 

retention of Yap and thus inhibits its ability to induce transcription of target genes. In cells 

with reduced αE-catenin, Yap was found to interact with the phosphatase PP2A suggesting 

that αE-catenin together with 14-3-3 may regulate Yap activity by protecting the inactive, 

phosphorylated form of Yap from activation by PP2A. Further studies are necessary to 

clarify the role of αE-catenin in Yap regulation, including the involvement of other Yap 

interacting proteins such as angiomotins (Moleirinho et al., 2014).

Given the role of αE-catenin in regulating normal tissue growth, it is not surprising that it is 

involved in aberrant growth associated with cancer. Using GFAP-Cre, the Vasioukhin group 

deleted Ctnna1 in the hair follicle stem cell niche at postnatal day 2 resulting in mostly bald 

mice (Table 1)(Silvis et al., 2011). Over time the αE-catfl/fl; GFAP-Cre mice developed 

extensive skin lesions with inflammation and tumors that resembled human squamous cell 

carcinoma of the keratoacanthoma type. The inactivation of p53, which often occurs in 

human keratoacanthoma, led to completely penetrant, early-onset, multifocal 

keratoacanthoma in αE-catfl/fl; p53fl/fl; GFAP-Cre mice without the skin inflammation. A 

siRNA screen was performed to identify signaling pathways involved in the αE-catenin-

dependent inhibition of cell growth. Like the Camargo group (Schlegelmilch et al., 2011), 

the Vasioukhin group identified Yap as being required for the hyperproliferation. As 
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predicted, Yap was localized to the nucleus in the hair follicle cysts and tumors in the αE-

catfl/fl; GFAP-Cre mice. Consistent with the mouse data, decreasing αE-catenin is associated 

with increased nuclear Yap in human keratoacanthoma tumors.

Loss of αE-catenin has also been reported in other types of cancer (Ding et al., 2010; Fu et 

al., 2010; Liu et al., 2007; Piao et al., 2014; Raftopoulos et al., 1998). Interstitial loss of all 

or part of the long arm of chromosome 5 is a frequent clonal chromosomal abnormality in 

human myelodysplastic syndrome (MDS, a preleukemic disorder) and acute myeloid 

leukemia (AML). It was reported that CTNNA1, one of 12 genes contained within the 5q 

deletion, is expressed at lower levels in individuals with MDS or AML (Liu et al., 2007). 

Analysis of a myeloid leukemia line containing the 5q deletion showed that the CTNNA1 

promoter of the retained allele is suppressed by both methylation and histone modification. 

Restoration of αE-catenin resulted in reduced proliferation and apoptotic cell death. 

Together, these data suggest that loss of expression of the αE-catenin tumor suppressor in 

hematopoietic stem cells may provide a growth advantage that contributes to human MDS or 

AML with 5q deletion.

Emerging evidence suggests dual roles for αE-catenin in colon cancer. Mutation of the 

adenomatous polyposis coli (APC) tumor suppressor is an early step in most sporadic colon 

cancers, and APC mutations in inherited familial adenomatous polyposis (FAP) lead to early 

onset of the disease (Aoki and Taketo, 2007). Lost or reduced expression of αE-catenin is 

associated with colon cancer progression (Raftopoulos et al., 1998; Vermeulen et al., 1995; 

Vermeulen et al., 1999). Moreover, insertional mutagenesis in Apc mutant mice (i.e., 

Sleeping Beauty transposon system) identified Ctnna1 as a common insertion site for 

promoting tumorigenesis in cooperation with APC (March et al., 2011). Interestingly, a 

different genetic study showed that αE-catenin is essential for the initiation of intestinal 

adenomas in Apc580D/+ mice (Shibata et al., 2007). The Apc and Ctnna1 genes are located in 

close proximity (~ 1 Mbp) on mouse chromosome 18. Deletion of one Ctnna1 allele in the 

Apc580D/+ background led to a decreased number of intestinal polyps compared to 

Apc580D/+ with wild-type levels of αE-catenin. Researchers recently demonstrated that αE-

catenin interacts with APC and facilitates α-catenin proteolysis through stabilizing the 

destruction complex thus repressing Wnt/α-catenin target gene expression (Choi et al., 

2013). It remains to be determined how αE-catenin influences adenoma formation in the 

Apc580D/+ mouse model. Additional mechanistic studies are required to understand the dual 

roles of αE-catenin in intestinal tumorigenesis, a supporting role in tumor initiation, and a 

suppressive role in tumor progression.

Downregulation of αE-catenin is also involved in the pathogenesis of basal-like breast 

cancer (Ding et al., 2010; Piao et al., 2014). Yap activation does not appear to be involved in 

this cancer type. Instead, αE-catenin was found to inhibit NF-kB signaling in αE-cadherin-

negative basal-like breast cancer (Piao et al., 2014). Not normally thought of as tumor 

suppressor genes, mutations in CTNNA2 and CTNNA3 were recently identified in laryngeal 

squamous cell carcinoma (Fanjul-Fernandez et al., 2013) thus implicating all three CTNNA 

genes in tumor development.
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α-catenins and mechanical coupling in the heart

The coordinated contraction of the heart depends on the proper mechanical and electrical 

coupling of cardiomyocytes. To achieve this goal cardiomyocytes are connected end-to-end 

by a specialized structure called the intercalated disc (ICD) that serves as an organizing 

center for various cell surface proteins including junctional complexes critical for cell-cell 

attachment and cell-cell communication. The ICD was reported to contain three distinct 

intercellular junctions: adherens junction (AJ), desmosome (Des), and gap junction (GJ) 

(Forbes and Sperelakis, 1985).

AJ and Des provide mechanical attachment between the myocytes by anchoring the actin 

cytoskeleton and intermediate filaments, respectively, at the ICD. GJs are plaques of 

multiple intercellular channels that connect the cytoplasm of adjacent cells. A major role of 

GJs in the myocardium is to enable the rapid and coordinated electrical excitation, a 

prerequisite for normal rhythmic cardiac function. It is well established from animal models 

(Peters et al., 1997) and human diseased myocardium (Peters et al., 1993) that altered gap 

junction expression referred to as gap junction remodeling contributes to arrhythmogenesis.

Until recently it was thought that AJ and Des represent distinct junctional complexes of the 

ICD. The desmosomal components expressed in the ICD include desmoplakin (DP), 

plakoglobin (PG), plakophilin2 (PKP2), desmocollin2 (DSC2), and desmoglein2 (DSG2). 

The idea of a mixed-type junctional complex as part of the normal heart structure was first 

suggested in 2006 (Franke et al., 2006). In this study, the authors revealed the presence of 

DP and PKP2 in desmosomes as well as “adherens junction-like” structures by 

immunoelectron microscopy. These ‘hybrid adhering junctions’ or ‘areae compositae’ 

contain both AJ and Des proteins and comprise the majority of intercellular junctions in 

heart muscle (Borrmann et al., 2006; Franke et al., 2006). Interestingly, the area composita 

is not found in lower vertebrates (Pieperhoff and Franke, 2008), which suggests that it might 

have evolved to support the increased mechanical load on the mammalian heart by 

anchoring both actin and intermediate filaments over an extended junctional area of the ICD. 

The area composita will be discussed later in the context of specific interactions between the 

AJ and Des components, αT-catenin and PKP2.

The importance of these adhesion molecules in the heart is highlighted by the fact that 

human mutations in genes encoding desmosomal proteins cause arrhythmogenic 

cardiomyopathy (AC), also known as arrhythmogenic right ventricular cardiomyopathy 

(ARVC), a hereditary heart muscle disease that causes sudden cardiac death (SCD) in young 

people and athletes (Thiene, 2012). The pathological features of AC consist of progressive 

loss of cardiomyocytes, myocardial degeneration, and compensatory replacement with fibro-

fatty tissue. AC is considered a disease of the desmosome since about half of patients carry a 

mutation in one of the five genes encoding desmosomal proteins expressed in the heart 

(Rampazzo et al., 2014). A hallmark of AC is incomplete penetrance and variable 

expressivity of the disease phenotype making it difficult for clinicians to advise patients of 

their risk of SCD. Adding further to the genetic complexity AC patients were recently 

identified with more than one mutation in the same or different desmosomal gene, 
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suggesting that AC might require multiple genetic hits in the cell adhesion complex to elicit 

a cardiac phenotype (Bauce et al., 2010; Xu et al., 2010).

In the heart, there are two α-catenins expressed: the ubiquitously expressed αE-catenin and 

the largely cardiac-restricted αT-catenin. The cardiac-specific αE-catenin CKO model (αE-

catfl/fl; MLC2v-Cre) presents with progressive left ventricular dilatation associated with a 

thinning right ventricular anterior wall leading to a high susceptibility to cardiac rupture 

following myocardial infarction (Table 1)(Sheikh et al., 2006). Loss of αE-catenin did not 

affect the expression of junctional components located in the area composita, Des, or GJ and 

no arrhythmias were reported in these mice. However, vinculin, a binding partner of αE-

catenin, was decreased in the αE-catenin CKO heart. Another group reported significant 

mortality in αE-catenin heterozygous null mice following myocardial infarction (van den 

Borne et al., 2008) further supporting the importance of αE-catenin following ischemic 

injury.

Present only in higher vertebrates, αT-catenin is the newest member of the α-catenin family 

(Zhao et al., 2011). It is predominantly expressed in the heart and testis with lower 

expression in other tissues including the brain (Janssens et al., 2001). Analysis of the human 

CTNNA3 promoter showed that cardiomyocyte expression is dependent on interaction of 

GATA4 transcription factor with a conserved 5 region of CTNNA3 gene (Vanpoucke et al., 

2004). Recent evidence suggests a unique role for αT-catenin in the formation of the hybrid 

junction or area composita in the heart. Using yeast two-hybrid and co-immunoprecipitation, 

αT-catenin was shown to bind the desmosomal protein PKP2 (Goossens et al., 2007a). By 

contrast, αE-catenin lacks PKP2 binding capacity. Importantly, immunoelectron microscopy 

demonstrated co-localization of αT-catenin and PKP2 in the area composita but not the Des. 

It is possible that the CTNNA3 gene evolved, at least in part, to allow the formation of the 

hybrid adhering junction or area composita in the heart of amniotes (Pieperhoff and Franke, 

2007; Pieperhoff and Franke, 2008). In addition, it is important to note that αT-catenin is 

found in amniotes that have a four-chambered heart while it is absent in amphibians that 

have a three-chambered heart. It is interesting to speculate that the septation of the ventricle 

in terrestrial vertebrates required a novel, more extended hybrid-type junction to support the 

mechanical load needed to effectively pump blood throughout the pulmonary and systemic 

circulations.

Characterization of an αT-catenin KO mouse model confirmed the link between αT-catenin 

and PKP2 in the area composita and its essential role in cardiac function (Li et al., 2012). In 

contrast to germline deletion of αE-catenin (Torres et al., 1997), αT-catenin-null mice are 

viable and fertile (Li et al., 2012). Loss of αT-catenin in the area composita leads to early 

onset of dilated cardiomyopathy, gap junction remodeling, and an increased susceptibility to 

ventricular arrhythmia in the setting of ischemia/reperfusion injury. The expression and 

distribution of area composita and Des components are not affected in the αT-catenin KO 

heart, with the exception of PKP2. The more severe cardiac phenotype in the αT-catenin KO 

compared to the αE-catenin CKO model reveals a unique role for αT-catenin in cardiac 

homeostasis (Li et al., 2012). The disruption of the αT-catenin-PKP2 interaction may affect 

the spatial organization of additional junctional components located in the area composita. 

The Delmar group has shown that PKP2 interacts with Cx43 as well as the sodium channel 
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Nav1.5 in cardiomyocytes (Oxford et al., 2007; Sato et al., 2011; Sato et al., 2009). Further 

characterization of the αT-catenin KO model is warranted to determine the molecular 

mechanism(s) responsible for arrhythmogenesis in these animals. The unique ability of αT-

catenin to interact with PKP2 provides a new paradigm for understanding the molecular 

integration of the junctional components including GJs and ion channels.

Recently, two mutations in the human CTNNA3 (αT-catenin) gene were identified in AC 

patients suggesting that perturbation of the area composita may play a critical role in the 

etiology of this disease (van Hengel et al., 2013). One CTNNA3 mutation found in this 

screen of 76 AC patients inhibits the interaction between αT-catenin and β-catenin leading 

to a mislocalization of αT-catenin into the cytoplasm of HL-1 myocardial cells. The second 

CTNNA3 mutation increases dimerization of αT-catenin, which might create aggresomes 

and disturb its function. This is the first time a cell adhesion molecule outside the 

desmosome has been implicated in the etiology of AC. Further studies in animal models are 

necessary to elucidate the consequences of the reported CTNNA3 mutations in the working 

myocardium.

α-catenins and cardiac regeneration

Study of the growth patterns of rodent cardiac myocytes during early postnatal period 

demonstrates that myocyte number reaches a peak at 4 days of age, remaining unchanged 

thereafter (Li et al., 1996). At this time point, myocyte volume and binucleation increase 

leading to enlargement of the heart via hypertrophic growth. Binucleation results from DNA 

replication with karyokinesis but not cytokinesis. During the fetal and early postnatal period 

the cardiomyocyte elongates, myofibrils align, and maturation occurs resulting in a rod-

shaped cardiomyocyte. During this morphological progression the αN-cadherin/catenin 

complex, initially distributed all along the cell borders, becomes restricted to the polarized 

ends of the cell to form the mature ICD (Fig. 2)(Hirschy et al., 2006). Interestingly, the 

redistribution of the N-cadherin/catenin complex to the ICD coincides with cell cycle 

withdrawal and differentiation of cardiomyocytes during the postnatal period (Li et al., 

1996; Soonpaa et al., 1996), suggesting a role for areae compositae in myocardial growth 

control.

In support of this idea, it was recently reported that interfering with area composita proteins 

αE- and αT-catenin in the neonatal heart (αE-catfl/fl; αT-catfl/fl; MHC-Cre) perturbs ICD 

maturation and causes sustained cardiomyocyte proliferation in the adult heart (Table 1)(Li 

et al., 2014). It was shown that α-catenins are required for the proper organization of the N-

cadherin/catenin complex at the ICD in αE-catfl/fl; αT-catfl/fl; MHC-Cre (α-cat DKO) 

cardiomyocytes. The hyperproliferation phenotype resulted in an increased number of 

cardiomyocytes in both postnatal day 7 and adult α-cat DKO hearts, a time period when 

cardiomyocyte cytokinesis has normally ceased. Loss of α-catenins led to translocation of 

Yap to the nucleus and increased expression of cell cycle genes. Like in epithelial cells, 

these data show that α-catenins can regulate Yap cellular distribution and activity in heart 

muscle. The cardiac phenotype depends on the developmental period when the Ctnna1 and 

Ctnna3 genes are deleted. Interestingly, deletion of both Ctnna genes in the adult heart when 

the ICD is already formed does not stimulate cardiomyocyte proliferation (αE-catfl/fl; αT-

Vite et al. Page 8

Cell Tissue Res. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



catfl/fl; MHC-MerCreMer). This model, referred as IN-DKO, requires the administration of 

tamoxifen to the animal in order to induce deletion of Ctnna1 and Ctnna3 genes specifically 

in adult heart muscle. The presence of an established mature ICD structure in the adult heart 

may explain why ablation of both α-catenins at that time is not sufficient to elicit the 

proliferation phenotype. In comparison, deletion of both Ctnna genes during cardiac 

morphogenesis (αE-catfl/fl; αT-catfl/fl; Tnnt2-Cre) causes embryonic lethality around mid-

gestation (Radice, G. unpublished data). Further studies are necessary to characterize the 

embryonic lethal phenotype in this model.

It was reported that altered αN-cadherin expression and ICD remodeling occurs in the 

border zone of infarcted rat hearts (Matsushita et al., 1999). In another study, αE-catenin 

was reported to be preferentially downregulated in both the remote and infarct area of 

human hearts (van den Borne et al., 2008). Interestingly, inactivation of α-catenins in mice 

subjected to myocardial infarction induced cardiomyocyte regeneration and improved heart 

function (Li et al., 2014). The increase proliferation was accompanied by an increase in 

Yap-positive cardiomyocyte nuclei in the border zone and infarct zone in the α-cat IN-DKO. 

Whether Yap regulation by α-catenins is mechanistically similar between epithelial cells and 

heart muscle is not known. Future studies investigating details of these interactions would 

provide important insights into mechanisms underlying α-catenin/Yap-mediated cardiac 

regeneration.

αT-catenin function outside the heart

In addition to heart muscle, αT-catenin is expressed in testis, brain, and skeletal muscle 

(Janssens et al., 2001). Despite its high expression in testis, male mice carrying a mutation in 

Ctnna3 are fertile (Li et al., 2012). A testis-specific alternative transcript (AT-X) was 

discovered that encodes for a truncated αT-catenin protein (70 kDa) referred to as isoform-X 

(Goossens et al., 2007b), which might explain the normal spermatogenesis observed in the 

αT-cat-null mice (Frans van Roy, personal communication). The original Ctnna3 mutant 

allele contains a deletion of exon 3 resulting in loss of the full-length αT-catenin protein (Li 

et al., 2012). However, the putative AT-X promoter, located in intron 6, transcribes a novel 

exon X and the remainder of the murine Ctnna3 gene resulting in isoform-X. Despite the 

absence of the full-length αT-catenin protein, the presence of isoform-X likely explains the 

normal spermatogenesis in the αT-cat-null mice (Frans van Roy, personal communication). 

Interestingly, the truncated isoform-X lacks the N-terminus α-catenin binding site and its 

expression is restricted to elongating spermatids. The functional significance of this 

expression pattern may relate to the fact that isoform-X binds l-afadin strongly whereas the 

full-length αT-catenin protein interacts weakly with l-afadin. Importantly, the l-afadin 

protein is involved in formation of another cell-cell adhesion complex, the nectin/afadin/

ponsin (NAP) complex, present in the testis. Interestingly, loss of the nectin-2 part of the 

NAP complex perturbs interaction between Sertoli cells and elongated spermatids and 

results in defective sperm and infertility in mice (Mueller et al., 2003). It will be interesting 

to determine whether isoform-X regulates Sertoli-germ cell interactions via the NAP 

adhesion complex. To understand the functional relevance of truncated isoform-X in male 

germ cell maturation it will be necessary to generate isoform-X specific knockout mice.
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The genetic mechanisms behind common complex diseases such as asthma are derived from 

multiple genes with minor effects. Genome-wide association (GWA) studies screening 

hundreds of thousands of single-nucleotide polymorphisms (SNPs) simultaneously using 

microarray systems have proved useful for identifying genetic changes that contribute to 

complex diseases. CTNNA3 is one of the largest genes in the human genome with 18 exons 

spanning 2.3 Mbp on chromosome 10q21 (Janssens et al., 2003). Two independent GWA 

studies identified multiple polymorphisms of CTNNA3 associated with increased 

susceptibility to toluene diisocyanate-induced asthma in Korean (Kim et al., 2009) and 

Canadian (Bernstein et al., 2013) workers. One of the CTNNA3 polymorphisms associated 

with occupational asthma is also associated with childhood asthma and response to therapy 

(Perin and Potocnik, 2014). Based on αT-catenin expression pattern, it is unclear how this 

largely cardiac-restricted α-catenin isoform might affect lung physiology. Interestingly, it 

was recently discovered that αT-catenin is expressed in lung within the cardiac sheath of 

pulmonary veins (Folmsbee et al., 2014). The same group found that αT-cat-null mice have 

altered lung mechanics demonstrated by increased pressure-volume curve area suggesting 

loss of αT-catenin affects lung hysteresis. Moreover, the Tcat-null lungs show increased 

hyperresponsiveness to chemical challenge. These data suggest that αT-catenin may 

contribute to asthma through a mechanism independent of inflammation and related to 

cardiac and pulmonary vein dysfunction.

Other GWA studies have associated CTNNA3 polymorphisms with late onset Alzheimer’s 

disease (LOAD) (Ertekin-Taner et al., 2003; Lincoln et al., 2013; Martin et al., 2005; 

Miyashita et al., 2007; Myers et al., 2000). These GWA data are complicated because 

embedded in the intronic sequence of the large CTNNA3 gene is a gene encoding leucine 

rich repeat transmembrane protein3 (LRRTM3). Importantly, LRRTM3 is involved in 

amyloid metabolism (Majercak et al., 2006). Like CTNNA3, LRRTM3 is a synaptic protein, 

therefore both CTNNA3 and LRRTM3 are positional candidate LOAD risk genes. αT-catenin 

is expressed in neurons where it localizes to the synapse as part of the cadherin/catenin 

complex, and thus it is interesting to speculate that altering αT-catenin expression and/or 

function might affect neuronal connectivity and survival in aging human brains. Further 

analysis of αT-catenin mouse models is warranted because it may provide phenotypic data 

to support CTNNA3 as a risk gene for Alzheimers and pre-eclampsia (van Dijk et al., 2010).

Concluding remarks

The first indication that αE-catenin has other functions in the cell, besides anchoring the 

cadherin/catenin complex to the actin cytoskeletal network, came from conditional knockout 

studies in the mouse epidermis (Vasioukhin et al., 2001). The surprising hyperproliferation 

phenotype in the cat-null epidermis has now been observed in other cell types including 

neural progenitors (Lien et al., 2006) and cardiomyocytes (Li et al., 2014). In the absence of 

α-catenins, different signaling pathways likely converge to stimulate cell cycle activity with 

Yap as a major contributor to the proliferative phenotype. Although biochemical assays have 

identified α-catenin (Schlegelmilch et al., 2011; Silvis et al., 2011) and catenin (Radice, G. 

unpublished data) as novel binding partners with Yap, there is no consensus regarding how 

α-catenins control Yap cellular localization and activity. The mechanism is likely 

independent of the canonical Hippo signaling pathway. Interestingly, actin cytoskeleton 
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remodeling and tension can also regulate Yap nuclear translocation and activity although the 

molecular mechanism is poorly understood (Halder et al., 2012). As cytoskeletal 

modulators, α-catenins are good candidates to control Yap activity by modifying 

intercellular and intracellular tension mediated through AJs and the underlying cytoskeleton.

The three mammalian α-catenin subtypes exhibit overlapping yet distinct expression 

patterns that might complicate interpretation of knockout phenotypes particularly in the CNS 

where E-, T-, and αN-catenin are all expressed to some degree. In the heart, the 

characterization of single and double knockout α-catenin models has provided important 

insight into α-catenin subtype specific functions. αT-catenin is the only α-catenin that 

contains a PKP binding domain. This binding domain allows it to serve as a molecular 

integrator between AJs and Des at the area composita, a unique junctional complex found 

exclusively in the myocardium of higher vertebrates (Goossens et al., 2007a). As might be 

predicted, in comparison to αE-catenin, depletion of αT-catenin affected to a greater extent 

the structural integrity of the heart; this was demonstrated by earlier onset of 

cardiomyopathy and susceptibility to arrhythmias (Li et al., 2012; Sheikh et al., 2006). 

Notably, mutations in human CTNNA3 have been identified in AC patients (van Hengel et 

al., 2013) consistent with an important role for αT-catenin in ICD organization and function.

In addition to the hyperproliferation phenotype in the αE- and αT-catenin DKO hearts, 

further studies are necessary to determine how loss of α-catenins affects intercellular 

adhesion and mechanotransduction in the heart, a tissue under significant mechanical load. 

Since α-catenins are known to function as mechanosensors, it will be of interest to 

determine the response of the α-cat DKO mice to different cardiac stress such as α-

adrenergic stimulation. During cardiac regeneration, an essential step in the de-

differentiation of adult cardiomyocytes is cardiomyocyte detachment from its neighbors and 

disassembly of their sarcomeric structure to facilitate cell cycle reactivation. In addition to 

regulating Yap activity, loss of α-catenins may contribute to regeneration by weakening the 

area composita thus facilitating disassembly of the ICD and myofibrils resulting in 

proliferation of adult cardiomyocytes in the infarct zone and border zone of the ischemic 

area. Functional interference with α-catenins or its downstream targets in the heart may 

represent a novel mechanism for enhancing signaling pathways beneficial in cardiac repair.

The in vivo consequences of depleting α-catenins depend very much on the state of 

maturation of the ICD in the cell at that particular time. This is best illustrated in the heart 

where both αE- and αT-catenin have been simultaneously depleted at different stages of 

heart development (Li et al., 2014). The α-catenin DKO phenotype is most severe when αE- 

and αT-catenin are both depleted during early cardiac morphogenesis resulting in embryonic 

lethality consistent with the importance of α-catenins in mediating cytoskeletal remodeling 

during morphogenesis. In contrast, depletion of α-catenins in the adult myocardium when 

the ICD is already formed has little if any consequence on tissue architecture. In 

comparison, simultaneous deletion of α-catenin (Ctnnb1)and α-catenin (Jup) in adult heart 

muscle results in loss of αN-cadherin, disassembly of the ICD, and SCD (Swope et al., 

2012). Taken together, the αE-/αT-catenin and α-/α-catenin DKO models illustrate the 

different functional requirement of catenins in the αN-cadherin/catenin adhesion complex in 

the adult heart. Moreover, cardiac-specific depletion of vinculin, a major effector of α-
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catenin mechanosensing, does not cause hyperproliferation (Zemljic-Harpf et al., 2007) 

indicating loss of the α-catenin/vinculin interaction at the AJ is not likely responsible for the 

increase in Yap activity.

Although α-catenin and α-catenin were discovered together as cadherin-associated proteins 

25 years ago, α-catenin with its Wnt connection went on to become the darling of the 

cadherin/catenin complex. Well overdue, it is now α-catenin’s time in the spotlight.
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Figure 1. Schematic of α-catenin and its interacting partners
α-catenin contains three vinculin homology domains (VH1-3). α-catenin modulates actin 

assembly and dynamics directly and indirectly by acting as a scaffold for various actin 

regulatory proteins shown below the α-catenin structure. Note the plakophilin-binding 

domain is only present in αT-catenin.
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Figure 2. Schematic representation of heart muscle development in rodents
A timeline depicts changes in cardiomyocyte morphology, myofibril organization, 

intercalated disc maturation, and growth properties. Notably, intercalated disc formation in 

the postnatal heart coincides with loss of nuclear Yap and cell cycle withdrawal or STOP in 

proliferation. N-cadherin/catenin complex (red), myofibrils (green), Yap (dark blue), α-

catenin (yellow), α-catenin (light blue).
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Table 1

Genetic manipulation of α-catenin proteins in mice

Mutation Tissue Phenotype Reference

αE-cat−/− global Preimplantation embryonic lethal,
trophectoderm cell adhesion defect

(Torres et al., 1997)

Cerebellar deficient
folia (cdf/cdf)
αN-cat deletion

global Viable, ataxia, cerebellum and
hippocampal lamination defects,
abnormal startle response

(Park et al., 2002)

αN-cat−/− global Perinatal lethality, aberrant cellular
organization in the cerebellum and
hippocampus, defective Purkinje cell
migration, poorly formed dendritic spines

(Togashi et al., 2002; Uemura and Takeichi, 
2006)

αT-cat−/− global Viable, progressive cardiomyopathy, gap
junction remodeling, susceptibility to
arrhythmia

(Li et al., 2012)

αT-cat−/− global Abnormal lung mechanics, increase
sensitivity to toluene diisocyanate-
induced asthma

(Folmsbee et al., 2014)

αE-catfl/fl; K14-Cre skin Cell-cell adhesion defect, loss of cell
polarity, keratinocyte hyperproliferation

(Vasioukhin et al., 2001)

αE-catfl/fl; GFAP-
Cre

hair follicle Hair loss, skin squamous cell carcinoma (Silvis et al., 2011)

αE-catfl/fl; nestin-
Cre

neural tube Hyperproliferation of neural progenitor
cells; enlarged cerebral cortex

(Lien et al., 2006)

αE-catfl/fl; Emx1-Cre cerebral cortex Radial glial cell polarity defects (Schmid et al., 2014)

αE-catfl/fl; Six3-Cre retina Defect in optic fissure closure, retinal
degeneration

(Chen et al., 2012)

αE-catfl/fl; MLC2v-
Cre

embryonic
heart

Progressive cardiomyopathy,
susceptibility to wall rupture after
myocardial infarction

(Sheikh et al., 2006)

αE-catfl/fl; αT-catfl/fl;
αMHC-Cre (DKO)

perinatal heart Intercalated disc defects, cardiomyocyte
hyperproliferation

(Li et al., 2014)

αE-catfl/fl;
αT-catfl/fl; αMHC-MerCreMer
(DKO)

adult heart Enhanced cardiac regeneration following
ischemic injury

(Li et al., 2014)

αE-catfl/fl; αT-catfl/fl;
Tnnt2-Cre (DKO)

embryonic
heart

Embryonic lethal, midgestation Radice, G. unpublished data

αT-cat knock-in
Rosa26 locus

global
overexpression

Viable, fertile, aberrant trophoblast
invasion

(Tyberghein et al., 2012)

fl, floxed (loxP-flanked) allele; DKO, double knockout.
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