Using a Resident-Led Process Improvement Committee to Change Pain Medication Prescribing Habits: Early Results
Department of Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA

Background

In the postoperative setting, patients routinely need to transfer from a nil per os (NPO) status to other diets as their care is advanced, or from diets to NPO if they are not tolerating a diet. We sought to streamline the changing of pain medication orders back and forth from IV to PO. Additionally, intravenous (IV) acetaminophen (Ofirmev®) is a non-opiate analgesic that is both highly efficacious in pain relief and very expensive. Many hospital systems have sought to curb its use to situations in which patients are NPO. Through a partnership with the P&T Committee at Jefferson, we initiated a pilot program to encourage and identify appropriate and judicious clinical use of IV acetaminophen.

The aims of this project were to:
1) Streamline the ordering of IV and PO pain meds
2) Encourage the appropriate ordering of Ofirmev®

Results: Order-Set Use

The IV pain medication order-set was introduced in August 2019. Since then, it has been used 77 times (Fig. 2).

Results: Ofirmev® Use

In total, there were 14,390 total Ofirmev® orders placed since 4/1/17. This included 7,800 in the last year alone (2019) compared to 4,207 in 2018 (Fig. 4).

The most common units in which Ofirmev® was ordered were the operating rooms, ICU, and floor – specifically surgical units (Fig. 5).

There were 86 Ofirmev® orders placed via order-set. In total, 20 such orders were placed via the IV pain med order-set (Fig. 6).

Results: Ofirmev® Use (Cont.)

Conclusions & Future Directions

Creation of a dedicated order-set for ordering pain medications can simplify workflow for residents, but widespread adoption remains a challenge. The use of Ofirmev® increased until late 2019 and then decreased. Further evaluation into reasons for this decline may show important patterns that could aide in the development of cost-and clinically-effective pain treatment algorithms.

This work was supported by the Driving Change award.