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Fatatis2,3, and Marcelo G. Kazanietz1,*
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USA.

Abstract

The bone is a preferred site for metastatic homing of prostate cancer cells. Once prostate cancer 

patients develop skeletal metastases, they eventually succumb to the disease; therefore, it is 

imperative to identify key molecular drivers of this process. This study examines the involvement 

of protein kinase C epsilon (PKCε), an oncogenic protein that is abnormally overexpressed in 

human tumor specimens and cell lines, on prostate cancer cell bone metastasis. PC3-ML cells, a 

highly invasive prostate cancer PC3 derivative with bone metastatic colonization properties, failed 

to induce skeletal metastatic foci upon inoculation into nude mice when PKCε expression was 

silenced using shRNA. Interestingly, while PKCε depletion had only marginal effects on the 

proliferative, adhesive and migratory capacities of PC3-ML cells in vitro or in the growth of 

xenografts upon s.c. inoculation, it caused a significant reduction in cell invasiveness. Notably, 

PKCε was required for transendothelial cell migration (TEM) as well as for the growth of PC3-

ML cells in a bone biomimetic environment. At a mechanistic level, PKCε depletion abrogates the 

expression of IL-1β, a cytokine implicated in skeletal metastasis. Taken together, PKCε is a key 

factor for driving the formation of bone metastasis by prostate cancer cells and is a potential 

therapeutic target for advanced stages of the disease.

Implications—This study uncovers an important new function of PKCε in the dissemination of 

cancer cells to the bone; thus, highlighting the promising potential of this oncogenic kinase as a 

therapeutic target for skeletal metastasis.
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INTRODUCTION

Prostate cancer is the second leading cause of cancer-related deaths among men, with 

~221,000 new cases and ~27,500 deaths estimated for 2015 in the United States, according 

to the American Cancer Society. The majority of prostate cancer related deaths results from 

metastatic spread of prostate cancer cells from the primary tumor to contiguous and distal 

sites. One of the preferred sites of metastatic dissemination of prostate cancer cells is the 

bone. Once the disease reaches this advance stage it becomes inevitably fatal, as 5-year 

survival for prostate cancer patients with skeletal involvement is <1%. The bone metastatic 

process first involves the detachment and shedding of cancer cells from the primary tumor 

into a blood vessel, an event called intravasation, followed by hematogenous dissemination 

and homing to specific niches in the bone, particularly perivascular niches of the bone 

marrow sinusoids where active metastatic foci form (1). The molecular mechanisms 

implicated in prostate cancer cell metastasis are poorly understood, which ultimately limits 

the development of effective therapies aimed at preventing the spread of prostate cancer 

cells and formation of secondary skeletal metastasis in patients.

The PKC serine-threonine kinases have been broadly implicated in the regulation of 

signaling pathways that control cell proliferation, differentiation, apoptosis and motility. 

This kinase family comprises 10 structurally related isozymes that have been classified into 

3 different groups with diverse biochemical and functional properties: “classical/

conventional” cPKCs (α, βI, βII, and γ), “novel” nPKCs (δ, ε, η, and Θ), and “atypical” 

aPKCs (ζ and λ/Ι). cPKCs and nPKCs are established cellular receptors for the phorbol ester 

tumor promoters, and at a physiological level they become activated by the lipid second 

messenger diacylglycerol (DAG). Although PKCs have been widely implicated in tumor 

promotion, it is now recognized that individual isozymes have distinctive roles in the 

progression of cancer, both in positive and negative manners (2-4). Among the different 

members of the PKC family, numerous studies in the last years unambiguously established 

PKCε as an oncogenic kinase and tumor biomarker (5, 6). Notably, PKCε is markedly up-

regulated in epithelial cancers, including prostate, lung, breast, and head and neck cancer (2, 

7-12). In lung and breast cancer cells, silencing PKCε expression using RNAi impairs their 

ability to grow as xenografts in nude mice (7, 12, 13). These results have been validated 

pharmacologically with specific PKCε inhibitors (12, 13), thus highlighting the importance 

of this kinase in the maintenance of tumor growth. In addition to its role in tumorigenesis, 

numerous reports linked PKCε to metastatic dissemination. For example, NIH 3T3 cells 

constitutively expressing PKCε develop invadopodial-like structures, exhibit increased 

pericellular metalloprotease activity, and display metastatic capacity in nude mice (14). 

Moreover, PKCε is required for motility and invasion in various cancer cellular models in 

culture as well as for metastatic dissemination in vivo. Most remarkably, studies using 

transgenic PKCε mice established this kinase as a driver of metastatic skin squamous cell 

carcinoma (15-19).

PKCε is barely detected in normal or benign human prostatic epithelium, whereas it is 

highly expressed in prostate tumors and in recurrent disease. Nearly 100% of human 

prostate tumors overexpress PKCε, particularly advanced metastatic tumors (10, 15, 20, 21). 

Accordingly, androgen-independent prostate cancer cells display significant PKCε up-
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regulation relative to androgen-dependent prostate cancer cell lines or “normal” 

immortalized prostate epithelial cells, and ectopic expression of PKCε in androgen-

dependent prostate cancer cells contributes to the acquisition of androgen independence (22, 

23). In an in vivo context, our laboratory showed that transgenic overexpression of PKCε in 

the mouse prostate leads to the formation of preneoplastic lesions (23, 24). Moreover, in the 

transgenic mouse model of prostate adenocarcinoma (TRAMP), genetic ablation of PKCε 

inhibits the development of prostate cancer and spontaneous metastatic dissemination to 

lymph nodes, lung, and kidney (17). Regardless of the distinctive roles assigned to PKCε in 

different stages of disease progression, the role of PKCε in the dissemination of prostate 

cancer cells to the bone remains elusive.

In this study, we investigated whether PKCε could play a role in the formation of skeletal 

tumors in mice. We took advantage of PC3-ML cells, a subline derived from the widely 

used PC3 cell line that consistently produces skeletal metastasis in mice (25, 26). We 

present for the first time evidence that PKCε mediates the invasive capacity of these cells 

and is required for the formation of skeletal tumors in mice.

MATERIALS AND METHODS

Cell culture

PC3-ML cells were cultured in RPMI 1640 medium supplemented with 10% FBS, 2 mM 

glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin. HUVEC cells were purchased 

from Lonza (Walkersville, MD) and cultured in EGM-2-BulletKit medium (Lonza), as 

indicated by the provider. MG-63 osteosarcoma cells were purchased from ATCC and 

cultured in DMEM supplemented with 10% FBS, 2 mM glutamine, 100 U/ml penicillin, and 

100 μg/ml streptomycin. The PKCε inhibitor εV1-2 (tat-fused) and its control peptide Tat 

were a kind gift from Dr. Daria Mochly-Rosen (Stanford University).

Lentiviral infections

Stable depletion of PKCε in PC3-ML cells was achieved by infection with shRNA 

lentiviruses (MISSION® shRNA Lentiviral Transduction particles, Sigma, St Louis, MO). 

As a control we used the MISSION® non-target shRNA lentivirus. Selection of stable cell 

lines was carried out with puromycin (0.3 μg/ml, 3 weeks).

Western blot assays

Western blots and densitometric analyses were carried out as previously described (27). The 

following antibodies (1:1000 dilution) were used: anti-PKCε (sc-214; Santa Cruz 

Biotechnology, Dallas, TX), anti-Rac1 (05-389; Upstate Biotechnology, Billerica, MA), 

anti-interleukin-1β (sc-1251; Santa Cruz Biotechnology, Dallas, TX), and anti-vinculin 

(V9131 Sigma). Bands were visualized by the enhanced chemiluminescence (ECL) Western 

blotting detection system. Images were captured using a FUJIFILM LAS-3000 system and 

the LAS-2000 software.
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Cell growth assays

Cells (1 × 105) were seeded onto 96-well plates. At different times, cell viability in triplicate 

samples was determined with the CellTiter 96® Non-Radioactive Cell Proliferation Assay 

(Promega, Madison, WI), as previously described (28).

Migration and invasion assays

Cells were trypsinized, suspended in 0.1% BSA/RPMI, and seeded (1.5 × 104 cells/well) in 

the upper compartment of a Boyden chamber (NeuroProbe, Gaithersburg, MD). 

Polycarbonate membranes of 12 μM pore diameter were used to separate the upper and 

lower compartments. In the lower chamber, RPMI medium containing 10% FBS was used. 

After an incubation period of 18 h at 37°C, membranes were recovered and cells on the 

upper side (non-migratory) were wiped off the surface. Cells on the lower side of the 

membrane were fixed and stained with the DIFF Quik Stain Set (Dade Behring, Deerfield, 

IL). Migratory cells in each well were counted by contrast microscopy in 5 random fields. 

Invasion assays were carried out in Boyden chambers using Matrigel-coated polycarbonate 

membranes, as previously described (18). For some assays, we preincubate cells with IL-1β 

(10 nM, R&D Systems, Minneapolis, MN), or incubate them with anti-IL-1β blocking 

antibody (1 μM, R&D Systems) or control IgG (Santa Cruz Biotechnology, Dallas, TX).

Rac-GTP pull-down assays

Determination of Rac-GTP levels was carried out essentially as previously described (28). 

Briefly, cells growing at 80% confluency were lysed in pull-down buffer (20 mM Tris-HCl, 

pH 7.4, 150 mM NaCl, 5 mM MgCl2, 0.5% NP40, 5 mM β-glycerophosphate, 1 mM DTT, 

and protease inhibitors) containing 15 μg/ml of PBD-GST. Lysates were cleared by 

centrifugation (10 min at 4°C, 13,000 × g) and incubated with glutathione-Sepharose 4B 

beads (GE Healthcare, Buckinghamshire, UK) for 45 min at 4°C. After centrifugation, the 

beads were washed twice with pull-down buffer and run on SDS-PAGE. Rac1 in the beads 

(Rac1-GTP) was detected by Western blot using an anti-Rac1 antibody.

Adhesion assays

Plates were coated with 500 μg/ml collagen, poly-L-lysine, or Matrigel, and blocked with 

0.5% BSA. Cells (3 × 104 cells/well in 0.1% BSA/RPMI) were seeded in triplicate. FBS 

(10%) was added to stimulate adhesion. After incubation at 37°C for different times, 

unattached cells were washed with PBS. Attached cells were fixed and stained with DAPI. 

Plates were visualized by fluorescence microscopy, and the number of nuclei from attached 

cells was quantified in 5 random fields cells using the ImageJ software.

Quantitative real-time PCR (qPCR)

For the determination of IL-1β and PKCε mRNA levels, total RNA was extracted from 

subconfluent cell cultures using the RNeasy kit (Qiagen, Valencia, CA). One μg of RNA 

from each sample was reverse transcribed using the TaqMan reverse transcription reagent 

kit (Applied Biosystems, Branchburg, NJ) with random hexamers used as primers. PCR 

primers and 5′-end 6-carboxyfluorescein-labeled probes for PKCε and IL-1β were purchased 

from Applied Biosystems. PCR was performed using an ABI PRISM 7700 detection system 
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in a total volume of 25 μl containing TaqMan universal PCR MasterMix (Applied 

Biosystems), commercial target primers (300 nM), the fluorescent probe (200 nM), and 1 μl 

cDNA. PCR product formation was continuously monitored using the sequence detection 

system software version 1.7 (Applied Biosystems) (29). The 6-carboxyfluorescein signal 

was normalized to endogenous tRNA 18S. ΔCt was obtained by subtracting the cycle 

threshold (CT) of 18S or ubiquitin C from that of PKCε. Δ(ΔCt) was determined by 

subtracting the control ΔCt from the sample ΔCt. Fold-changes were calculated using Data 

Assist software from Life Technologies, and expressed as 2−Δ(ΔCt).

mRNA levels for 84 invasive and metastatic genes, including extracellular matrix (ECM) 

proteases and protease inhibitors, were determined by qPCR using the Human Tumor 

Metastasis RT2 Profiler PCR Array and a RT2 SYBR Green/5-carboxy-X-rhodamine 

(ROX) qPCR master mix (Qiagen). Data were normalized using ACTB, GAPDH, B2M, 

HPRT1, and RPLP0 housekeeping genes provided in the PCR array. The relative mRNA 

levels were calculated using the ΔΔCT method, as indicated in the RT2 Profiler PCR Array 

Data Analysis Webportal.

Tumor growth and bone metastasis in nude mice

Studies were carried out in strict accordance with the recommendations from the Guide for 

the Care and Use of Laboratory Animals from NIH. Protocols were approved by the 

Institutional Animal Care and Use Committee (IACUC) of the University of Pennsylvania. 

For tumorigenesis experiments, male athymic mice (6-8 weeks, 10 mice/group, Harlan 

Laboratories) were injected s.c. with PC3-ML cells (1.2 × 106 or 4 × 106) resuspended in 0.1 

ml PBS. For determination of tumor growth, the width and length of tumors were measured 

with a caliper at different times, and tumor volume calculated as previously described (13).

Bone metastasis experiments were carried out essentially as previously described (26, 30). 

Briefly, PC3-ML cell lines were infected with ZsGreen Lentivirus, which had been 

produced using Lenti-X high-titer lentiviral packaging systems (Lenti-X 293T cell line, 

Lenti-X™ HTX Packaging System, pLVX-IRES-ZsGreen1 vector from Clontech, Mountain 

View, CA). 5 × 104 cells from the brightest sorted population were inoculated in the left 

cardiac ventricle of athymic nude mice. Delivery of cells into the systemic blood circulation 

was corroborated by co-injection of blue fluorescent 10 μm polystyrene beads (Molecular 

Probes, Eugene, OR). Animals were randomly assigned to different experimental groups and 

sacrificed either at 72 h or 3 weeks following inoculation. The homogeneous and 

numerically consistent distribution of the beads in adrenal glands and lungs collected at 

necropsy and inspected by fluorescence microscopy were used as discrimination criteria for 

the inclusion of animals in the studies.

Bones were collected and fixed in 4% paraformaldehyde solution for 24 h and transferred 

into fresh formaldehyde for an additional period of 24 h. Bones were decalcified in 0.5M 

EDTA for 7 days followed by incubation in 30% sucrose. Bones were maintained at 4°C for 

all aforementioned steps and frozen in optimum cutting temperature medium (OCT) by 

placement over dry ice chilled 2-methylbutane. Serial sections of 80 μm thickness were 

obtained using a Microm HM550 cryostat. Femur and tibia in each knee joint were cut 

entirely through, resulting in approximately 30 sections per specimen made available for 
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analysis. Fluorescent images of skeletal metastases were acquired using a Zeiss AX70 

microscope (Carl Zeiss) connected to a Nuance Multispectral Imaging System from 30 bone 

sections (80 μm) per animal. Digital images were analyzed, processed with the Nuance 

Software (v. 2.4), and the number of micrometastasis was determined. Microscope and 

software calibration for size measurement was conducted using a TS-M2 stage micrometer 

(Oplenic Optronics, Hangzhou, China).

Bone marrow cultures

Bone marrow from mouse tibia and femur were flushed after 3 weeks after intracardiac 

inoculation. Cells were dissociated using a syringe (19G needle) and incubated with RPMI 

media supplemented with 10% FBS, 2 mM glutamine, 100 U/ml penicillin, 100 μg/ml 

streptomycin, and 0.3 μg/ml puromycin. After 7 days in culture, the presence of ZsGreen 

fluorescent colonies was determined using an inverted microscope.

Transendothelial assays

We used the in vitro assay described by Okada et al. (31). Briefly, HUVEC endothelial cells 

were seeded on the top chamber of a 12 mm insert Millicell Standing Insert (Catalogue # 

PIXP01250; Millipore, Billerica, MA) with a 12 μm polycarbonate porous membrane coated 

with 200 μl of Matrigel (0.5 mg/ml), and cultured until they reached 100% confluence. 

Then, 300 μl of a suspension containing ZsGreen labeled PC3-ML cells (5 × 105 cells/ml) 

were added on top of the endothelial monolayer, and 10% FBS was added to the lower 

chamber. After 18 h incubation at 37°C, unattached cells were removed by washing with 

PBS, and attached cells were fixed and stained with DAPI. The invasion of tumor cells 

across the endothelium was determined by counting the number of ZsGreen-labeled cells 

that migrated to the lower chamber, as determined by fluorescence microscopy. In addition, 

confocal microscopy was used for immunofluorescent visualization of migrating cells. 

Transendothelial migrations in 3D were visualized under a Zeiss LSM 710 AxioObserver 

inverted confocal microscope (Carl Zeiss, Oberkochen, Germany). Images were obtained at 

20x magnification using two lasers (405 nm and 488 nm, in sequential mode). ZEN 2011 

software was used during all image acquisition procedures. The whole Z dimension was 

scanned, and the 3D images from each assay were then built by stacking approximately 100 

cross sections.

To determine adhesion to endothelial cells, PC3-ML cells were labeled with [3H]thymidine 

(1 mCi) for 18 h. Labeled PC3-ML cells were centrifuged and resuspended in 2.5 ml of 

RPMI, and 100 μl of this suspension were added to 24-well plates that had been previously 

seeded with HUVEC cells (100% confluency). After 30 or 60 min, non-adherent PC3-ML 

cells were removed by washing three times with 250 μl PBS. The remainder was lysed with 

250 μl 0.1 M NaOH, and radioactivity counted in a scintillation counter.

Co-culture experiments

Osteoblast co-culture experiments were carried out essentially as described (32). Briefly, 

PC3-ML cells (5 × 103) expressing ZsGreen were seeded over a confluent monolayer of 

MG-63 osteosarcoma cells. After different times, non-attached cells were rinsed with PBS. 

Three weeks later the number of ZsGreen positive foci was quantified by fluorescence 
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microscopy, and the number of green foci in 10 random fields was quantified with the 

ImageJ software.

To determine adhesion to MG-63 osteosarcoma cells, PC3-ML cells were labeled with 

[3H]thymidine (1 mCi) for 18 h. Labeled PC3-ML cells were centrifuged and resuspended in 

2.5 ml of RPMI, and 100 μl of this suspension were added to 24-well plates that had been 

previously seeded with MG-63 cells (100% confluency). After 30 or 60 min, non-adherent 

PC3-ML cells were removed by washing three times with 250 μl PBS. The remainder was 

lysed with 250 μl 0.1 M NaOH, and radioactivity counted in a scintillation counter.

RESULTS

PKCε mediates metastasic dissemination of PC3-ML prostate cancer cells to the bone

Emerging data from several laboratories established essential roles for PKCε in the 

progression of cancer, including prostate cancer (2, 5, 6, 10, 17). PKCε has been implicated 

in cell invasiveness, yet it is not clear whether this kinase plays a role in metastasis to the 

bone, a main site of prostate cancer cell dissemination. To this end, we took advantage of a 

well-established model of experimental metastasis that uses PC3-ML human prostate cancer 

cells, a cell line with high bone metastatic potential derived from the PC3 parental cell line 

(25, 26). As previously reported for parental androgen-independent PC3 and DU145 cells 

(11, 23), the PC3-ML subline displays elevated levels of PKCε relative to “normal” 

immortalized prostate epithelial cells (Fig. 1a). To ascertain the role of PKCε in prostate 

cancer bone metastasis, we used shRNA lentiviruses to stably knockdown PKCε from PC3-

ML cells, followed by selection with puromycin. Two different shRNA lentiviruses were 

used (ε1 and ε2) in order to generate PC3-ML-KDε1 and PC3-ML-KDε2 cell lines. As a 

control, we generated a PC3-ML cell line infected with a non-target control shRNA 

lentivirus (PC3-ML-NTC). As shown in Fig. 1b, ~ 85% and 70% depletion in PKCε levels 

was achieved in PC3-ML-KDε1 and PC3-ML-KDε2 cell lines, respectively (n=3).

To address the relevance of PKCε in a metastasis model in vivo, cell lines were engineered 

to stably express the GFP variant ZsGreen using a lentiviral approach. ZsGreen expression 

did not significantly affect PKCε levels in PC3-ML cells (Fig. 1a). Studies showed that upon 

direct inoculation in the blood circulation of immunodeficient mice, these cells generate 

metastatic foci primarily in femur and tibia, jaws and ribs (25). Parental PC3-ML, PC3-ML-

NTC, PC3-ML-KDε1 and PC3-ML-KDε2 cells were inoculated in the left cardiac ventricle 

of athymic nude mice, as previously described (33). Mice were sacrificed after 3 or 21 days, 

and their femur and tibiae harvested, fixed, and analyzed for the presence of micrometastatic 

foci. As previously reported (33), we found microscopic tumors in the tibia and/or femur 

upon intracardiac inoculation of PC3-ML cells. Similar results were observed with PC3-

ML-NTC cells. A representative picture is shown in Fig. 1c. Quantification analysis 

revealed that PKCε-depletion from PC3-ML cells severely impaired the formation of 

micrometastasis, as essentially no bone metastatic foci could be detected in the femur/tibia 

upon injection of PC3-ML-KDε1 and PC3-ML-KDε2 cells (Fig. 1d).

As a complementary approach, we analyzed bone marrows for the presence of fluorescent 

ZsGreen labeled cells. Three weeks after intracardiac inoculation of PC3-ML cells into 
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athymic mice, bone marrows from tibiae and femurs were flushed and cultured in vitro. 

While a significant number of ZsGreen labeled cells could be detected in bone marrows 

from mice injected with either parental PC3-ML or PC3-ML-NTC cells, fluorescent cells 

could not be isolated from bone marrows from mice inoculated with either PC3-ML-KDε1 

or PC3-MLKDε2 cells (Fig. 2). Thus, PKCε is required for bone metastatic dissemination of 

PC3-ML cells.

PKCε depletion has limited effects on PC3-ML cell growth, adhesiveness, and motility

PKCε is known to mediate proliferation in a number of cancer cells, such as lung and breast 

cancer cellular models (12, 13, 16). When we examined the effect of silencing PKCε on the 

growth properties of PC3-ML cells in culture, we noticed only a marginal reduction in cell 

number in PC3-ML-KDε1 and PC3-ML-KDε2 cells relative to control cell lines (Fig. 3a). 

Similar results were observed when we analyzed the tumorigenic properties of these cells in 

vivo. Indeed, upon s.c. inoculation into nude mice (1.2 × 106 cells), the formation of tumors 

by PKCε-depleted cell lines was somehow slower, although there were no statistically 

significant differences between the different cell lines (Fig. 3b). Similar results were 

observed in experiments using a higher number of cells (4 × 106 cells) (data not shown).

The capacity of cancer cells to successfully metastasize is frequently associated with 

changes in their adhesive properties and their ability to migrate. We therefore examined the 

effect of PKCε depletion on the adhesive capacity of PC3-ML cells to different substrates. 

These experiments revealed essentially no significant differences in adhesion to Matrigel, 

collagen or poly-L-lysine coated plates between PKCε-depleted and control PC3-ML cells 

(Fig. 3c).

In a recent study using lung cancer models, we showed a critical requirement of PKCε for 

motile activity. Moreover, we established that PKCε controls the activation of Rac1, a small 

GTPase widely implicated in cytoskeletal rearrangements and cell migration (18). Thus, we 

asked if silencing the expression of PKCε could impair the motility of PC3-ML cells. As 

illustrated in Fig. 3d, the ability of PC3-ML cells to migrate, as determined by means of a 

Boyden chamber assay, remained essentially unchanged as a consequence of PKCε 

depletion. PC3-ML cells display constitutively elevated levels of active Rac-GTP levels 

compared to non-transformed prostate epithelial cells (data not shown). However, and 

consistent with the lack of involvement of PKCε in PC3-ML cell migration, silencing PKCε 

fails to reduce Rac-GTP levels in this cell line (Fig. 3e).

PKCε is required for PC3-ML cell invasiveness: a role for IL-1β

In the next set of experiments, we sought to examine the potential involvement of PKCε in 

invasiveness by assessing the ability of cells to migrate through Matrigel in a Boyden 

chamber (18). It has been previously reported that PC3 and PC3-ML cells are highly 

invasive (25). Notably, PC3-ML-KDε1 and PC3-ML-KDε2 cells showed a major 

impairment in invasiveness relative to parental PC3-ML cells and PC3-ML-NTC cells (Fig. 

4a). Similar results were observed in DU-145 cells (data not shown). To further establish a 

role of PKCε in PC3-ML invasiveness we used the PKCε inhibitor εV1-2, a Tat-fused 

permeable peptide that specifically prevents PKCε translocation to the membrane and 
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therefore inhibits its activation (18, 34). Consistent with results using PKCε RNAi, this 

inhibitor markedly reduced PC3-ML cell invasion through Matrigel relative to the control 

Tat peptide (Fig. 4b).

Cancer cell invasion is associated with the production and release of proteases required for 

remodeling the extracellular matrix (ECM). To evaluate a role of PKCε in the expression of 

metalloproteases (MMPs) and other key proteins implicated in cell invasiveness, we used 

the Human Tumor Metastasis RT2 Profiler PCR array (Qiagen), which allows for the 

simultaneous determination of the expression of 84 genes implicated in invasion and 

metastasis. This analysis revealed multiple changes as a consequence of PKCε knockdown 

in PC3-ML cells, which are depicted in Fig. 4c. The complete list of 84 genes is shown in 

Suppl. Fig. 1. Among the most notable changes, we found a significant down-regulation in 

the expression of MMPs (MMP7, MMP11, MMP13). Another notable change in PKCε-

depleted PC3-ML cells is the down-regulation of interleukin-1β (IL-1β). PC3-ML cells 

indeed express high levels of IL-1β, and this cytokine was shown to have a fundamental role 

in the bone metastatic properties of these cells (26). The involvement of PKCε in the control 

of IL-1β expression in PC3-ML cells was validated using a silencing approach, both by 

qPCR (Fig. 4d) and Western blot (Fig. 4e). It has been recently established that IL-1β is up-

regulated in prostate cancer cells; moreover, silencing IL-1β expression interferes with the 

bone metastatic potential of PC3-ML cells (26). As our results suggest IL-1β as a PKCε 

target, we reasoned that inhibition of IL-1β signaling should also affect PC3-ML 

invasiveness. Indeed, incubation of PC3-ML with an anti-IL-1β blocking antibody 

significantly reduced invasion of PC3-ML cells through Matrigel (Fig. 4f). Addition of 

IL-1β rescued the effect of PKCε knockdown on invasion in these cells (Fig. 4g). This 

suggests that PKCε-mediated IL-1β production is important for PC3-ML cell invasiveness.

PKCε is required for transendothelial migration and growth of PC3-ML cells in a bone 
biomimetic microenvironment

The ability of cancer cells to migrate through the endothelial cell layer represents a key 

event in tumor metastasis. Prostate cancer cell extravasation to bone requires tethering to the 

bone marrow endothelium and transmigration (35). To address the effect of PKCε depletion 

on migration through endothelial cells, we used an in vitro transendothelial assay (31). 

Remarkably, PC3-ML-KDε1 and PC3-ML-KDε2 cells have a major deficiency in their 

ability to transmigrate through a monolayer of endothelial cells (HUVEC) relative to 

parental PC3-ML or PC3-ML-NTC cells (Fig. 5a). The reduced invasive capacity of PKCε-

depleted cells through endothelial cells could be readily observed in 3D pictures taken by 

confocal microscopy, which show clear migration underneath the endothelial cells only for 

parental PC3 cells and PC3-MLNTC cells but not for PKCε-depleted PC3-ML cells (Fig. 

5b). The impaired transmigratory properties of PKCε silenced PC3-ML cells is not due to 

weakened adhesion, as determined by the similar capacity of control and PKCε-silenced 

PC3-ML cells to attach to confluent monolayers of non-stimulated (Fig. 5c) or stimulated 

(LPS-activated) HUVEC cells (data not shown).

To analyze whether PKCε confers a survival advantage in a bone biomimetic 

microenvironment, we examined the ability of PKCε depleted cells or their corresponding 
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control cell lines to adhere and proliferate when seeded on top of a confluent layer of human 

MG-63 osteoblast cells. At different times, non-attached cells were rinsed with PBS, and 

three weeks later the number of ZsGreen fluorescent PC3-ML foci was quantified. Whereas 

there were no significant differences in the ability of all PC3-ML cell lines to adhere to 

MG-63 osteoblast cells (Fig. 6a), a reduced ability to grow under these conditions was 

observed for PC3-ML-KDε1 and PC3-ML-KDε2 cells (Fig. 6b).

DISCUSSION

The mechanisms implicated in prostate cancer initiation and progression have been 

extensively studied, and significant advances in our understanding of the genes and 

signaling pathways that contribute to the various steps of disease progression have been 

elucidated, particularly those concerning the growth of the primary tumor. Unfortunately, 

the mechanisms leading to metastatic dissemination of prostate cancer cells, particularly to 

the bone, remain poorly understood. In this study, we identified PKCε as a novel player in 

skeletal metastasis of prostate cancer cells. Our results clearly show that silencing the 

expression of PKCε from PC3-ML cells, a subline that metastasizes with high propensity to 

the bone, prevents the formation of skeletal metastatic foci upon inoculation into nude mice, 

thus reflecting the requirement of PKCε in key steps leading to prostate cancer cell 

colonization in the bone.

PKCε has been widely associated with the development of epithelial cancers, and has been 

originally described as an oncogenic kinase that is able to transform fibroblasts through the 

activation of the Ras-Raf1 signaling pathway and autocrine secretion of TGF-β (19, 36, 37). 

Numerous laboratories underscored important roles for PKCε in cell cycle progression and 

the control of cell survival mechanisms (2, 5, 6). For example, forced expression of PKCε in 

LNCaP prostate cancer cells accelerates proliferation due to constitutive activation of the 

Erk cascade and protects cells against apoptotic stimuli (21, 22). Our laboratory found that 

PKCε modulates Bad phosphorylation to protect LNCaP cells against phorbol ester- and 

TNFα-induced apoptosis (38). In other cell models, such as lung cancer cells, PKCε 

regulates the expression of genes implicated in cell death and survival, and plays essential 

roles in anchorage-dependent and anchorage-independent growth (13). PKCε 

overexpression is a signature of many cancer types, including breast, lung, and head and 

neck cancer (2, 7-10, 12). Several lines of evidence indicate that PKCε is frequently up-

regulated in prostate cancer cell lines and tumor specimens, and is a predictive biomarker of 

prostate cancer; moreover, its expression correlates with aggressiveness and recurrence (10, 

20, 21). Notably, overexpression of PKCε in androgen-dependent LNCaP cells initiates 

tumor growth in intact and castrated nude mice, arguing for a potential role of this kinase in 

the progression to androgen independence (22). Transgenic mice generated in our 

laboratory, in which PKCε was overexpressed in the prostate under the control of a probasin 

promoter, develop preneoplastic lesions (prostatic intraepithelial neoplasia or PIN) and have 

reduced apoptotic death in response to androgen ablation, suggesting also a role for PKCε in 

tumor initiation. Lesion formation is accompanied by hyperactivation of a number of pro-

survival signaling pathways, namely Akt, NF-κB, and Stat3 (23, 24). PKCε up-regulation is 

also observed in prostates from TRAMP mice, a model that spontaneously develops invasive 

prostate cancer, and genetic ablation of PKCε in these mice inhibits prostate cancer 
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development and metastasis, as well as the expression of a number of proliferative and 

survival markers such as cyclin D1, Bcl-xL, and Stat3 (17).

There is a growing body of evidence for the involvement of PKCε in cancer cell migration 

and invasion, as well as in the regulation of Rho GTPases that govern these processes, as we 

recently reported in lung cancer cells (18). PKCε depletion or inhibition significantly 

impairs motility in a number of cancer cell models, namely lung, breast, and colon cancer (7, 

18, 19, 39). Strikingly, PKCε overexpression has been associated with elevated incidence of 

spontaneous and experimental metastases in mouse models. For example, overexpression of 

PKCε enhances spontaneous lung metastasis of breast cancer cells (16), and targeted 

transgenic overexpression of PKCε in skin promotes the development of squamous cell 

carcinomas which rapidly metastasize to regional lymph nodes (15). Our results in PC3-ML 

cells, revealed significant roles for PKCε in invasion regardless of a lack of involvement in 

cell motility and Rac activity, possibly highlighting distinctive roles for PKCε in different 

cellular models. The effect of PKCε silencing on invasiveness could be recapitulated by 

pharmacological treatment with a specific PKCε inhibitor. PKCε RNAi depletion from PC3-

ML cells significantly reduced the expression of MMPs required for ECM modeling, which 

may conceivably contribute to the impaired invasive capacity of PC3-ML-KDε1 and PC3-

ML-KDε2 cells. There is significant evidence that MMPs contribute to the formation of 

osteolytic metastatic lesions through multiple mechanisms, including the recruitment of 

osteoclasts at metastatic sites, cleavage of receptor activator of NF-κB ligand (RANKL) 

required for the activation of newly recruited osteoclasts, and chemoattraction of tumor cells 

to perpetuate a tumor-stromal vicious cycle of bone matrix degradation (40). Quite 

remarkably, we found PKCε to be required for transendothelial migration. Prostate cancer 

cell bone extravasation is a multistep process that involves tethering and rolling on bone 

marrow endothelial cells, firm adhesion, and transmigration (35). Whereas our studies did 

not reveal major defects in the capacity of PKCε-deficient PC3-ML cells to adhere to 

endothelial cells, a process that depends on multiple players such as the ligand E-selectin 

and integrins β1 and αvβ3 (35), we observed a major impairment in their ability to 

transmigrate through the endothelial layer. Although a detailed mechanistic analysis would 

be required to decipher how PKCε drives this transmigratory process, we speculate that 

MMPs regulated by PKCε may be involved in the activation/shedding of chemokines 

implicated in prostate cancer cell extravasation of prostate cancer cells, such as CX3CL1/

fractalkine (41).

A notable alteration that we identified in PKCε-depleted PC3-ML cells is a marked 

reduction in IL-1β expression. Although the mechanisms by which PKCε controls IL-1β 

expression are not known, it has been reported that in prostate cancer this kinase activates 

pathways such as NF-κB and Erk (23)(24). Accordingly, NF-κB and the Ras-Raf cascade 

have been implicated in IL-1β transcription and secretion (42). IL-1β is solely active in its 

secreted form and is highly abundant at tumor sites, thus affecting tumor growth, 

invasiveness and the pattern of tumor-microenvironment interactions. It has been reported 

that expression of IL-1β contributes to the tumorigenic potential of malignant cells and 

potentiates carcinogenesis by promoting local inflammatory responses. Moreover, IL-1β 

plays essential roles in cancer cell invasiveness, and neutralization of secretable IL-1β is 
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sufficient to limit tumor invasiveness (42). More recently, Liu et al. (26) established a 

functional association between IL-1β expression and the acquisition of bone metastatic 

capabilities of prostate cancer cells. Indeed, IL-1β is up-regulated in highly bone metastatic 

PC3-ML cells relative to low non-metastatic PC3-N cells. Moreover, shRNA mediated 

silencing of IL-1β from PC3-ML cells leads to a marked inhibition of skeletal metastasis, 

whereas PC3-N cells engineered to ectopically overexpress IL-1β have enhanced bone 

tropism and acquire bone metastatic capacity. Hence, taken together, these data strongly 

suggest that skeletal metastasis driven by PKCε may be mediated by IL-1β. Although this 

has yet to be formally demonstrated, our results clearly reveal that a blocking IL-1β antibody 

significantly reduces migration of PC3-ML cells through Matrigel, thus supporting the 

involvement of PKCε-mediated IL-1β production in PC3-ML cell invasiveness. Since IL-1β 

is known to stimulate the bone-resorption activity of osteoclasts (43), it may be possible that 

PKCε, by controlling the synthesis of IL-1β, promotes bone matrix turnover. IL-1β derived 

from malignant cells stimulates the production of a pro-inflammatory environment and 

increases COX-2 expression and PGE2 production in bone marrow-derived mesenchymal 

stem cells (44). As COX2 is a PKCε effector gene in prostate cancer cells (24), we 

hypothesize that PKCε overexpression is a dominant event in the control of autocrine and 

paracrine effects in the bone microenvironment that contribute to creating a niche for the 

survival and growth of prostate cancer cells, and in this context, IL-1β and other local 

mediators controlled by PKCε may play key roles. The enhanced survival of PKCε 

expressing PC3-ML cells in a bone mimetic microenvironment is consistent with this 

premise. Since IL-1β has been shown to induce PKCε expression (45), and PKCs (including 

PKCε) are also downstream effectors of PGE2 and IL-1β (46, 47),it is reasonable to 

speculate that sustained activation of PKCε in prostate cancer cells (and possibly bone 

stromal cells) may contribute to a vicious cycle that facilitates skeletal metastasis.

In conclusion, our studies identified PKCε as an important mediator of prostate cancer 

skeletal metastasis, possibly acting at different levels, including the migration of prostate 

cancer cells to the bone and their survival in the bone microenvironment. These findings 

may have significant therapeutic implications, as PKCε inhibitors with as anti-cancer 

activity have been generated in the last years, and some are well tolerated in humans (12, 48, 

49). It is also worth noting that PKCs have been implicated in osteoclast formation, and 

recent studies highlighted a potential therapeutic use of pharmacological blockade of PKC-

dependent pathways in osteolytic diseases. For example, RANKL, a key signal regulator that 

is currently targeted in the clinical management of bone metastatic disease, exerts its effect 

via PKC, and PKC inhibition attenuates osteoclastogenesis, bone resorption and RANKL-

induced NF-κB activation (50). Thus, an attractive possibility is that PKCε inhibitors may 

have therapeutic benefit for the treatment of bone metastatic disease.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PKCε silencing from PC3-ML cells impairs metastasic dissemination to the bone
(a) PKCε expression in “normal” immortalized RWPE-1 prostate epithelial cells and 

prostate cancer cells (DU145, PC3-ML, and PC3-ML expressing ZsGreen), as determined 

by Western blot. (b) PC3-ML cell lines were generated upon infection with either PKCε 

RNAi (KDε1 and KDε2) or non-target control (NTC) shRNA lentiviruses. Densitometric 

analysis of PKCε expression, normalized to vinculin (loading control) is indicated. P, 

parental PC3-ML cells. Data are expressed as mean ± S.D. (n= 3). (c) and (d) Male athymic 

nude mice were inoculated by intracardiac injection with the different PC3-ML cell lines. 

After 3 or 21 days, skeletal micrometastasis were identified by fluorescence 

stereomicroscopy. (c) A representative picture showing ZsGreen PC3-ML-NTC cell 

micrometastases (arrows) at 3 days is shown. (d) Number of skeletal micrometastasis 3 and 

21 days days after injection. Data are expressed mean ± S.D. (n = 5). *, p<0.05; **, p<0.01.
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Figure 2. PKCε depleted PC3-ML cells do not accumulate in the bone marrow
Male athymic nude mice were inoculated by intracardic injection with parental PC3-ML (P), 

or PC3-ML cells subject to infection with either non-target control (NTC) or PKCε (KDε1 

and KDε2) shRNA lentiviruses. In all cases, cells express an enhanced variant of ZsGreen. 

Twenty-one days after intracardiac injection, cells from bone marrow were flushed and 

cultured for 7 days. Representative micrographs are shown.
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Figure 3. PKCε depletion does not affect growth, adhesiveness and motility of PC3-ML cells
(a) Proliferation of parental PC3-ML cells (P), or PC3-ML cells subject to infection with 

either non-target control (NTC) or PKCε (KDε1 and KDε2) shRNA lentiviruses was 

determined at the indicated times. Data are expressed as mean ± S.D. (n=3). A second 

experiment gave similar results. (b) PC3-ML cell lines were injected s.c. into male athymic 

mice, and tumor growth was determined. Data are expressed as mean ± S.D. (n=10). (c) 

Different PC3-ML cell lines were seeded over culture plates coated with Matrigel, collagen 

or Poly-L-lysine. At the indicated times, cells were rinsed, fixed, and stained with DAPI. 

The number of cells adhered to the plates was quantified. Results are normalized to adhesion 

in parental cells at 60 min. Data are expressed as mean ± S.E.M. (n=3). (d) Migration of 

PC3-ML cell lines in response to 10% FBS (16 h) using a Boyden chamber. Left panel, 

representative micrographs. Right panel, quantitation of 3 independent experiments. Data 

are expressed mean ± S.E.M. (n=8). (e) Rac-GTP levels in the different PC3-ML cell lines, 

as determined using a pull-down assay. Two additional experiments gave similar results.
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Figure 4. PKCε mediates PC3-ML cell invasiveness: a role for IL-1β

(a) Invasion of PC3-ML cell lines in response to 10% FBS (16 h) using a Boyden chamber 

with Matrigel-coated membrane. Left panel, representative micrographs. Right panel, 

quantitative analysis. Data are expressed as mean ± S.E.M. of 3 individual experiments. **, 

p<0.01. (b) Effect of the PKCε inhibitor εV1-2 on invasion of PC3-ML cells. Experiments 

were carried out in the presence εV1-2 or its control Tat peptide (1 μM). Left panel, 

representative micrographs. Right panel, quantitative analysis. Data are expressed as mean ± 

S.E.M of 3 individual experiments. **, p<0.01. (c) Analysis of metastasis genes by qPCR in 

control (NTC) and PKCε-depleted cells, using the Human Tumor Metastasis RT2 Profiler 

PCR array (Qiagen). The figure shows genes up- or down- regulated >1.3 times in PKCε-

depleted cells (relative to NTC). Genes that achieve statistical significance according to the 

RT2 Profiler PCR Array Data Analysis Webportal are shown. (d) IL-1β and PKCε mRNA 

levels in PC3-ML cells subject to either control (NTC) or PKCε (KDε1 and KDε2) shRNA, 

as determined by qPCR. Results are expressed as % relative to NTC. Data are expressed as 

mean ± S.E.M of 3 individual experiments. *, p<0.05. (e) Western blot depicting the 

expression levels of IL-1β in PC3-ML cell lines. Upper band, pro-IL-1β; lower band, IL-1β. 

A representative experiment is shown. Similar results were observed in 2 experiments. (f) 

Effect of a IL-1β blocking antibody (1 μM) on invasion of PC3-ML cells. IgG was used as a 

control. Left panel, representative micrographs. Right panel, quantitative analysis. Data are 

expressed as mean ± S.E.M. of 3 individual experiments. **, p<0.01. (g) IL-1β (10 nM) 

rescues the effect of PKCε depletion in PC3-ML cells. Left panel, representative 

micrographs. Right panel, quantitative analysis. **, p<0.01.
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Figure 5. PKCε mediates transendothelial migration of PC3-ML cells
(a) Cells expressing ZsGreen were infected with either PKCε (KDε1 and KDε2) or non-

target control (NTC) shRNA lentiviruses. P, parental cells. Migration in response to 10% 

FBS (16 h) was determined using a 12 mm insert (Millipore) with a 12 μm polycarbonate 

porous membrane coated with a 100% confluent monolayer of HUVEC endothelial cells. 

Left panel, representative micrographs. Right panel, quantative analysis. Data are expressed 

as mean ± S.E.M. of 3 independent experiments. **, p<0.01. (b) Visualization of migratory 

cells by confocal microscopy (inverted view). Blue, nuclear staining using DAPI; green, 

ZsGreen expressed by PC3-ML cells. (c) Adhesion of PC3-ML cells to a 100% confluent 

monolayer of HUVEC endothelial cells. Data are expressed as mean ± S.E.M of 3 

independent experiments.
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Figure 6. PKCε depletion impairs viability of PC3-ML cells in a bone biomimetic 
microenvironment
(a) Different PC3-ML cell lines expressing ZsGreen fluorescent protein were seeded over a 

100% confluent monolayer of osteosarcoma human cells (MG-63). At the indicated times, 

non-attached cells were rinsed with PBS. Adhesion was determined as indicated in 

“Materials and Methods”. Results are normalized to adhesion in parental cells at 30 min. 

Data are expressed as mean ± S.E.M. of 3 independent experiments. (b) After seeding PC3-

ML cell lines for different times, non-attached cells were rinsed with PBS. The number of 

green foci was counted 3 weeks later by fluorescence microscopy. Right panel, 

representative micrographs. Left panel, quantitative analysis. Results were normalized to 

parental cells at 30 min. Data are expressed as mean ± S.E.M. of 3 independent experiments.
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