Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP3-Evoked Ca2+ Signals through Sigma-1 Receptors

Eugen Brailoiu
Temple University

Sumita Chakraborty
Cambridge

G. Cristina Brailoiu
Thomas Jefferson University, Gabriela.Brailoiu@jefferson.edu

Pingwei Zhao
Tennessee Temple University

Jeffrey L. Barr
Temple University

See next page for additional authors

Let us know how access to this document benefits you

Follow this and additional works at: https://jdc.jefferson.edu/pharmacyfp

Part of the Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation
Brailoiu, Eugen; Chakraborty, Sumita; Brailoiu, G. Cristina; Zhao, Pingwei; Barr, Jeffrey L.; Ilies, Marc A.; Unterwald, Ellen M.; Abood, Mary E.; and Taylor, Colin W., "Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP3-Evoked Ca2+ Signals through Sigma-1 Receptors" (2019). College of Pharmacy Faculty Papers. Paper 36.
https://jdc.jefferson.edu/pharmacyfp/36
Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP₃-Evoked Ca²⁺ Signals through Sigma-1 Receptors

Graphical Abstract

Highlights
- Choline, but not its metabolites, binds to Sigma-1 receptors
- Choline potentiates IP₃-evoked Ca²⁺ release by activating Sigma-1 receptors
- Bradykinin stimulates Ca²⁺ release by stimulating formation of IP₃ and choline
- Choline uptake by a specific transporter potentiates IP₃-evoked Ca²⁺ release

Authors
Eugen Brailoiu, Sumita Chakraborty, G. Cristina Brailoiu, ..., Ellen M. Unterwald, Mary E. Abood, Colin W. Taylor

Correspondence
ebrailou@temple.edu (E.B.), cwt1000@cam.ac.uk (C.W.T.)

In Brief
Sigma-1 receptors respond to diverse stimuli and regulate many signaling proteins. Brailoiu et al. show that choline is an endogenous agonist of Sigma-1 receptors. Choline links receptors and cholinergic synaptic activity, through Sigma-1 receptors, to enhanced Ca²⁺ release through IP₃ receptors.
Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP3-Evoked Ca^{2+} Signals through Sigma-1 Receptors

Eugen Brailoiu,1,6,* Sumita Chakraborty,2,5,6 G. Cristina Brailoiu,3 Pingwei Zhao,1 Jeffrey L. Barr,1 Marc A. Ilies,4 Ellen M. Unterwald,1 Mary E. Abood,1 and Colin W. Taylor2,7,*

1Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
2Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
3Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
4Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
5Present address: Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bengaluru, KA 560065, India
6These authors contributed equally
7Lead Contact
*Correspondence: ebrailou@temple.edu (E.B.), cwt1000@cam.ac.uk (C.W.T.)
https://doi.org/10.1016/j.celrep.2018.12.051

SUMMARY

Sigma-1 receptors (Sig-1Rs) are integral ER membrane proteins. They bind diverse ligands, including psychoactive drugs, and regulate many signaling proteins, including the inositol 1,4,5-trisphosphate receptors (IP3Rs) that release Ca^{2+} from the ER. The endogenous ligands of Sig-1Rs are unknown. Phospholipase D (PLD) cleaves phosphatidylcholine to choline and phosphatic acid (PA), with PA assumed to mediate all downstream signaling. We show that choline is also an intracellular messenger. Choline binds to Sig-1Rs, mimics other Sig-1R agonists by potentiating Ca^{2+} signals evoked by IP3Rs, and it is deactivated by metabolism. Receptors, by stimulating PLC and PLD, deliver two signals to IP3Rs: IP3 activates IP3Rs, and choline potentiates their activity through Sig-1Rs. Choline is also produced at synapses by degradation of acetylcholine. Choline uptake by transporters activates Sig-1Rs and potentiates Ca^{2+} signals. We conclude that choline is an endogenous agonist of Sig-1Rs linking extracellular stimuli, and perhaps synaptic activity, to Ca^{2+} signals.

INTRODUCTION

The Sigma-1 receptor (Sig-1R) is a small integral membrane protein expressed mainly in the endoplasmic reticulum (ER) and concentrated at the dynamic contacts between mitochondria and ER, the mitochondria-associated ER membrane domains (MAMs) (Schmidt et al., 2016; Smith and Su, 2017; Su et al., 2016). Sig-1R was thought to have two transmembrane domains (TMDs), with its N and C termini in the ER lumen (Aydar et al., 2002; Hayashi and Su, 2007). This topology was consistent with evidence that BiP, an ER luminal chaperone protein, binds to the C-terminal domain of Sig-1R (Hayashi and Su, 2007). However, a crystal structure of Sig-1R challenges these observations because it identified only a single TMD within each subunit of a trimeric complex, and it placed the C-terminal region on the cytosolic side of the ER membrane (Alon et al., 2017; Schmidt et al., 2016). Sig-1Rs are abundant in brain, but they are also expressed in other tissues (Smith and Su, 2017). They are implicated in many pathologies, including depression, anxiety, amyotrophic lateral sclerosis and other neurodegenerative diseases, drug addiction, neuropathic pain, and cancers (Gueguinou et al., 2017; Su et al., 2016; Watanabe et al., 2016). Sig-1Rs bind an unusually diverse array of ligands, most of which are amines. These include antidepressants (e.g., fluoxetine), antipsychotics (e.g., haloperidol), and drugs of abuse (e.g., cocaine and methamphetamine) (Maurice and Su, 2009; Walker et al., 1990). Sig-1Rs also interact with many different signaling proteins. Within the ER, these proteins include inositol 1,4,5-trisphosphate receptors (IP3Rs) (Hayashi and Su, 2007) and STIM1, the Ca^{2+} sensor for store-operated Ca^{2+} entry (Srivats et al., 2016). At the plasma membrane (PM), Sig-1Rs regulate a variety of receptors and ion channels (Su et al., 2016).

Although many ligands of Sig-1Rs have opposing effects, their diversity and the many proteins that interact with Sig-1Rs confound attempts to classify ligands consistently as agonists or antagonists across all bioassays (Schmidt et al., 2016; Yano et al., 2018). A more fundamental distinction may be whether ligands stabilize oligomeric (agonists) or monomeric forms (agonists) of Sig-1R (Gromek et al., 2014; Mishra et al., 2015; Ossa et al., 2017; Schmidt et al., 2016; Yano et al., 2018). Hence, agonists by releasing Sig-1Rs from large oligomeric complexes may free Sig-1Rs to interact with client proteins (Figure 1A). Several endogenous molecules, including steroids (Monnet and Maurice, 2006) (notably progesterone), various sphingolipids (Ramachandran et al., 2009), and N,N-dimethyltryptamine (DMT) (Fontanilla et al., 2009), bind to Sig-1Rs and regulate some of their activities. It is unclear whether any of these ligands mediate endogenous regulation of Sig-1Rs, and none has been shown to link extracellular stimuli to regulation of Sig-1Rs.
Many extracellular stimuli evoke increases in the intracellular free \([\text{Ca}^{2+}]\) through receptors that stimulate phospholipase C (PLC), leading to formation of IP3 and release of \(\text{Ca}^{2+}\) from the ER through IP3Rs. Sig-1Rs have been reported to both potentiate the \(\text{Ca}^{2+}\) signals evoked by these receptors by increasing the IP3 sensitivity of IP3Rs (Hayashi et al., 2000; Hong et al., 2004; Wu and Bowen, 2008) and to increase the efficiency of \(\text{Ca}^{2+}\) transfer from ER to mitochondria through IP3Rs (Hayashi and Su, 2007; Shioda et al., 2012).

Here, we demonstrate that agonists of G-protein-coupled receptors (GPCRs) that stimulate PLC and an increase in \([\text{Ca}^{2+}]\), also stimulate phospholipase D (PLD). We show that choline, a quaternary amine with an acyl chain but no hydrophobic moieties, might be an endogenous agonist of Sig-1Rs.

(+-)Pentazocine is a high-affinity, selective ligand of Sig-1Rs (equilibrium dissociation constant, \(K_d = 5.5 \text{nM}\)) (de Costa et al., 1989). Specific binding of \([\text{H}]^{(+)}\)-pentazocine to membranes prepared from Neuro-2A cells stably expressing Sig-1R-GFP (mean \(\pm\) SEM; \(n = 5\), with 3 replicates for each). Specific binding of \([\text{H}]^{(+)}\)-pentazocine was 90\% \(+\) 3\% of total binding (mean \(\pm\) SEM; \(n = 5\)) for membranes from cells overexpressing Sig-1R, and 13\% \(+\) 5\% for mock-transfected cells.

RESULTS

Choline Binds to Sig-1Rs and Potentiates IP3-Evoked \(\text{Ca}^{2+}\) Signals

Most high-affinity ligands of Sig-1Rs comprise a tertiary amine flanked by a short acyl chain and hydrophobic moieties (Glennon, 2005; Ossa et al., 2017). Endogenous agonists are unlikely to have such high affinity because they must rapidly associate with and dissociate from Sig-1Rs if they are to acutely regulate them. We considered whether choline, a quaternary amine with an acyl chain but no hydrophobic moieties, might be an endogenous agonist of Sig-1Rs.

Figure 1. Choline Is an Agonist of Sig-1Rs

(A) Clusters of Sig-1Rs anchored at MAMs are thought to dissociate into monomers when they bind a Sig-1R agonist, freeing Sig-1Rs to interact with their targets, within and beyond MAMs. The targets include IP3Rs. (B) Specific binding of \([\text{H}]^{(+)}\)-pentazocine (5 nM) in the presence of choline and related compounds using membranes from Neuro-2A cells stably expressing Sig-1R-GFP (mean \(\pm\) SEM; \(n = 5\), with 3 replicates for each). Specific binding of \([\text{H}]^{(+)}\)-pentazocine was 90\% \(+\) 3\% of total binding (mean \(\pm\) SEM; \(n = 3\)) for membranes from cells overexpressing Sig-1R, and 13\% \(+\) 5\% for mock-transfected cells.

(C) Choline metabolism (structures from http://www.hmdb.ca).

(D) NG108-15 cells were incubated (2 hr, 37\^\text{\circ}\text{C}) with PRE-084 (25 \text{mM}) or BD1047 (25 \text{mM}), and then, in the continuous presence of the Sig-1R ligands, loaded with Fluo-8 by incubation with Fluo-8 AM in HEPES-buffered saline (HBS) (30 min, 20\^\text{\circ}\text{C}, with a further 30 min to allow de-esterification of Fluo-8). BAPTA (2.5 mM) was then added to chelate extracellular \(\text{Ca}^{2+}\) before addition of bradykinin (10 \text{\mu M}). Results show typical responses as means of 3 replicates.

(E) Summary results (mean \(\pm\) SEM; \(n = 5\), each with 3 replicates) show peak increases in \([\text{Ca}^{2+}]\) evoked by bradykinin. *\(p < 0.05\) for maximal responses relative to control, one-way ANOVA with Dunnett’s test.

(F) Pooled results (mean \(\pm\) SEM; \(n = 20\); as percentages of matched control response) for all bradykinin concentrations. The asterisk (*) denotes 95\% confidence intervals that exclude 100\%.

See also Figure S1A.
effective than choline. This is consistent with choline binding with greater affinity than its metabolites to the same site as known agonists and antagonists of Sig-1Rs.

Subsequent experiments explore the interactions of choline with Sig-1Rs in NG108-15 cells. These neuroblastoma-glioma hybrid cells retain many properties of neurons, including responsiveness to neurotransmitters, and the ability to synthesize and release acetylcholine (Hamprecht et al., 1985); they express endogenous Sig-1Rs, and their bradykinin receptors stimulate PLC and Ca^{2+} release from the ER through IP\(_3\)Rs (Figure S1A). The bradykinin-evoked Ca^{2+} signals were enhanced by pre-incubation with a Sig-1R agonist (PRE-084) and attenuated by an antagonist (BD1047) (Figures 1D–1F). Microinjection of NG108-15 cells with IP\(_3\) evoked a transient increase in [Ca\(^{2+}\)], whereas microinjection of choline or the Sig-1R agonist, (+)SKF-10047, had no effect. However, co-injection of choline or (+)SKF-10047 with IP\(_3\) potentiated the IP\(_3\)-evoked Ca\(^{2+}\) signals (Figures 2A and 2B). When applied to intact cells, neither choline nor other Sig-1R ligands significantly affected the Ca\(^{2+}\) content of the intracellular stores (Figures S1B and S1C). The potentiation of IP\(_3\)-evoked Ca\(^{2+}\) release by choline was blocked by pre-incubation with the Sig-1R antagonist, BD1047 (Figure 2B). Neither betaine, phosphocholine, nor acetylcholine mimicked the effects of microinjected choline (Figures 2C and 2D).

Treatment of NG108-15 cells with appropriate short hairpin RNA (shRNA) reduced expression of Sig-1R (Figure 2E) and

Figure 2. Choline Potentiates IP\(_3\)-Evoked Ca\(^{2+}\) Release by Stimulating Sig-1Rs
(A) Ca\(^{2+}\) signals recorded from Fura-2-loaded NG108-15 cells after microinjection (~1% cell volume) of IP\(_3\) (pipette concentration, 0.5 \(\mu\)M), (+)SKF-10047 (SKF, 100 \(\mu\)M), or choline (100 \(\mu\)M). Results (n = 6 cells) show untransfected cells or after transfection with scrambled shRNA or Sig-1R shRNA, each tagged with red fluorescent protein (RFP).

(B) Summary (mean ± SD; n = 6) shows peak [Ca\(^{2+}\)]. *p < 0.05, ANOVA with Bonferroni test, relative to matched stimuli in untransfected cells. The effects of pre-incubating cells with BD1047 (25 \(\mu\)M, 15 min) are also shown.

(C) Similar analysis of the effects of microinjected IP\(_3\) (pipette concentration, 0.5 \(\mu\)M) or acetylcholine, betaine, or phosphocholine (pipette concentration, 100 \(\mu\)M for each), alone or in combination.

(D) Summary (mean ± SD; n = 6) shows peak [Ca\(^{2+}\)]. *p < 0.05, ANOVA with Bonferroni test, relative to IP\(_3\) alone.

(E) Western blot (WB) of Sig-1R after transfection of NG108-15 cells with scrambled or Sig-1R shRNA, each tagged with RFP. Tagged shRNAs were used to allow identification of transfected cells in microinjection experiments. Hence, WB from cell populations probably over-estimates Sig-1R expression in functional analyses of microinjected cells treated with Sig-1R shRNA. Sig-1R expression was reduced to 50% ± 12% of control levels by the shRNA treatment (mean ± SD; n = 3).

(F) WB showing detectable expression of Sig-1R in MCF7 cells only after transfection with Sig-1R-GFP. Typical of 4 blots. Mr markers (kDa) are shown.

(G) Ca\(^{2+}\) signals recorded from Fura-2-loaded MCF7 cells after microinjection as described for (C). Results (n = 6 cells) are from control cells or after transfection with GFP or Sig-1R-GFP.

(H) Summary (mean ± SD; n = 6) results show [\(\Delta\)Ca\(^{2+}\)]. *p < 0.05 for maximal responses relative to matched untransfected cells, one-way ANOVA with Dunnett’s test.

See also Figures S1B and S1C.
abolished the potentiating effects of choline and (+)SKF-10047, without affecting responses to IP$_3$ alone (Figures 2A and 2B). In MCF7 breast cancer cells, Sig-1R expression was scarcely detectable (Figure 2F) (Wu and Bowen, 2008). In these cells, neither microinjected choline nor (+)SKF-10047 potentiated IP$_3$-evoked Ca$^{2+}$ signals, but the signals were potentiated after expression of Sig-1R-GFP (Figures 2F–2H). These results establish that choline, by activating Sig-1Rs, potentiates IP$_3$-evoked Ca$^{2+}$ release.

Sig-1Rs Contribute to Ca$^{2+}$ Signals Evoked by GPCRs

Extracellular ATP stimulates PLC through P2Y$_6$ receptors in NG108-15 cells (Sak et al., 2001). Loss of Sig-1Rs in NG108-15 cells (by shRNA) reduced the amplitude of the Ca$^{2+}$ signals evoked by maximally effective concentrations of ATP (Figures 3A–3C). We next considered whether the contribution of Sig-1Rs to the Ca$^{2+}$ signals evoked by GPCRs might be mediated by choline. Both mammalian isoforms of PLD (PLD1 and PLD2) are almost ubiquitously expressed enzymes that hydrolyse phosphatidylcholine (PC) to phosphatidic acid (PA) and choline. PLDs are regulated by many signals, including those that stimulate PLC and protein kinase C (PKC) (Selvy et al., 2011).

The basal choline concentration in NG108-15 cells (144 ± 7 μM) was similar to values reported for other cells (100–400 μM) (Pelech and Vance, 1984). Stimulation of NG108-15 cells with extracellular ATP increased the intracellular concentrations of both choline and IP$_3$. Knockdown of PLD1 and PLD2 expression using shRNA (Figure 3E) prevented the increase in choline concentration without affecting IP$_3$ production (Figures 3F and 3G). Furthermore, the ATP-evoked Ca$^{2+}$ signals were similarly and substantially attenuated by loss of Sig-1R or loss of PLDs (Figures 3A–3C). The results so far demonstrate that GPCRs, by stimulating both
PLC and PLD, generate parallel signals, IP₃ and choline, which converge to stimulate Ca²⁺ release through IP₃Rs (Figure 3H).

Choline Uptake Regulates Ca²⁺ Signals

Synthesis of acetylcholine within cholinergic nerve terminals requires choline uptake by a high-affinity, Na⁺-dependent transporter (CHT1 [choline high-affinity transporter 1]) expressed mostly at cholinergic terminals (Haga, 2014; Sarter and Parikh, 2005). Additional Na⁺-independent transporters mediate low-affinity choline uptake (OCTs [organic cation transporters]); and the widely expressed choline transporter-like proteins (CTL1-5, encoded by SLC44A1-5) mediate high-affinity uptake outside cholinergic terminals (Haga, 2014; Machová et al., 2009; Yamada et al., 2011). NG108-15 cells are capable of high-affinity choline uptake and they express CTL1, but not CHT1 (Machová et al., 2009), consistent with evidence that CTL1 is expressed in neurons and glia (Traiffort et al., 2013).

Incubation of NG108-15 cells with choline caused a time-dependent increase in the amplitude of the Ca²⁺ signals subsequently evoked by bradykinin (Figure 4A). The effect was minimally affected by removing the extracellular choline immediately before stimulation with bradykinin (Figure S2), suggesting that choline potentiates Ca²⁺ signals after its transport into cells. Potentiation of bradykinin-evoked Ca²⁺ signals by extracellular choline was substantially attenuated by loss of Sig-1R (shRNA) or CTL1 (small interfering RNA [siRNA]), but unaffected by scrambled shRNA or siRNA (Figures 4C–4E).

Figure 4. CTL1-Mediated Choline Uptake Potentiates IP₃-Evoked Ca²⁺ Signals

(A) NG108-15 cells were incubated in HBS alone or with 3 mM choline for the indicated times before adding bradykinin (1 μM) and immediately recording the increase in [Ca²⁺]. Results (mean ± SEM; n = 3 with duplicate determinations) show Δ[Ca²⁺]evoked by bradykinin.

(B) Summary results (mean ± SEM; n = 3) show bradykinin-evoked Δ[Ca²⁺] after incubation with the indicated choline concentrations (105 min).

(C) WB showing effects of the indicated siRNA (for CTL1) or shRNA (for Sig-1R) and their scrambled counterparts on expression of CTL1 and Sig-1R in NG108-15 cells. M, markers (kDa) are shown.

(D) Summary results (mean ± SD; n = 5) show CTL1 expression in cells treated with the indicated siRNA expressed as a percentage of the matched cells treated with scrambled siRNA.

(E) Summary results (mean ± SEM; n = 5 plates with 2 replicates) show the effects of 10 mM choline on bradykinin-evoked Ca²⁺ signals. *p < 0.05, **p < 0.01, one-way ANOVA with Dunnett’s test, relative to control (B and E).

(F) Acetylcholine (ACh) released at cholinergic terminals can activate post- and pre-synaptic receptors, before its rapid hydrolysis to choline by acetylcholinesterase (AChE). Hence, synaptic activity is rapidly followed by a substantial local increase in choline concentration. Transporters (red circles) in the cholinergic terminal (CHT1) and neighboring cells (CTL1-5 and OCT) can import the choline, which will then stimulate Sig-1Rs, providing cells with a paracrine reporter of recent synaptic activity.

See also Figure S2.
DISCUSSION

Sig-1Rs respond to many diverse drugs, including some that are commonly abused or used clinically, but it is unclear whether endogenous agonists regulate Sig-1Rs (Maurice and Su, 2009). Here, we provide evidence that choline (Figure 1C), best known as a precursor for synthesis of acetylcholine and PC, the most abundant membrane phospholipid in mammalian cells, is an endogenous agonist of Sig-1Rs. We show that choline meets the three essential criteria of an intracellular messenger, namely it is produced in response to extracellular stimuli, it exerts a specific intracellular action, and it is endogenously deacti-
vated. We conclude that choline is an intracellular messenger linking GPCRs, through Sig-1Rs, to Ca2+ release from intracel-
lular stores (Figure 4F).

Choline mimicked known Sig-1R agonists by competing with (+)-pentazocine for binding to Sig-1Rs (Figure 1B) and by poten-
tiating the Ca2+ signals evoked by receptors that stimulate IP\textsubscript{3} formation (Figures 2A, 2B, and 2D). The immediate metabolites of choline were ineffective (Figures 2C and 2D). The effect of choline on Ca2+ signals was attenuated when Sig-1R expression was reduced (Figures 2A, 2B, and 2E); and in cells without Sig-1Rs, expression of Sig-1R endowed the cells with sensitivity to choline (Figures 2F-2H). The Ca2+ signals evoked by GPCRs that stimulate formation of IP\textsubscript{3} were attenuated when Sig-1R expression was reduced (Figures 3A-3D). ATP, which stimulates PLC through P2Y\textsubscript{6} receptors in NG108-15 cells (Sak et al., 2001), rapidly evoked formation of IP\textsubscript{3} and choline, but only the latter required PLDs (Figures 3F and 3G). Furthermore, the ATP-evoked Ca2+ signals were similarly attenuated by loss of PLDs or Sig-1Rs (Figure 3C). Bradykinin-evoked Ca2+ signals were likewise attenuated by loss of Sig-1Rs (Figure 3D).

Many GPCRs that stimulate PLC also activate PLD, and most agonists that activate PLD also stimulate PLC. However, the links between GPCRs and stimulation of mammalian PLD differ between cell types, and the stimulatory signals, which include PKC, Ca2+, small GTPases (rho and ADP-ribosylation factor [Arf]), phosphatidylinositol 4,5-bisphosphate, and phosphatidyli-
inositol 3,4,5-trisphosphate, can be generated by PLC or parallel pathways (Exton, 1999; Selvy et al., 2011). Hitherto, signaling downstream of PLD has been thought to arise entirely, directly or indirectly, from PA (Selvy et al., 2011). We suggest that the other product of PLD activity, namely choline, is also an important intracellular messenger that regulates Sig-1Rs and thereby IP\textsubscript{3}-evoked Ca2+ release (Figures 3H and 4G). Our estimate of the intracellular choline concentration in NG108-15 cells after GPCR activation (~900 µM) (Figure 3F) is similar to that required for binding to Sig-1Rs (K\textsubscript{D} = 525 µM) (Figure 1B). The low affinity of choline, relative to the many ligands used to establish structure-affinity relationship for Sig-1R (Glennon et al., 1992), is important because it will allow Sig-1R to respond rapidly to acute changes in intracellular choline concentration. We conclude that choline is an endogenous agonist of Sig-1Rs, a consequence of which includes potentiation of IP\textsubscript{3}-evoked Ca2+ release (Figure 3H).

Choline is an essential nutrient that cells import through transporters from plasma, where the choline concentration is typically 5–10 µM, although it varies with diet (Sarter and Parikh, 2005). At cholinergic synapses, the choline concentration may be much higher (~1 mM) after synaptic activity, when acetylcholine is rapidly hydrolysed by acetylcholinesterase (Figure 4G). Our results show that extracellular choline, at concentrations encompassing likely synaptic concentrations, potentiates GPCR-evoked Ca2+ signals. The potentiation requires both Sig1R and the choline transporter, CTL1 (Figures 4A–4E and S2). These observations suggest an additional signaling role, whereby changes in extracellular choline concentration might regulate Sig-1Rs and thereby Ca2+ signaling. Such a mechanism might be particularly effective at cholinergic synapses of neuromuscular junctions or within the autonomic nervous system (Picciotto et al., 2012), where rapid transient increases in choline concentration follow synaptic activity. Choline might then determine the sensitivity of adjacent neurons or glia to PLC-coupled GPCRs (Figure 4G), consistent with many reported interactions between Sig-1Rs and cholinergic transmission (van Waarde et al., 2011). Hence, choline, as an endogenous agonist of Sig-1Rs, may be both an intracellular messenger linking GPCRs through PLD to Sig-1Rs (Figure 4F); and a paracrine signal at cholinergic synapses linking synaptic activity, through choline transporters, to Sig-1R regulation in nearby cells (Figure 4G).

We conclude that choline is an endogenous agonist of Sig-1Rs. Although we examined the consequences of activating Sig-1Rs only in the context of IP\textsubscript{3}-evoked Ca2+ signals, it is likely that choline, like other agonists of Sig-1Rs, also promotes interaction of Sig-1Rs with other signaling proteins. We propose that choline may be delivered to Sig-1Rs as a paracrine reporter of activity at cholinergic synapses through choline transporters, or as an intracellular messenger from PLD activated by GPCRs (Figures 4F and 4G). The GPCRs that stimulate both PLC and PLD thereby send parallel signals to IP\textsubscript{3}Rs: IP\textsubscript{3} directly activates IP\textsubscript{3}Rs, while choline stimulates Sig-1Rs, which potentiate IP\textsubscript{3}R activity. IP\textsubscript{3}Rs thereby function as coincidence detectors, integrating signals from IP\textsubscript{3} and Sig-1Rs (Figures 3G and 4F).

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
- **METHOD DETAILS**
 - Transfection of Cells
 - Radioligand Binding
 - Western Blotting
 - Microinjection and Analysis of Ca2+ Signals in Single Cells
 - Measurement of Ca2+ Signals in Cell Populations
 - Measurements of Intracellular IP\textsubscript{3} and Choline Concentrations
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and can be found with this article online at https://doi.org/10.1016/j.celrep.2018.12.051.
ACKNOWLEDGMENTS

This work was supported by the Wellcome Trust (101844 to C.W.T.) and NIH (R01 DA035926 to M.E.A., P30 DA 013429 to E.M.U., and R03 NS099957 to G.C.B.).

AUTHOR CONTRIBUTIONS

E.B. and C.W.T. supervised the study. E.B., S.C., G.C.B., P.Z., J.L.B., and M.A.I. performed experiments. E.B., S.C., E.M.U., M.E.A., and C.W.T. conceived and designed experiments, and analyzed and interpreted experimental data. E.B. and C.W.T. wrote the manuscript with contributions from all authors. All authors commented on the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: July 31, 2018
Revised: October 11, 2018
Accepted: December 11, 2018
Published: January 8, 2019

REFERENCES

STAR★METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT OR RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donkey anti-rabbit IgG-HRP (1:5000)</td>
<td>Santa Cruz Biotechnology Inc, Dallas, TX</td>
<td>Cat# sc-2313</td>
</tr>
<tr>
<td>Goat anti-mouse IgG-HRP (1:2000)</td>
<td>Santa Cruz Biotechnology</td>
<td>Cat# sc-2005</td>
</tr>
<tr>
<td>IRDye 800CW-conjugated goat anti-rabbit IgG (1:10,000)</td>
<td>LI-COR, Lincoln, NE</td>
<td>Cat# 926-32211</td>
</tr>
<tr>
<td>IRDye 680-conjugated goat anti-mouse IgG (1:10,000)</td>
<td>LI-COR</td>
<td>Cat# 926-32220</td>
</tr>
<tr>
<td>Rabbit anti-Sig-1R (1:200)</td>
<td>OriGene, Rockville, MD</td>
<td>Cat# TA302033</td>
</tr>
<tr>
<td>Rabbit anti-Sig-1R (2 μg/mL)</td>
<td>AbCam, Cambridge, UK</td>
<td>Cat# 53852</td>
</tr>
<tr>
<td>Mouse anti-GFP (1:2000)</td>
<td>OriGene</td>
<td>Cat# TA150041</td>
</tr>
<tr>
<td>Mouse anti-PLD1 (1:200)</td>
<td>Santa Cruz Biotechnology</td>
<td>Cat# sc-25512</td>
</tr>
<tr>
<td>Mouse anti-PLD2 (3 μg/mL)</td>
<td>Abnova Corporation, Taipei, Taiwan</td>
<td>Cat# H00005338</td>
</tr>
<tr>
<td>Rabbit anti-β-actin (1:2000)</td>
<td>Santa Cruz Biotechnology</td>
<td>Cat# sc-1616</td>
</tr>
<tr>
<td>Mouse anti-β-actin (1:1000)</td>
<td>Cell Signaling Technology, Boston, MA</td>
<td>Cat# 8H10D10</td>
</tr>
<tr>
<td>Mouse anti-β-actin (1:10,000)</td>
<td>Sigma-Aldrich, St. Louis, MO</td>
<td>Cat# A5441</td>
</tr>
<tr>
<td>Rabbit anti-CTL1 (1:500)</td>
<td>ThermoFisher, Basingstoke, UK</td>
<td>Cat# AB_2556158</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetylcholine chloride</td>
<td>Chem-IMPEX International, Wood Dale, IL</td>
<td>Cat# 00770</td>
</tr>
<tr>
<td>Acetylcholine chloride</td>
<td>Sigma-Aldrich</td>
<td>Cat# A6625</td>
</tr>
<tr>
<td>ATP</td>
<td>Sigma-Aldrich</td>
<td>Cat# A9187</td>
</tr>
<tr>
<td>BAPTA</td>
<td>Molekula, Dorset, UK</td>
<td>Cat# 20358510</td>
</tr>
<tr>
<td>Betaine hydrochloride</td>
<td>Sigma-Aldrich</td>
<td>Cat# 61962</td>
</tr>
<tr>
<td>BD1047 dihydrobromide</td>
<td>Tocris, Abingdon, UK</td>
<td>Cat# 0956</td>
</tr>
<tr>
<td>Bradykinin acetate salt</td>
<td>Sigma-Aldrich</td>
<td>Cat# B3259</td>
</tr>
<tr>
<td>Bovine serum albumin (BSA)</td>
<td>Europa Bioproducts Ltd, Cambridge, UK</td>
<td>Cat# EOBHA64</td>
</tr>
<tr>
<td>Choline chloride</td>
<td>Sigma-Aldrich</td>
<td>Cat# C7017</td>
</tr>
<tr>
<td>CompleteTM protease inhibitor cocktail</td>
<td>Sigma-Aldrich</td>
<td>Cat# 4693116001</td>
</tr>
<tr>
<td>Dimethyl sulfoxide (DMSO)</td>
<td>Sigma-Aldrich</td>
<td>Cat# D2650</td>
</tr>
<tr>
<td>DMEM/F-12, GlutaMAX medium</td>
<td>ThermoFisher</td>
<td>Cat# 31331028</td>
</tr>
<tr>
<td>ECL Prime</td>
<td>GE Healthcare, Little Chalfont, UK</td>
<td>Cat# RPN2232</td>
</tr>
<tr>
<td>Fluoro-8 AM</td>
<td>AAT Bioquest, Cambridge, UK</td>
<td>Cat# 21802</td>
</tr>
<tr>
<td>Fetal bovine serum (FBS)</td>
<td>Sigma-Aldrich</td>
<td>Cat# F7524, batch 094M3341</td>
</tr>
<tr>
<td>Fura-2 AM</td>
<td>AAT Bioquest</td>
<td>Cat# 21020</td>
</tr>
<tr>
<td>Glucose</td>
<td>ThermoFisher</td>
<td>Cat# F1221</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>Sigma-Aldrich</td>
<td>Cat# H1512</td>
</tr>
<tr>
<td>Hank’s balanced salt solution (HBSS)</td>
<td>ThermoFisher</td>
<td>Cat# 21-023-CV</td>
</tr>
<tr>
<td>HEPES</td>
<td>Merck Millipore</td>
<td>Cat# 391338</td>
</tr>
<tr>
<td>Ionomycin</td>
<td>Apollo Scientific, Stockport, UK</td>
<td>Cat# 56092-81-0</td>
</tr>
<tr>
<td>Lipofectamine</td>
<td>ThermoFisher</td>
<td>Cat# 18324012</td>
</tr>
<tr>
<td>Lipofectamine RNAiMax</td>
<td>ThermoFisher</td>
<td>Cat# 13778150</td>
</tr>
<tr>
<td>Odyssey blocking buffer</td>
<td>LI-COR</td>
<td>Cat# 927-50000</td>
</tr>
<tr>
<td>Opti-MEM I</td>
<td>ThermoFisher</td>
<td>Cat# 11058-021</td>
</tr>
<tr>
<td>[3H]-(+)-Pentazocine (26.9 Ci/mmol)</td>
<td>Perkin-Elmer, Richmond, CA</td>
<td>Cat# NET10560250UC</td>
</tr>
<tr>
<td>PRE-084 hydrochloride</td>
<td>Tocris</td>
<td>Cat# 0589</td>
</tr>
</tbody>
</table>

(Continued on next page)
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Colin W. Taylor (cwt1000@cam.ac.uk).

<table>
<thead>
<tr>
<th>REAGENT OR RESOURCE SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphocholine chloride</td>
<td>Tokyo Chemical Industry, Japan</td>
</tr>
<tr>
<td>Pluronic F127</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Polyethyleneimine</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>RPMI medium</td>
<td>ThermoFisher</td>
</tr>
<tr>
<td>(+)-SKF-10047 hydrochloride</td>
<td>Tocris</td>
</tr>
<tr>
<td>Sodium fluoride</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium orthovanadate</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>TurboFectin 8.0</td>
<td>OriGene</td>
</tr>
<tr>
<td>Tris base</td>
<td>ThermoFisher</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Tween-20</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
</tr>
<tr>
<td>BCA protein assay kit (Pierce)</td>
<td>ThermoFisher</td>
</tr>
<tr>
<td>Choline assay kit</td>
<td>BioVision, Mountain View, CA</td>
</tr>
<tr>
<td>IP3 assay kit</td>
<td>DiscoveRx, Fremont, CA</td>
</tr>
<tr>
<td>Experimental Models: Cell Lines</td>
<td></td>
</tr>
<tr>
<td>NG108-15 cells</td>
<td>American Type Culture Collection (ATCC), Manassas, VA</td>
</tr>
<tr>
<td>MCF7 cells</td>
<td>ATCC</td>
</tr>
<tr>
<td>Neuro-2A cells</td>
<td>ATCC</td>
</tr>
<tr>
<td>Recombinant DNA</td>
<td></td>
</tr>
<tr>
<td>Human Sig-1R-GFP in pCMV6-AC-GFP</td>
<td>OriGene</td>
</tr>
<tr>
<td>RFP-tagged shRNA (HuSH, 29-mer shRNA in pRFP-C-RS) against human Sig-1R [GAGTAT GTGCTGCTCTTCGGACCGCCCT]</td>
<td>OriGene</td>
</tr>
<tr>
<td>RFP-tagged shRNA (HuSH, 29-mer shRNA in pRFP-C-RS) against rat PLD1 [GGCTCTATCG CCAATTCACCGCGGTAA]</td>
<td>OriGene</td>
</tr>
<tr>
<td>RFP-tagged shRNA (HuSH, 29-mer shRNA in pRFP-C-RS) against rat PLD2 [GGAGAAGCTG ACATTATGCTCAAGAGGAAG]</td>
<td>OriGene</td>
</tr>
<tr>
<td>RFP-tagged scrambled shRNA (HuSH, 29-mer scrambled shRNA in pRFP-C-RS)</td>
<td>OriGene</td>
</tr>
<tr>
<td>Silencer siRNA (3 different 21-bp siRNA) against rat CTL1 (SLC44A1)</td>
<td>ThermoFisher</td>
</tr>
<tr>
<td>Control Silencer siRNA</td>
<td>ThermoFisher</td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td></td>
</tr>
<tr>
<td>Prism 5, version 5</td>
<td>GraphPad, La Jolla</td>
</tr>
<tr>
<td>GeneTools, version 4</td>
<td>Syngene, Cambridge, UK</td>
</tr>
<tr>
<td>Odyssey, version 3</td>
<td>LI-COR</td>
</tr>
<tr>
<td>SoftMax Pro, version 7</td>
<td>Molecular Devices, San Jose, CA</td>
</tr>
<tr>
<td>NIS-Elements AR 3.1</td>
<td>Nikon, Melville, NY</td>
</tr>
</tbody>
</table>
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The NG108-15 cell line (ATCC) is a somatic hybrid derived from a mouse neuroblastoma and rat glioma. NG108-15 cells were grown in DMEM/F12 with 10% fetal bovine serum (FBS). MCF7 cells (ATCC) were derived from a human metastatic mammary tumor. These cells were grown in RPMI with 10% FBS. Neuro-2A cells (ATCC), which were used only for heterologous expression of Sig-1R-GFP for radioligand binding analyses, were derived from a mouse neuroblastoma. Neuro-2A cells were grown in DMEM containing 10% FBS, and further supplemented with G-418 (100 μg/mL) for the cells stably expressing Sig-1R-GFP. We have not established the sex of the animals from which NG108-15 and Neuro-2A cells were derived. All cells were grown in humidified air at 37°C with 5% CO2. Cells were passaged when they reached around 80% confluence. The authenticity of the cell lines was not confirmed, but screening established that all cells were free of mycoplasma.

METHOD DETAILS

Transfection of Cells

Cells were transiently transfected using either TurboFectin 8.0 or electroporation. For the former, plasmid DNA was added to TurboFectin 8.0 in OptiMEM I (TurboFectin:DNA, 3:1), incubated (15-30 min, 20°C), and the complex was then added to cells in 6-well plates (1-1.5 μg DNA/well) in complete medium, and incubated for 24-48 h. For electroporation, cells (80%-90% confluent in a 75 flasks) were scraped into culture medium, centrifuged (150 x g, 5 min), and resuspended in Opti-MEM I (2 x 10^6 cells/mL). Cells (500 μL) were transferred to electroporation cuvettes (800 μL, 4-mm gap; Eppendorf, Hamburg, Germany) with plasmid DNA (5-10 μg/cuvette) and the cells were subjected to electroporation using a GenePulser Xcell (BioRad, 200-250V, 700-900 μF, 18-20 ms). Transfected cells were plated in Opti-MEM I in 6-well plates, FBS (10%) was added after 4 h, and the medium was replaced after 24 h.

Neuro-2A cells stably expressing Sig-1R-GFP were generated by transfecting cells with plasmid encoding human Sig-1R-GFP using Lipofectamine. Cells were grown in medium containing G418 (400 μg/mL) and after 2 weeks resistant colonies were selected and propagated. Stable cell lines with intermediate levels of Sig-1R-GFP expression (determined by fluorescence microscopy) were identified and then maintained in DMEM supplemented with FCS (10%) and G418 (100 μg/mL).

For expression of human Sig-1R-GFP, cells grown in 6-well plates were transfected with 1-1.5 μg DNA/well. To reduce expression of Sig-1R or PLDs, RFP-tagged shRNA constructs were used. Each set of constructs included four different 29-mer targeting shRNA in a pRFP-C-RS plasmid. Using methods reported previously (Brailoiu et al., 2016), we used western blotting to assess the ability of each individual construct to reduce expression of its target protein (Sig-1R, PLD1 or PLD2). The most effective shRNA construct from each set was used for the experiments described here. The constructs were used individually for Sig-1R knockdown (2 μg/mL) or as a pair for knockdown of PLD1 and PLD2 (1 μg/mL of each). The same scrambled RFP-shRNA construct (2 μg/mL) was used as a control for all shRNA analyses.

Lipofectamine RNAmax was used to transfect cells simultaneously with three different siRNAs against CTL1 (50 nM of each) to reduce CTL1 expression. A siRNA with no known target in mammalian genomes (150 nM) was used as a control for the siRNA experiments (Silencer control, ThermoFisher). Cells were used 24-48 h after transfection.

Radioligand Binding

Membranes were prepared from Neuro-2A cells stably expressing Sig-1R-GFP (Wu and Bowen, 2008). Cells (~1.7 x 10^6) were harvested (500 x g, 5 min) in phosphate-buffered saline (PBS) containing EGTA (1 mM), homogenized in cold medium (10 mL; 50 mM Tris-HCl, 320 mM sucrose, 2 mM EDTA, 5 mM MgCl2, pH 7.4), centrifuged (50,000 x g, 4°C, 10 min), the pellet was then resuspended by homogenization (2 mg protein/mL) in binding medium (50 mM Tris-HCl, 1 mM EDTA, 3 mM MgCl2, pH 7.4) and stored at -80°C. Binding assays (final volume 500 μL) were performed in glass tubes with binding medium containing BSA (5 mg/mL), [3H](-)-pentazocine (5 nM, 26.9 Ci/mmol), competing ligands and membranes (100 μg). After 1 h at 30°C, bound ligand was recovered by rapid filtration through Whatman GF/C filters pre-soaked in polyethyleneimine (0.1%, 2 h), the filters were washed twice, and their radioactivity was determined by liquid scintillation counting. Non-specific binding was determined in the presence of 5 μM haloperidol.

Western Blotting

Lysates were prepared from cells 48 h after transfection. Cells were collected (150 x g, 5 min) and lysed (1 h, 4°C) in medium comprising: NaCl (50 mM), Tris (20 mM), Mg acetate (10 mM), Triton X-100 (1%, v/v), cOmplete protease inhibitor mixture, Na orthovanadate (1 mM) and Na fluoride (5 mM), pH 7.3. After centrifugation (14,000 x g, 15 min), the supernatant was collected and its protein concentration determined using a BCA assay kit. Cell lysates, which were used immediately or after storage at ~80°C, were subject to SDS-PAGE using Mini-PROTEAN TGX 4%-20% gels (BioRad, Hercules, CA) or NuPAGE 4%-12% Bis-Tris gels (Invitrogen, Paisley, UK). Proteins were transferred to Odyssey nitrocellulose membranes (LI-COR Biosciences) or PVDF membranes (iBlot, Invitrogen). Membranes were washed and blocked (1 h, 20°C) with Odyssey blocking buffer or TBST (137 mM NaCl, 20 mM Tris, 0.1% Tween-20, pH 7.6) supplemented with 5% (w/v) BSA. Membranes were incubated (12 h, 4°C) with primary antibodies in TBST and 1% BSA, washed with TBST (3 x 5 min), incubated with secondary antibodies in TBST and 1% BSA (1 h, 20°C), and then washed with TBST. Bands were visualized by infrared emission (LI-COR Infrared Imager, resolution 169 μm, intensity 4.5-6)
or by incubation with HRP-conjugated secondary antibodies (1 h), followed by washing and detection with ECL Prime. Densitometric analysis used Odyssey or GeneTools software, or ImageJ (NIH, Bethesda, USA). The antibodies used and their dilutions are listed in the Key Resources Table.

Microinjection and Analysis of Ca²⁺ Signals in Single Cells

For measurements of [Ca²⁺], in single Fura-2-loaded cells grown on glass coverslips (#1.5, 25-mm diameter, Warner Instruments), cells were incubated with Fura-2 AM (5 μM, 45 min, 20°C) in Hanks' balanced salt solution (HBSS), washed 3 times, and incubated for a further 45 min before experiments (Brailoiu et al., 2009). Fluorescence images (alternate excitation at 340 and 380 nm; emission at 510 nm) were acquired at 0.25 Hz using an inverted Nikon Eclipse Ti microscope with a Perfect Focus System and a CoolSnap HQ2 CCD camera (Photometrics Scientific). Images were acquired and analyzed using NIS-Elements AR 3.1 software (Nikon). After correction for background, determined from an area outside the cell, fluorescence ratios (F₃₄⁰/F₃₈⁰) were calibrated to [Ca²⁺] (Gryniewicz et al., 1985). Intracellular solutions were back-filled with intracellular solution (110 mM KCl, 10 mM NaCl, 20 mM HEPES, pH 7.2) (Guse et al., 1997) and appropriate drugs. The injection time was 0.4 s at 60 hPa with a compensation pressure of 20 hPa in order to inject ~1% of the cell volume.

Measurement of Ca²⁺ Signals in Cell Populations

For measurements of [Ca²⁺], in cell populations, confluent cultures of cells in 96-well plates were loaded with Fluo-8 by incubation with Fluo-8 AM (2 μM, 30 min, 20°C) in HEPES-buffered saline (HBS) supplemented with 0.02% pluronic acid. The medium was then replaced with HBS, and after 30 min at 20°C to allow de-esterification of the indicator, fluorescence was recorded using a FlexStation III plate-reader (MDS Analytical Devices, Wokingham, UK) (Konieczny et al., 2017; Tovey et al., 2006). Fluorescence was captured and processed using SoftMax Pro software. All measurements were performed in HBS at 20°C. HBS comprised: 135 mM NaCl, 5.9 mM KCl, 1.2 mM MgCl₂, 1.5 mM CaCl₂, 11.5 mM glucose, 11.6 mM HEPES, pH 7.3. Fluorescence was recorded at 1.44 s intervals, with excitation at 485 nm and emission at 525 nm. The minimal (Fₘᵢₙ, Ca²⁺-free indicator) and maximal (Fₘₐₓ, Ca²⁺-saturated indicator) fluorescence values were determined from several parallel wells in each plate after addition of Triton X-100 (0.1%) with either BAPTA (10 mM, for Fₘᵢₙ) or CaCl₂ (10 mM, for Fₘₐₓ). Fluorescence values (F) were then calibrated to [Ca²⁺] from:

\[
[Ca^{2+}] = K_D \times \frac{F - F_{min}}{F_{max} - F}
\]

The K₀ of fluo-8 was assumed to be 389 nM.

Measurements of Intracellular IP₃ and Choline Concentrations

NG108-15 cells (10¹⁰ cells) in HBSS (0.5 mL, 20°C) were stimulated with ATP and the reaction was terminated by addition of cold HClO₄ (1 mL, 0.75 M). After centrifugation (2000 × g, 5 min, 4°C), the supernatant was removed, PBS (270 μL) was added, and the mixture was sonicated. After centrifugation (15,000 × g, 10 min), assay kits were used to determine the amounts of choline (BioVision Inc.) and IP₃ (DiscoveRx) in the supernatant, according to the manufacturer’s instructions. A volume of 2.5 μL for an NG108-15 cell (Rouzaire-Dubois and Dubois, 1997) was used to calculate intracellular concentrations of IP₃ and choline.

QUANTIFICATION AND STATISTICAL ANALYSIS

For analyses of radioligand binding results, each equilibrium competition-binding curve was fitted to a logistic equation (GraphPad Prism, version 5), from which the half-maximal inhibitory concentration (IC₅₀) and Hill coefficient (h) were determined. The IC₅₀ value, [³H](+)-pentazocine concentration (5 nM) and Kᵦ of (+)pentazocine for Sig-1R (5.5 nM) (de Costa et al., 1989) were used to calculate Kᵦ values (Kᵦ is the Kᵦ determined by equilibrium competition binding) (Cheng and Prusoff, 1973). The negative logarithms of these individual Kᵦ values (pKᵦ) were pooled for statistical analysis. All results are presented as means ± SD or SEM, as appropriate, from n independent analyses. ANOVA, followed by Dunnett’s, Bonferroni or Tukey tests, was used to evaluate differences between groups (GraphPad Prism, version 5). p < 0.05 was considered significant. The tests used are reported in the figure legends.