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RESEARCH ARTICLE Open Access

The transcriptional trajectories of
pluripotency and differentiation comprise
genes with antithetical architecture and
repetitive-element content
Aristeidis G. Telonis1,2* and Isidore Rigoutsos1*

Abstract

Background: Extensive molecular differences exist between proliferative and differentiated cells. Here, we conduct
a meta-analysis of publicly available transcriptomic datasets from preimplantation and differentiation stages
examining the architectural properties and content of genes whose abundance changes significantly across
developmental time points.

Results: Analysis of preimplantation embryos from human and mouse showed that short genes whose introns are
enriched in Alu (human) and B (mouse) elements, respectively, have higher abundance in the blastocyst compared
to the zygote. These highly expressed genes encode ribosomal proteins or metabolic enzymes. On the other hand,
long genes whose introns are depleted in repetitive elements have lower abundance in the blastocyst and include
genes from signaling pathways. Additionally, the sequences of the genes that are differentially expressed between
the blastocyst and the zygote contain distinct collections of pyknon motifs that differ between up- and down-
regulated genes. Further examination of the genes that participate in the stem cell-specific protein interaction
network shows that their introns are short and enriched in Alu (human) and B (mouse) elements. As organogenesis
progresses, in both human and mouse, we find that the primarily short and repeat-rich expressed genes make way
for primarily longer, repeat-poor genes. With that in mind, we used a machine learning-based approach to identify
gene signatures able to classify human adult tissues: we find that the most discriminatory genes comprising these
signatures have long introns that are repeat-poor and include transcription factors and signaling-cascade genes.
The introns of widely expressed genes across human tissues, on the other hand, are short and repeat-rich, and
coincide with those with the highest expression at the blastocyst stage.
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(Continued from previous page)

Conclusions: Protein-coding genes that are characteristic of each trajectory, i.e., proliferation/pluripotency or
differentiation, exhibit antithetical biases in their intronic and exonic lengths and in their repetitive-element content.
While the respective human and mouse gene signatures are functionally and evolutionarily conserved, their
introns and exons are enriched or depleted in organism-specific repetitive elements. We posit that these organism-
specific repetitive sequences found in exons and introns are used to effect the corresponding genes’ regulation.

Keywords: Embryo development, Repetitive elements, Retrotransposons, Genome architecture, Gene length, Exon,
Intron, Transcriptional regulation, Tissue specificity, Pyknons

Background
Fast accumulating data provide increasing evidence that
the genomes of higher organisms contain actionable
information that goes well beyond the annotated
sequences of protein-coding genes. The architecture of
chromosomes, genomic regions, and individual genes as
well as their relative orientation and placement can have
implications for the dynamics of gene expression. Within
this context, evidence has shown that introns are not
merely “linkers” of exons [1]. In fact, introns have been
shown to be sources of important molecules such as
microRNA (miRNA) [2], piRNA [3, 4], and transfer
RNA (tRNA) [4] and to maintain functional conserva-
tion in the absence of sequence conservation [3]. Introns
also provide transcription factor binding sites [5], mark
chromatin structures [6], or regulate the production of
circular RNA [7, 8]. They have also been found to har-
bor trait- and disease-associated mutations [9, 10]. Thus,
introns can serve as very potent gene regulators [11, 12].
Introns are at the crossroads of evolution and genome

complexity [13, 14]. This is highlighted by a growing
body of evidence on the importance of intron length and
density, from the standpoints of evolution [15–19] and
physiology [20, 21]. Highly and/or broadly expressed
genes are on average short and compact [21–24]. It has
also been observed that stress-response genes have fewer
introns [25], presumably reflecting a need for rapid tran-
scription. In fact, shorter exonic and intronic length is
correlated with transcriptional and translational speed, a
key requirement of rapidly cycling cells [20, 26, 27]. In-
tuitively, one expects shorter genes to provide fewer
opportunities for complex sequence-based regulation
and longer genes to be involved in more complex,
tissue-specific processes [28–30].
Cell proliferation and differentiation are viewed as

polar opposite states at multiple biological levels.
Metabolically, rapidly proliferating cells favor aerobic
glycolysis; this is true of cancer cells too (Warburg ef-
fect) [31]. Transcriptionally, the genes expressed dur-
ing proliferation exhibit a codon usage bias that is
distinct from that of genes that are differentiation-
specific; this bias is also evident at the level of tRNA
pools in each state [32].

Interestingly, the expression of repetitive elements
has also been associated with the stem cell phenotype
[33–35], including the pluripotent state of early embryo-
genesis [36, 37]. However, accumulating evidence suggests
that repetitive elements are distributed across the genome
in a non-random manner and that their expression is
regimented [38–40] and consequential [41–46].
Repetitive sequences have, by definition, multiple in-

stances on the genome. They can be long, well-defined
repeats such as the Alu or LINE elements. Or, they can
be shorter k-mers that appear identically in intronic,
exonic, or intergenic sequences. One such category
includes the DNA motifs known as pyknons, which we
reported previously [40]. Pyknons have at least one copy
in messenger RNAs (mRNAs), and many additional
intronic and intergenic copies [40], which can be sense
or antisense to the mRNAs [3]. The simultaneous pres-
ence of pyknons in both exonic and non-exonic sequences
suggests their involvement in gene expression regulation
[40, 47, 48], something that was recently shown in the
context of colon cancer [43, 49].
Against this background, we sought to determine

whether human and mouse genes that are associated
with pluripotency and/or a proliferative phenotype ex-
hibit biases in their length or repetitive-element content.
To this end, we used publicly available datasets, focusing
on elucidating the architecture and sequence content of
genes whose abundance changes between proliferation
and differentiation (Fig. 1).

Results
We first analyzed gene expression datasets from preim-
plantation human [50, 51] and mouse [50, 52] embryos
and identified genes that have higher or lower abun-
dance in the blastocyst compared to the zygote, 2-cell,
or 8-cell embryo stage. To ensure robustness of the
findings, we used two independent datasets for each of
human and mouse, respectively. Each dataset was generated
using a different quantification methodology (microarray
and deep sequencing, respectively). We thresholded and an-
alyzed each of the four datasets separately and found the re-
sults to be reproducible (Additional file 1: Supplemental
Figure S1). Out of an average of 12,015 genes in each
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dataset, we found 2709 statistically significantly up-regu-
lated and 5286 down-regulated genes in the blastocyst with
respect to earlier developmental time points (false discovery
rate, FDR ≤ 5%; Additional file 2: Supplemental Table S1).
Among the genes that are more abundant in the blastocyst
are mitochondrial membrane transports (e.g., TOMM6 and
TIMM13), glutathione metabolism genes (e.g., GPX4,
GSTP1, and GSTO1), ribosomal proteins (e.g., RPL4 and
RPL6), and metabolic genes (e.g., HK1, IDH3B, and TKT).
On the other hand, notable genes among those with lower
abundance in the blastocyst include NCOA1, AK5, GRK5,
ITGA9, and CLOCK. Examining the associated pathways,
we found that ribosome, glycolysis, citric acid cycle, and
oxidative phosphorylation are enriched among the genes
that are more abundant in the blastocyst (Additional file 2:
Supplemental Table S1). On the other hand, signaling path-
ways (including MAPK, cAMP, JAK-STAT, and Wnt) are
enriched among the genes that are more abundant in the
zygote (Additional file 2: Supplemental Table S1). These re-
sults are in agreement with previous studies [26, 53] and
provide a robust dataset for further mining.

Biases in length and repetitive-element content among
expressed genes change monotonically with the
preimplantation developmental stage
In zebrafish, the genes that are expressed during the
transition from the zygote to a highly proliferative popu-
lation of cells exhibit length biases [26]. We hypothe-
sized that a similar bias may characterize human and
mouse genes as well [21, 22].
We computed the distributions of the exonic and intronic

lengths in nucleotides (nts) for the genes that are differen-
tially abundant between the blastocyst and earlier embry-
onic stages, i.e., the zygote, 2-cell, or 8-cell embryo
depending on the study (see the “Materials and methods”
section; Additional file 3: Supplemental Table S2), and jux-
taposed them to the respective length distributions of all
expressed genes in each dataset (background). We found
that genes with higher abundance in the blastocyst com-
pared to earlier embryonic time points have significantly
shorter exons and introns (P value < 10−4; Kolmogorov-
Smirnov test). On the other hand, genes with lower abun-
dance in the blastocyst have significantly longer exons and
introns (P value < 10−4; Kolmogorov-Smirnov test). These
observations hold true for both human (Fig. 2a, b) and
mouse (Fig. 2c, d) embryos.
In addition to being shorter, the genes with higher

abundance in the blastocyst compared to respective
earlier embryo stages had more of their genomic span
occupied by exons (P value < 10−4; Kolmogorov-
Smirnov test). Notably, the opposite holds true for
genes whose abundance is lower in the blastocyst
compared to the respective earlier embryo stages
(right panels; Fig. 2a–d).
We note that these observations remain unchanged

even when we form the background distribution by con-
sidering all human or mouse protein-coding genes
(Additional file 1: Supplemental Figure S1B-C).
The differences in the exonic and intronic lengths of

those two groups of genes prompted us to also examine
their nucleotide composition for other possible biases. In
particular, we investigated whether the introns and
exons of the genes that are up-regulated or down-
regulated in the blastocyst are enriched or depleted in
any families of repetitive elements. We used Monte
Carlo simulations (see the “Materials and methods”
section), distinguishing between sense and antisense
instances of repetitive elements with respect to the
orientation of the genes at hand. For this analysis, we
calculated “repetitive-element content per unit length”
in order to account for the fact that different genes have
different lengths (see the “Materials and methods”
section for more details). In Fig. 3, we show heatmaps of
the Z-scores that capture the calculated enrichments
and depletions with respect to a random-generated
background distribution: in all instances, the

zygotic
genome
activation

Quantitative
Qualitative (binary)

Expression differences

27 adult tissues

zygote

2-cell embryo

4-cell embryo

8-cell embryo

blastocyst

4th/5th week embryo

9th week embryo

Fig. 1 Schematic representation of the major comparisons in this
study. We examined how expression profiles change in early and later
embryogenesis. Our reference point mainly was the blastocyst stage in
both human and mouse, but we also examined zygotic genome
activation as well as binary expression differences in fully differentiated
adult tissues. Blue lines indicate quantitative comparisons, i.e.,
differences at expression levels, while red lines indicate qualitative
comparisons, i.e., genes expressed or not (on or off) among tissues
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Upregulated
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*P<10-4;Kolmogorov-Smirnov test
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Fig. 2 Gene length and compactness biases in gene expression changes during preimplantation development. Exon (left panel) and intron (middle
panel) length and exonic content (right panel) distributions of genes that are up-regulated (orange curves) or down-regulated (cyan curves) in
blastocyst as compared to early embryo in human (a, b) and mouse (c, d) in comparison to the background genes (black curves). As shown in the
panels, the primary Y axis describes the difference of each cumulative distribution from the background cumulative distribution (curves are
smoothened with a 3-point moving average); the background cumulative distribution is plotted in gray line projecting on the secondary Y axis.
Positive values reflect an increase in each parameter, e.g., a shift of the distribution towards longer exons. Vertical lines are drawn at the median value
of each gene set. Asterisks indicate a statistically significant difference from the background distribution (P value < 10−4; Kolmogorov-Smirnov test)
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corresponding FDR value is ≤ 5%. Additional file 4:
Supplemental Table S3 lists the various Z-scores and as-
sociated FDR values.

Figure 3 makes it strikingly evident that the genes that
have higher abundance in the blastocyst compared to
respective earlier embryonic stages are also denser in
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Fig. 3 Repetitive-element density biases in gene expression changes during preimplantation development. Heatmaps of enrichment and
depletion scores of the repetitive density in genes that are up-regulated or down-regulated in the blastocyst as compared to early embryo in
human (a, b) and mouse (c, d) embryos. The heatmaps visualize the Z-score of the observed mean density in each repetitive-element family with
respect to an expected distribution constructed with Monte Carlo simulations. A positive Z-score (colored orange) represents a density more than
expected by chance, while a negative Z-score (colored purple) shows that the observed density is lower than expected. Z-scores were computed
independently for intron and exons and for the sense and antisense orientation of these genomic regions. For each panel (a–d), only the
repetitive families with at least one significant enrichment or depletion (absolute Z-score larger than 2) are shown. Additional file 4: Supplemental
Table S3 includes the values used for plotting the heatmaps as well as the respective FDR scores
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repetitive elements than would have been expected by
chance. On the other hand, the genes that have lower
abundance in the blastocyst are depleted in repetitive
elements. This observation holds true for both exons
and introns in human (Fig. 3a, b) and mouse (Fig. 3c, d),
and for both orientations of the repeats with regard to the
genes' sequences. Of note, introns are enriched or depleted
in more categories of repetitive elements than exons.
The repetitive elements whose sequences are over- or

under-represented in the examined sequences include
DNA transposons, Long Terminal Repeats (LTR), short in-
terspersed nuclear elements (SINE), and the L1 category of
long interspersed nuclear elements (LINE). SINE elements
are most enriched among the genes whose abundance is
higher in the blastocyst, in both humans (Alu, MIR) and
mice (B elements, MIR) and with Z-scores as high as + 10.1
(FDR < 10−13). On the other hand, SINE and other repeat
categories are depleted among the genes whose abundance
is lower in the blastocyst, with Z-scores as low as − 13.0
(FDR < 10−19).
The L1 category represents an exception in the above

observations. This is best exemplified by the mouse
dataset described in Fig. 3d. As can be seen, the introns
of the genes with higher abundance in the blastocyst are
depleted in both sense and antisense L1 elements (aver-
age Z-score of -6.4; FDR < 5%) whereas the introns of
the genes with low abundance in the blastocyst are
enriched in antisense L1 elements (average Z-score = +
5.2; FDR < 5%).
One important characteristic of the developmental

stages studied here is zygotic genome activation
(ZGA) [54]. It is conceivable that the observed dif-
ferences in transcript composition, transcript length,
and repetitive-element biases might be associated
with transcripts transcribed de novo after ZGA. To
examine this possibility, we focused on the human
and mouse datasets of Xie et al. [50]. Specifically,
and for different time points for mouse and human
embryos, we identified the genes that are up-
regulated as the zygotic genome is activated
(Additional file 2: Supplemental Table S1) [54]. We
found that both the exons and the introns of the
corresponding sets of genes are shorter than the
background gene population (P value < 10−4;
Kolmogorov-Smirnov test) and are enriched in the same
repetitive-element families shown in Fig. 3 (Additional file
1: Supplemental Figure S2A-B; Additional file 4: Supple-
mental Table S3). Moreover, we found that the ZGA-
related genes overlap significantly with the genes that have
higher abundance in the blastocyst (P value < 10−4; hyper-
geometric test)—see Additional file 1: Supplemental Figure
S2C. This indicates that ZGA follows the same architectural
patterns but is only part of the transition from the zygote
to the blastocyst.

Collectively, the above results suggest that the genes that
are expressed during the preimplantation embryogenesis,
including ZGA, exhibit specific patterns in terms of gene
architecture and sequence content.

Examples of protein-coding genes having conspicuous
overlaps with repetitive elements
The human hexokinase 1 gene, HK1, is located on
chromosome 10 where it spans ~ 132 kilobases (Kb). Its
exonic length is ~ 4.5 Kb, representing 3% of the gene’s
total span. Those of the Alu sequences that are sense to
this gene are located solely in its introns and span a grand
total of ~ 17 Kb. An additional 16 Kb of Alu sequences
are antisense to this gene’s span. In other words, almost
one fourth of HK1’s genomic span contains Alu se-
quences, either in sense or in antisense orientation. Simi-
lar observations can be made for the mouse orthologue
Hk1: its overlap with B elements, in either sense or anti-
sense orientation, is ~ 19%. The density of MIR elements
is also consistent in this gene between the two organisms.
Approximately 4% of the human orthologue and 7% of
the mouse orthologue correspond to MIR sequences in
either sense or antisense. Similar observations can be
made for TKT, RPL14, and KRT8 as well, all of which are
differentially abundant and part of the enriched pathways
that include metabolism and the ribosome (Additional file
2: Supplemental Table S1).
These examples point to the considerable size of the

overlap of repetitive elements on genes and hint to
potentially consequential associations at the intersection
of genomic architecture, evolution, and developmental
stage. We examine these matters and their ramification
further in the “Discussion” section.

The up-regulated and down-regulated genes contain
unique pyknon signatures while the pyknons they have
in common correspond to SINE/Alu elements
To obtain a more detailed perspective on the extent of
sequence similarities between the two groups of genes
with opposite expression behavior, we examined their
pyknon composition from a qualitative perspective
(Additional file 3: Supplemental Table S2). Pyknons are
present in virtually all mRNAs [40], overlap with repeti-
tive elements [47], and have been shown to be function-
ally active in several contexts [43, 48, 49]. As they are
short in length, they can be used to conduct more
granular analyses than would have been possible using
the repetitive elements of RepeatMasker.
We identified 7828 distinct pyknons that overlap the

exons of genes that are up-regulated in human blasto-
cyst and 81,032 ones in genes that are down-regulated;
2782 pyknons are shared by the two gene sets (Fig. 4a
and Additional file 2: Supplemental Table S1). We found
that there are 4353 and 64,696 pyknons uniquely present
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in the exon spans of up- and down-regulated genes, re-
spectively (Fig. 4a). More than 90% of the genes in each
of the up- or down-regulated gene sets contain at least
one pyknon. The exons of the down-regulated genes

have a higher density in pyknons (Fig. 4b). On the other
hand, there is no appreciable difference in the pyknon
density of the introns of the up-regulated and down-
regulated genes (data not shown).
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Fig. 4 Pyknon content and density biases in gene expression changes during preimplantation development. The results in this figure are from the
differential expression analysis of the human embryos from the Xie et al. study of Fig. 1a. a Venn diagram of the number of distinct pyknons within
the exons of human genes that are up-regulated, down-regulated or non-differentially expressed in the blastocyst compared to the zygote. b Number
of instances (shown as mean ± standard error) of pyknons per 1000 base pairs in the exons or introns of up-regulated and down-regulated genes. The
pyknons in this analysis are from the unique portions of the Venn diagram of a. Asterisk indicates statistical significance (P values < 0.05; Mann-Whitney
U test). c Barplots showing the percentage of pyknons that overlap with repetitive elements on the whole genome. The asterisks indicate that
statistically significant differences exist between the distribution of pyknons of the intersection in repetitive elements in comparison to all three (up-
regulated, down-regulated, or non-differentially expressed) of the respective distributions of pyknons that are unique in each gene set (P value < 10−5;
chi-squared test)
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As pyknons are by definition repeated motifs on the hu-
man genome, we examined how they related to the
repetitive-element families and distribution biases of
Fig. 3a. Specifically, for the pyknons that are unique to the
down-regulated and to the up-regulated genes, respect-
ively, we collected all their genomic instances and inter-
sected them with the known repetitive elements. We then
calculated the frequency by which they appeared within
each type of repetitive element. For the pyknons that are
unique to either the up-regulated or the down-regulated
genes, or only in the non-DE genes, most of them (~ 45%)
can be found within LINE/L1 elements of the genome
whereas a smaller proportion (~ 20%) overlapped with
SINE/Alu elements (Fig. 4b). Interestingly, the pyknons
that were common in all three gene groups mostly over-
lapped with SINE/Alu (67% of the pyknons). ERV ele-
ments were also significantly enriched (Fig. 4b).
Collectively, this analysis positions pyknons as sequence

markers for how the gene will change expression during
preimplantation development. These findings also suggest
that not all members of a family of repetitive elements are
equal in this regard: evidently, the pyknons can effectively
partition known families of repeats into subsets each
of which is associated with the down-regulated genes,
up-regulated genes, and unchanged genes, respect-
ively. The findings further support logical connec-
tions—presumably ones that capture regulatory events
in nature—between repetitive elements and mRNAs
that are expressed in early embryogenesis.

The architecture of early-expressed genes mirrors that of
genes comprising the stem cell signature
Above, we showed that early-expressed genes have
specific architectural characteristics. The transition from
the zygote to the blastocyst can be viewed as the onset
of a proliferative phenotype and, for a portion of the
cells of the blastocyst, the establishment of a stem cell
identity [55]. Considering the latter, we hypothesized
that the genes whose abundance is higher in the blasto-
cyst as compared to subsequent embryonic stages may
be part of the known stem cell expression signatures.
To test this hypothesis, we downloaded and analyzed the

genes involved in the PluriNet protein-protein interaction
network [56]. This network is shared among pluripotent
stem cells and was generated based on a multitude of stem
cell samples. We note that we examined the PluriNet genes
with reference to all human protein-coding genes, independ-
ent of the genes’ levels of expression at the blastocyst stage.
We found that the genes forming the PluriNet net-

work have shorter lengths (Fig. 5a). Specifically, both
exons (top panel of Fig. 5a) and introns (bottom panel of
Fig. 5a) are statistically significantly shorter than the
background population of human protein-coding genes
(P value < 10−4; Kolmogorov-Smirnov test). When we

examined the exons of these genes, we did not find any
repetitive-element family to be enriched or depleted.
However, when we examined the introns of these genes,
we found them to be enriched in sequences from DNA
repeats, Helitron and Alu elements (FDR < 5%; Fig. 5b;
Additional file 4: Supplemental Table S3).
Next, we identified the mouse orthologues of these

genes and examined their overlap with mouse repetitive
elements. Exons were again found to lack any notable
attributes. However, introns exhibit significant biases
(Fig. 5c). Specifically, the intronic regions of the mouse
orthologues of the PluriNet signature are significantly
denser in B1 and B2 SINE elements in both sense and
antisense orientations (FDR < 5%; Fig. 5c; Additional file
4: Supplemental Table S3). We note that L1 elements
show an inverse behavior and are depleted in the introns
of these genes (FDR < 5%; Fig. 5c; Additional file 4:
Supplemental Table S3).
These results parallel the above observations from early

development and support the view that the genes that
form the signature of a stem cell phenotype have specific
structure and content in both human and mouse.

Gene expression trajectories of differentiation and
organogenesis involve longer genes that are less dense in
repetitive elements
Having observed that the state of pluripotency is charac-
terized by shorter genes whose exons are enriched in re-
petitive sequences, we examined whether repetitive
elements differ in cells of different lineages or in differ-
entiating cells, and whether lineage-specific genes share
common characteristics.
We first analyzed the blastocyst lineage signatures that

were defined by the Petropoulos et al. study [51]. We ex-
amined the lineage-specific genes that the study reported
for trophoectoderm (TE), primitive endoderm (PE), and
epiblast (EPI), respectively. We found that the genes in PE
and TE had significantly longer introns (P value < 10−2;
Kolmogorov-Smirnov test) but not exons (Fig. 6a). The in-
trons of the PE-specific genes exhibited a stronger length
bias than the exons. The weaker P values in the case of TE
could be explained by the relatively low number of genes.
Moreover, the PE-specific genes were depleted in Alu ele-
ments (Additional file 4: Supplemental Table S3). While
limited, these results provide independent support of our
findings on gene length and lineage-specific genes.
We then analyzed genes from human embryo at the

stage of organogenesis [57], specifically, genes whose ex-
pression significantly changes by the 9th week as com-
pared to the 4th week. We found that the genes whose
abundance increases during organogenesis have both
long exons and long introns (P value < 10−4;
Kolmogorov-Smirnov test; orange curves on Fig. 6a). On
the other hand, the exons and introns of genes whose
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abundance decreases during organogenesis are on aver-
age shorter (P value < 10−4; Kolmogorov-Smirnov test;
blue curves on Fig. 6b). When we examined the
repetitive-element density of these genes, we observed
significant trends. Genes with decreasing abundance
during organogenesis are enriched in repetitive se-
quences; on the other hand, genes with increasing abun-
dance during organogenesis are depleted in repetitive
sequences (FDR ≤ 5%; heatmap of Fig. 6b; Additional file
4: Supplemental Table S3). Specifically for Alu elements,
the introns of the genes whose abundance increases
during organogenesis were significantly sparser in both
sense and antisense instances of Alu sequences. In-
versely, the introns of the genes whose abundance
decreases during organogenesis are significantly denser
in Alu sequences. However, the MIR elements, and to a
lesser extent the LINE/L1 elements, show the opposite
trend (Fig. 6b; Additional file 4: Supplemental Table S3).
MIR and Alu elements are highlighted with a red rect-
angle on Fig. 6b.
We further looked into differentiation, we studied the

cases of H1 and H9 human embryonic stem cells forming
differentiated embryoid bodies in culture [58] and identi-
fied those genes whose abundance changes between the
differentiated embryoid bodies and undifferentiated stem

cells (Additional files 2 and 3: Supplemental Tables S1
and S2). In both H1 and H9 cells, we found significant
biases in the lengths of genes that change in abundance
during differentiation (Fig. 6c): the exons of genes whose
abundance decreases (resp., increases) with differentiation
are significantly shorter (resp., longer) than the back-
ground population of genes (P value < 10−4; Kolmogorov-
Smirnov test). Similar observations can be made for the
introns of the H1 cells (Fig. 6c). For H9 cells, it is only the
introns of up-regulated genes that were statistically signifi-
cantly different (P value < 10−4; Kolmogorov-Smirnov test;
Fig. 6c). We note that the stronger statistical differences
are found in the introns of the differentially expressed
genes. In terms of repetitive-element content, the introns
of H1 and H9 genes whose abundance increases with dif-
ferentiation had strong and statistically significant deple-
tion in Alu element density (Z score < − 10; FDR < 5%;
Additional file 4: Supplemental Table S3).
To examine the differentiation process in more de-

tail, we integrated the data from Xie et al. [50] with
the ones from Cardoso-Moreira et al. [59]. The latter
dataset includes expression values from seven differ-
ent tissues from multiple developmental time points
in both human and mouse. These datasets were
obtained from different laboratories using distinct
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platforms (microarrays and RNA-sequencing). Conse-
quently, the expression values of genes are not dir-
ectly comparable without proper normalization. For
instance, normalizing to housekeeping genes will pro-
duce erroneous results because the expression of ribo-
somal and metabolic genes, like mouse Gapdh,
changes during development (see Additional files 2
and 3: Supplemental Tables S1 and S2). To overcome
this limitation, we rank-normalized the datasets and con-
sidered as differentially abundant those genes whose rank-
ing differed significantly between the compared
datasets (see the “Materials and methods” sec-
tion). Among these differentially ranked genes, the
vast majority were common in all seven tissues, in
both human and mouse (Additional File 1: Supple-
mental Figure S3 a-d; Additional File 2: Supplemen-
tal Table S1). However, there were tissue-specific
gene changes, like the unique upregulation of pro-
thrombin in the liver or the upregulation of Gene
Ontology terms related with cardiac muscle develop-
ment in the heart (Additional File 2: Supplemental
Table S1).
We examined the architecture of those genes whose

expression differed between the blastocyst and all
seven tissues. The genes that were more abundant in
the developing tissues as compared to the blastocyst
had longer exons and introns in both human and
mouse (P-value < 10-2; Kolmogorov-Smirnov test; Fig.
6d, e). On the contrary, the genes with lower abun-
dance in the seven tissues had shorter introns and
exons in human (P-value < 10-4; Kolmogorov-Smirnov
test; Fig. 6d, e).
We also analyzed the repetitive-element content of

the differentially expressed genes. In humans, we
found a global bias in the density of repeats: the genes
with higher abundance in all developing tissues were
significantly sparser in repetitive elements whereas
those with lower abundance were significantly richer
in repeats (Fig. 6d; Additional File 4: Supplemental
Table S3). In mouse, the differentially abundant genes
exhibited less of a repetitive element bias compared
to human (Fig. 6e; Additional File 4: Supplemental
Table S3).

Collectively, the results of the previous sections and
those shown in Fig. 6 suggest that differentiation follows
a trajectory that is essentially the opposite to the one
followed when establishing a proliferative/pluripotent
phenotype (Fig. 3). At the same time, the case of Alu
and MIR elements (Fig. 6b) indicates that the process of
differentiation, as captured in Fig. 6a–c, is more complex
than merely the inverse of establishing the pluripotency
state (Figs. 2 and 3).

In differentiated tissues, tissue-specific genes are longer
and repeat-depleted whereas ubiquitously expressed
genes are shorter and repeat-enriched
Our results so far refer to differentiating cells during
embryogenesis and do not necessarily describe the attri-
butes of differentiated cells. Thus, we investigated
whether length and repeat-element biases exist in differ-
entiated tissues such as those found in the Genotype-
Tissue Expression (GTEx) repository [60]. Specifically,
we investigated the possibility of such biases in genes
that are specific to each tissue.
We formed tissue-specific gene signatures using our pre-

viously developed machine learning approach for extracting
models from “binary” expression profiles [61]. In these pro-
files, each gene is labeled as “expressed” or “not expressed”
in a dataset based on whether its abundance exceeds a
stringent threshold (Additional file 5: Supplemental Table
S4). We demonstrated previously that this methodology
can distinguish among 32 different cancer types (from dif-
ferent tissues) [61]. Additionally, the methodology allows us
to identify the transcripts with the most discriminatory
power [61]. We applied this scheme to the GTEx cohort
and found 1505 tissue-specific genes that can discriminate
among the 27 normal tissues (Fig. 7a) and also 1340 widely
expressed genes, i.e., genes found expressed across all tis-
sues (see the “Materials and methods” section; Additional
file 1: Supplemental Figure S4; Additional files 1 and 5:
Supplemental Tables S1 and S4).
We compared the tissue-specific and the widely

expressed genes from the standpoint of length and se-
quence biases. The widely expressed genes are enriched
in the housekeeping pathways that we found to be abun-
dant in the blastocyst, including the ribosome, oxidative

(See figure on previous page.)
Fig. 6 Gene trajectories during differentiation result in overall depletions in repeats. a Exon (top) and intron (bottom) distributions of the lineage-
specific genes in the human blastocyst. b Exon (top-left panel) and intron (bottom-left panel) length biases and heatmap of enrichment and
depletion scores (right panel) in up-regulated and down-regulated genes during human organogenesis. c Exon (left) and intron (right) length
biases in genes that are up-regulated and down-regulated in differentiated embryoid bodies compared to H1/H9 cells. d, e Length biases in
exons (top-left panel) and introns (bottom-left panel), and heatmap of enrichment/depletion scores (right panel) in up-regulated and down-
regulated genes during human (d) or mouse (e) development. The genes included in this analysis are found up- or down-regulated in all seven
developing tissues from the Cardoso-Moreira et al. study as compared to the blastocyst from Xie et al. Observations are based on comparisons of
rank normalized genes (see text). Asterisks and crosses indicate a statistically significant difference from the background distribution (P value <
10−4 for an asterisk; P value < 10−2 for a cross; Kolmogorov-Smirnov test)
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phosphorylation, the citric acid cycle, and spliceosome
(Additional file 2: Supplemental Table S1). On the other
hand, the genes that comprise the tissue-specific signa-
tures are significantly enriched in homeobox-containing
genes and signaling and developmental processes (Add-
itional files 2 and 4: Supplemental Tables S1 and S3;
Additional file 1: Supplemental Figure S5). Intriguingly,
nine of the 10 most important genes are transcription
factors (TBX15, FOXF1, TWIST1, and six HOX genes),
whereas the tenth is the kinase-encoding gene SKAP2
(Additional file 5: Supplemental Table S4).
The length characteristics of the widely expressed and

tissue-specific groups of genes exhibit opposite trends.
The widely expressed genes have significantly shorter
exons and introns. The tissue-specific genes have signifi-
cantly longer introns (P value < 10−4; Kolmogorov-
Smirnov test). See also Fig. 7b, c and Additional file 4:
Supplemental Table S3.
The repetitive-element content of these two groups

also exhibits opposite trends. The introns of the widely
expressed genes are strikingly enriched in repetitive ele-
ments, particularly Alu’s, in both sense and antisense
orientations (Fig. 7c). The LINE/L1 category was again a
noteworthy exception: the introns are significantly

depleted in L1 elements. On the other hand, the tissue-
specific gene sets are depleted in repetitive elements but
in comparatively fewer categories. We note that, again,
SINE/Alu elements exhibit the greatest depletions
(Fig. 7c; Additional file 4: Supplemental Table S3).
Collectively, the dichotomy we observe between widely

expressed and tissue-specific genes regarding their
length biases and repetitive-element content mirrors
what we observed in previous results (Figs. 2, 3, and 5):
the genes with higher expression in a pluripotent/pro-
liferative state are shorter, repetitive-element rich and
represent pathways that are often considered as
housekeeping. In contrast, gene sets that establish tissue
identity have longer introns, on average; are repetitive-
element sparse; and include signaling and transcription
factor processes.

Discussion
In this study, we used publicly available datasets to
understand the architecture and repeat content of the
human and mouse genes whose abundance changes sig-
nificantly (a) during early development and (b) during
differentiation (Fig. 1). We find that the establishment of
pluripotency during the preimplantation period (Figs. 2
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Fig. 7 Tissue-specific gene signature and widely expressed genes exhibit opposite length and Alu density biases. a Classification of the GTEx
cohort using the SVM model trained on the tissue-specific genes. The rows of the heatmap show the original tissue of origin and the columns
the predicted tissue type. The color shade of each cell indicates the percentage of samples that were of the “original” respective tissue and were
“predicted” to be the respective tissue type. The “Other” category captures samples with low prediction probability. The high percentages on the
diagonal indicate the high accuracy of the model. As the SVM was run with 10-fold cross-validation, the heatmap indicates the average of 10
runs. b Exon (top) and intron (bottom) length distributions of tissue-specific and widely expressed genes. Asterisks indicate a statistically
significant difference from the background distribution (P value < 10−4; Kolmogorov-Smirnov test). c Heatmap showing the enrichment and
depletion in repetitive-element families of the widely expressed and tissue-specific genes
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and 3) is characterized by the up-regulation of short and
compact genes that are markedly dense in diverse types
of repetitive elements. On the other hand, genes that are
down-regulated during the preimplantation period, or
up-regulated during differentiation, are generally longer
and less dense in repeats. The very same properties hold
true for the genes comprising the previously established
stem cell-specific interaction networks (Fig. 5). Addition-
ally, our results suggest that cell type- and potentially
tissue type-specific signatures comprise genes whose
exons and introns are enriched or depleted in specific
categories of repetitive elements (Figs. 6 and 7).
Many of the genes whose abundance increases during

preimplantation can be thought of as “housekeeping”
genes. This is concordant with previous findings: e.g.,
Boroviak et al. observed that metabolic pathways and
transcriptional, splicing, and RNA transport processes
are conserved in mammalian zygotes [53]. Our results
suggest that despite the conservation in the pathways
per se, the mechanisms by which they are regulated in
preimplantation development may not be conserved.
It is important to note that such studies as well as the

gene expression datasets we used in this study do not
easily discriminate between maternally deposited and
embryo-synthesized transcripts. However, an approxima-
tion of the genes transcribed de novo at ZGA supports
our findings and hints at globally coordinated gene ex-
pression programs that show a strong coupling to genes
with specific genomic architecture. Indeed, Heyn et al.
showed in zebrafish that the first zygotically transcribed
genes are short and intron-poor [26]. Our analyses show
that the human and mouse genes that are expressed in
the early embryo also have short exons and introns.
Therefore, it seems reasonable to posit that this is a
more general property that holds across vertebrates (and
possibly invertebrates) and that early embryo expression
programs involve compact genes with short introns and
exons [20].
An emphasis of our analysis was the examination of

the repetitive elements that are embedded in the introns
and exons of genes whose abundance changes between
the states we studied. Repetitive elements account for
large portions of the human and mouse genomes and
have been shown to have a multitude of roles in gene
regulation and evolution [62–66]. Alu in primates and B
elements in rodents offer a characteristic such example.
Despite the fact that Alu and B elements evolved inde-

pendently after the primate-rodent split, we showed previ-
ously that they have significant genomic overlap with the
intronic regions of genes belonging to the same pathways
(such as translation, DNA replication, and RNA splicing)
in both organisms [38]. Similar genomic links were also
shown in subsequent work [67]. Notably, the very path-
ways that were highlighted in our earlier DNA-based,

genome-centric analysis [38] emerge from the RNA-based,
transcriptome-centric analysis of the current study. This
suggests that the genomic distribution and architectural
details of genes is tightly coupled to the transcriptional
programs in which the genes participate.
In fact, the current work together with our previous

findings [38] strongly suggests that the genes that are ac-
tive during the early embryo expression trajectories have
characteristic composition (enriched or depleted in re-
petitive elements) and architecture (short or long introns
and exons). It is worth noting that the bimodal prefer-
ences between genes expressed in the zygote and the
blastocyst, respectively, are encountered in both human
and mouse. Coupling this with the observation that the
bimodal gene composition is shaped by the presence or
absence of organism-specific repetitive elements (Alu in
human/primates, B elements in mouse/rodents), it fol-
lows that the links among gene length, gene complexity,
gene content, and biological process [15, 27, 68] are an
evolutionary solution that has been arrived at independ-
ently by different lineages [38].
It is important to note a distinction between our work,

which studies the repetitive-element content of expressed
genes, and previous work that studied the abundance of
independently transcribing, bona fide repetitive elements.
Indeed, it was previously shown that the stem cell pheno-
type correlates with increased expression of transposable
elements [33, 34, 37]. Theunissen et al. [36] experimentally
demonstrated that the expression of transposable elements
is a better predictor of stem cell state than protein-coding
gene expression and can provide a robust descriptor of
pluripotency in human preimplantation embryo. Similarly,
Boroviak et al. [53] reported that the dynamics of transpos-
able element expression can distinguish preimplantation
developmental stages and that repetitive-element expres-
sion had common but also organism-specific characteristics
when comparing mouse and primate embryos.
On the other hand, our study examined the repetitive-

element content in the introns and exons of independ-
ently transcribing protein-coding genes whose abun-
dance changes during the preimplantation stages or
during differentiation. It is particularly notable that these
two independent schemes arrived at congruent results. It
thus follows that the transcription of repetitive ele-
ments and the parallel transcription of genes with
specific repetitive-element content are coordinated
processes. We conjecture that this coordination is
aimed at leveraging the sequences that these two
groups of transcripts share for regulatory purposes [3,
38, 43, 71]. We discuss this conjecture next.
Indeed, the transcriptome-based findings we de-

scribed above are strongly concordant to our earlier
genome-based findings that emerged from the study of
pyknon motifs [40] in non-coding and in protein-
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coding DNA. At the time, we reasoned that pyknons
may serve as points-of-contact to effect regulation in
trans [38, 40] and as sources of short RNAs. Since then,
several independent discoveries [48, 69, 70] provided
extensive support for such a regulatory network [71]
and the production of short RNAs [69, 72]. More
recently, we also generated evidence in support of the
organism-specific aspect of this pyknon-based regula-
tion. Specifically, we showed that the pyknons that are
embedded in two primate-specific long non-coding
RNAs, N-BLR [43] and FLANC [49], are responsible for
the regulatory effect of these RNAs on mRNA expres-
sion and on colon cancer survival.
One intriguing finding pertains to the enrichment of

repetitive elements in the PluriNet signature. The gene
set comprising PluriNet involves evolutionarily con-
served genes [56]. However, their introns are enriched in
primate- (Alu) and mouse-specific (B elements) repeti-
tive elements (Fig. 5) [3]. One limitation of our study is
the interchangeable use of the terms “proliferative” and
“pluripotent.” The two states may be distinct, but the
data that we analyzed here do not allow us to separate
the two. When such data become available, or under
different physiological contexts, it will be interesting to
dissect the coupling of each state to the architectural
patterns of the expressed genes.
We examined gene expression in three post-blastocyst

developmental time points and identified expression
changes with reference to the blastocyst (Fig. 6b–e).
There was a consensus among the three cases that the
increased expression of short genes in pre-implantation
stages is followed by increasing expression of longer
ones in post-implantation development. We note the
variability observed in the H1 and H9 embryonic stem
cell lines (Fig. 6c). This variability was not reflected at
the pathway level (Supplemental Table S1). The discrep-
ancies regarding intron length biases could be due to the
inherent variable nature of culturing cell lines or the dif-
ferent sex of the H1 and H9 donors [73]. Another poten-
tial explanation could be subtle underlying differences
between the H1 and H9 transcriptomes that could pre-
dispose cells, or subpopulations within the culture, to di-
verge during differentiation. Such dynamic
transcriptional “states,” particularly transient ones as de-
scribed by Shaffer et al. [74], cannot be captured by the
bulk RNA microarray analyses that were carried out at
the time.
We also observed that, with the exception of LINE/L1

elements, there is a coherent enrichment or depletion of
repetitive elements in preimplantation development
(Fig. 3). However, this enrichment is not evident during
post-implantation growth where we find Alu and MIR
element densities to have opposite patterns (Fig. 6b).
MIR elements were previously associated with tissue-

specific gene expression patterns [67] as well as tissue-
specific enhancer activities and erythropoiesis [75]. MIR
elements were also shown to act as insulators [44]. Our
analysis found them to be the only family of repeats that
is significantly over-represented in the introns of genes
that are up-regulated as human embryogenesis pro-
gresses from the blastocyst stage (Fig. 6b). This suggests
a central role for MIR in shaping development patterns.
Intriguingly, evidence at the level of the epigenome sug-
gests the presence of a tissue-specific methylation profile
of transposable elements that correlates with the tissue-
specific expression patterns of adjacent protein-coding
genes [76]. These data paint a picture where there is a
complex interplay among factors promoting differentiation
and establishing tissue identity, inter- and intra-genic regu-
latory regions, and repetitive-element distribution. The ex-
ample of MIR elements involved in enhancer and insulator
function suggests that repetitive elements could be driving
transcription factor binding patterns during development
[77]. Indeed, Rohrmoser et al. [78] used normal
hematopoietic and cancer cell lines to show that ZNF768
binds to MIR elements and interacts with nuclear factors
regulating gene expression.
Transcription factors were also flagged by our study as

being important for tissue classification (Additional file 2:
Supplemental Table S1). This is concordant with previous
findings showing transcription factors to have profound
roles in shaping tissue identity [79]. Kunarso et al. [80]
provided further evidence on the involvement of transpo-
sons in transcription factor binding by utilizing embryonic
stem cells from humans and mice and examining the
binding patterns of important stem cell regulators, includ-
ing the pluripotency-maintaining transcription factors
OCT4 and NANOG. Analogously, we showed that a
transposon embedded in Nanog’s mRNA is targeted by
microRNA (miRNA) miR-134 [45, 46]. Within this con-
text, it is an open question as to whether tissue specificity
emerges from transcription factors and miRNAs that are
guided by sequence motifs and binding sites as well as by
the target gene’s architecture.
One further implication of our results is the emerging

interplay between short non-coding RNAs, long non-
coding RNAs, and messenger RNAs that contain repeti-
tive elements. As these recurring pyknons are embedded
in genes of specific architecture, as well as in non-
coding RNAs that are transcribed independently, the
common sequences could serve as contact points for
miRNAs [40]. They can also serve as contact points for
tRNA-derived fragments (tRFs) [81, 82], give rise to
short regulatory RNAs through the formation of double-
stranded RNA [3], provide decoy sequences for miRNAs
or RNA binding proteins [43, 83], or serve purposes that
are not currently understood in order to guide the tran-
sitions between pluripotency states. In fact, as
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mentioned above, a B element serves as a substrate for
miR-134 during mouse embryonic stem cell differenti-
ation [45, 46]. It is also worth recalling that tRNA frag-
ments and piRNAs have already been directly linked
with stemness [84–86], and pyknons have been linked
with piRNAs [3, 40, 71].

Conclusions
By analyzing gene expression datasets and signatures, we
were able to uncover notable properties of the architec-
ture and composition of genes involved in proliferation/
pluripotency and differentiation. We found genes in-
volved in proliferation/pluripotency to be shorter and
denser in repetitive elements, particularly in Alu ele-
ments, while genes involved in differentiation and tissue
identity to be longer and Alu-sparser. Our findings sug-
gest that repetitive-element sequences are strongly
coupled to the underlying events and potentially make
major, non-random, and organism-specific contributions
to gene expression changes across cell states.

Materials and methods
Definitions
We define the “exonic region” of a gene as union of its
exons. We define the “exonic length” of a gene as the
length of its exonic region expressed in number of base
pairs. We define a gene’s “intronic region” as what re-
mains after subtracting its exonic region from the gene’s
genomic span. We define the “intronic length” of a gene
as the length of its intronic region. We define the
“exonic content” of a gene as the fraction of the gene’s
genomic span that is taken up by the gene’s exons. We
also refer to a gene’s exonic content as the “gene
compactness” or a gene’s “exonic density.” We define a
genomic region’s “density in repetitive element family X”
as the fraction of the region’s span that is taken up by
repetitive elements belonging to family X. Depending on
the task, we can distinguish between the “density in re-
petitive element family X” of introns and of exons.

Data acquisition and processing
This study is based on publicly available datasets. From
the study of Xie et al. [50], we downloaded CEL files
from GEO (GSE18290). We processed the blastocyst and
1-cell embryo datasets with the affy package in R [87]
and normalized with the robust multi-average (RMA) al-
gorithm with default parameters but without quantile
normalization. We sub-selected among protein-coding
genes based on expression and removed from further
consideration the 25% with lowest mean expression.
This was done separately for human and mouse datasets.
A total of 13,736 human genes and 10,238 mouse genes
survived this filtering step.

From the study of Kim et al. [58], we downloaded the
CEL files from GEO (GSE54186) and processed them as
we did for the data of Xie et al.
From the study of Petropoulos et al. [51], the RPKM-

normalized dataset was downloaded from ArrayExpress
(E-MTAB-3929). For these analyses, we considered the
embryonic days 3 (8-cell embryo) and 7 (late blastocyst).
For each embryo, we combined the expression of the
single cells into one vector, computing the average
expression of each gene per embryo. We kept the 50%
most expressed genes (a total of 13,034 genes), to work
with approximately the same number of genes as in the
microarray studies. For the three lineages, we used the
100 maintained lineage-specific genes as reported
Supplemental Table S2 of Petropoulos et al.
From the study of Sharma et al. [52], we used the data

contained in the “Additional Data Table S7.” Our ana-
lyses used the 11,076 genes reported by that study for
the blastocyst and 2-cell expression profiles.
From the study of Yi et al. [57], we examined the 2280

genes that were reported in Supplemental Table S3 and
kept those with decreasing or increasing expression.
The PluriNet [56] signature was obtained from

MSigDB [88].
The RPKM data from the study of Cardoso-Moreira et al.

[59] were downloaded from ArrayExpress (E-MTAB-6798
for mouse and E-MTAB-6814 for human) and we kept
genes with an average expression of more than 2 RPKM
across samples.
The v7 TPM-normalized GTEx dataset was down-

loaded from the GTEx portal (https://www.gtexportal.
org/home/datasets) on June 29, 2018. The whole dataset
comprised 56,202 genes. After excluding samples with
severe autolysis score, we assigned each one to its corre-
sponding tissue type and excluded tissues with 40 or
fewer samples. This resulted in 27 tissues and a total of
11,564 samples. Then, for each sample, we kept the
genes with > 2 FPKM and binarized the profile by con-
sidering as “expressed” the top 50% most expressed
genes in that sample. The average expression threshold
was 13 FPKM (Additional file 5: Supplemental Figure
S4). Genes considered as “not expressed” in fewer than
50% of the samples within all tissues were filtered out of
the analysis. Also, genes found “expressed” in more than
90% of the samples within all tissues were labeled as
“widely expressed” and did not participate in the ma-
chine learning.
Homeobox-containing (HOX) genes were downloaded

from www.genenames.org on August 25, 2019.

Genomic computations
For consistency with the obtained microarray data, we
used the GRCh37 assembly of the human genome and
Rel. 75 of ENSEMBL. For mouse, we used the GRCm38
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assembly of the mouse genome and Rel. 94 of ENSE
MBL [89]. We identified the mouse orthologues of
human genes with the help of the BioMart tool. Our
analyses include only protein-coding genes. Only for the
GTEx genes, as they were annotated on the more recent
version of the human genome, we used the GRCh38
assembly with Rel. 94 of ENSEMBL.

Repetitive elements
Information about repetitive elements was obtained
from the RepeatMasker tables (http://www.repeatmas
ker.org) for GRCh37, GRCh38, and GRCm38, respect-
ively. We computed overlaps with exons and introns at
the level of repetitive class/family (Additional file 3:
Supplemental Table S2) and excluded repeats with low
confidence (marked with a question mark), simple, and
low complexity repeats.
Pyknon sequences [40] were searched in the exonic

space as well as against the human genome (GRCh37)
using an exhaustive brute force search. Then, the
genomic coordinates of where pyknons exist were inter-
sected with RepeatMasker entries. For a specific gene set
(e.g., up-regulated in blastocyst as compared to early
embryo), all the pyknons within the respective mRNAs
were extracted and all genomic coordinates of those
pyknons were found. We then counted how many of the
pyknons overlapped with each RepeatMasker family, e.g.,
SINE/Alu elements. We note that there were multiple
instances where one pyknon could be found in more
than one families.
To normalize for gene length, we counted how many

of the unique pyknons of the Venn diagram of Fig. 4a
appear in each gene. We divided this number by the ex-
onic length of each gene and normalized per 10,000 base
pairs.

Statistical analyses, machine learning, and visualization
For the data of Xie et al. [50], Petropoulos et al. [51],
and Sharma et al. [52], we used significance analysis of
microarrays (SAM) to calculate differentially abundant
genes [90] with 5000 permutations, and a false discovery
rate (FDR) of 5%. The study of Kim et al. [58] did not
include adequate samples for statistical analyses, and we
only considered genes whose expression changed be-
tween undifferentiated and differentiated cells by at least
twofold.
As an approximation of the genes transcribed de novo

following zygotic genome activation (ZGA), we used the
samples from the Xie et al. study. Based on information
from the literature [54], we approximated ZGA in
humans by identifying the up-regulated genes in 8-cell
embryos as compared to the immediately previous stage,
i.e., the 4-cell embryos. For mouse embryo, we compared
the 4-cell embryos with 2-cell embryos. Comparisons

were done with SAM. For the comparison of Xie et al.
and Cardoso-Moreira et al. [59], we ranked-normalized
the expression per sample, with the gene of highest ex-
pression being ranked as 1. Then, we performed SAM
between the blastocyst stage as reported in Xie et al. and
the two earliest developmental time points per tissue as
reported in Cardoso-Moreira et al., i.e., 4 weeks post-
conception (wpc) and 5 wpc for humans and E10 and
E11 for mouse. We chose two time points for the latter
study to include more samples for increased statistical
power. We performed SAM on the rank-normalized
dataset (FDR < 1%). This methodology allowed us to
identify genes whose rank changed in the tissues during
embryogenesis as compared to the blastocyst (Additional
file 2: Supplemental Table S1).
In order to identify a tissue-specific gene signature, we

employed the methodology we developed previously
[61]. We applied this approach to the GTEx cohort and
analyzed 11,564 RNA-sequencing datasets from 27 hu-
man tissues. Filtering (see the “Data acquisition and pro-
cessing” section) left us with a total of 15,054 expressed
genes across all samples. The median number of
expressed genes per sample was 5634 (Additional file 1:
Supplemental Figure S4A; Additional file 5: Supplemental
Table S4). During the filtering process, we also identified
and excluded 1340 genes that were widely expressed and,
thus, could not possibly be part of a tissue-specific signa-
ture. We used the binarized dataset to train a multi-class
support vector machine (SVM) model of linear kernel
with 10-fold cross-validation. The SVM algorithm identi-
fies the optimal hyperplane separating two tissues. By per-
forming all pairwise comparisons and by using a voting
algorithm, the model is able to assign a newly seen sample
in one of the tissues with a probability score. If the prob-
ability for the most-voted tissue is lower than 0.5, then we
assign the sample to an “Other” class. The resulting SVM
model was able to correctly assign samples to their tissue
of origin with an average accuracy of 99% and an average
FDR of 0.004 (Additional file 1: Supplemental Figure S4B).
We extracted the variable importance (VI) score for each
gene as the average of the squared weights across all pair-
wise comparisons [61]. The genes with the highest VI
scores (Additional files 2 and 5: Supplemental Tables S1
and S4) were able to classify correctly the 27 different tis-
sues (Fig. 7a). This tissue-specific signature comprised a
total of 1505 distinct genes. The SVM model was devel-
oped in R with the svm function of the e1071 package.
The background gene set was specific for each study.

For Xie et al. [50], Petropoulos et al. [51], and Sharma
et al. [52] and the integrative study of Xie et al. and
Cardoso-Moreira et al., the background comprised all of
the genes that entered the differential abundance ana-
lysis (SAM on abundance or ranking). For Yi et al. [57],
we used as background the 2280 genes reported by that
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study. For PluriNet, the background comprised all
protein-coding human genes. For the evaluation of the
lineage-specific genes of Petropoulos et al. [51], we used
all human protein-coding genes. The background for the
widely expressed genes as identified in the GTEx study
was all human protein-coding genes; the background for
the tissue-specific gene signature was the genes included
in the machine learning.
Kolmogorov-Smirnov tests were used to evaluate sta-

tistically significant shifts in the cumulative distributions
of exon and intron length and of exonic content of the
considered gene set as compared to the background
distribution.
To evaluate the statistical significance of overlap with

repetitive elements, we carried out Monte Carlo simula-
tions with 10,000 iterations. During each iteration, we ran-
domly chose genes from the background equal in number
to the genes being studied: for each such random choice,
we computed the exons’ and introns’ average “density in re-
petitive family X,” respectively. X ranged over all repetitive
families. Upon completion of the 10,000 iterations, we con-
structed a distribution of “expected” density values that we
then used to calculate the Z-score of the “observed” values.
Density values were calculated separately for each family of
repetitive elements. We consider values of absolute Z-
score ≥ 2 to represent a statistically significant enrich-
ment (positive Z-scores) or depletion (negative Z-
scores). We also conducted Kolmogorov-Smirnov tests
to examine whether the cumulative distribution in
repetitive-element density is different from the back-
ground population. Resulting P values were corrected
to FDR, and Z-scores that were associated with an FDR
larger than 5% were not considered significant. The
actual values are included in Additional file 4: Supple-
mental Table S3.
To visualize our findings, we plotted differences from

the background cumulative distribution (see legend of
Fig. 2). To this end, we represented the background by
the horizontal axis Y = 0. For a given choice of X (= in-
tron length, exon length, or exonic content), data points
above this horizontal axis signify an increase with regard
to background, i.e., a shift towards genes with longer
introns, longer exons, or higher exon density. Data
points below the horizontal axis signify the opposite.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12915-020-00928-8.

Additional file 1: Supplemental Figure S1. Controlling for the
background gene set. Supplemental Figure S2. Zygotic genome
activation. Supplemental Figure S3. Differentially ranked genes in
embryonic tissues compared to the blastocyst. Supplemental Figure
S4. Binarizing expression profiles and Support Vector Machines (SVMs).
Supplemental Figure S5. Properties of HOX genes.

Additional file 2: Supplemental Table S1. Gene sets and enriched
pathways.

Additional file 3: Supplemental Table S2. Gene characteristics and
architecture.

Additional file 4: Supplemental Table S3. Repetitive elements
enrichments/depletions in the analyzed gene sets.

Additional file 5: Supplemental Table S4. Binary dataset and SVM
model VI scores.

Acknowledgements
We thank the authors of previously published work for making their data
available. We thank the anonymous reviewers for their valuable feedback.

Authors’ contributions
AGT conceived and designed the study with contributions from IR. AGT
performed the analyses with contributions from IR. AGT and IR wrote the
manuscript. The authors read and approved the final manuscript.

Funding
This work was supported by Thomas Jefferson University Institutional Funds.

Availability of data and materials
The datasets analyzed during the current study are available in the GEO
repository (GSE18290, GSE54186), ArrayExpress (E-MTAB-3929, E-MTAB-6798,
E-MTAB-6814), or GTEx portal. Data generated or analyzed during this study
are also included in this published article and its supplementary information
files.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Computational Medicine Center, Sidney Kimmel College of Medicine,
Thomas Jefferson University, 1020 Locust Street, Suite M81, Philadelphia, PA
19107, USA. 2Department of Human Genetics, Miller School of Medicine,
University of Miami, Miami, FL 33136, USA.

Received: 18 August 2020 Accepted: 18 November 2020

References
1. Bradnam KR, Korf I. Longer first introns are a general property of eukaryotic

gene structure. PLoS One. 2008;3(8):e3093.
2. Steiman-Shimony A, Shtrikman O, Margalit H. Assessing the functional

association of intronic miRNAs with their host genes. RNA. 2018;24(8):
991–1004.

3. Tsirigos A, Rigoutsos I. Human and mouse introns are linked to the same
processes and functions through each genome’s most frequent non-
conserved motifs. Nucleic Acids Res. 2008;36(10):3484–93.

4. Rearick D, Prakash A, McSweeny A, Shepard SS, Fedorova L, Fedorov A.
Critical association of ncRNA with introns. Nucleic Acids Res. 2011;39(6):
2357–66.

5. Hube F, Francastel C. Mammalian introns: when the junk generates
molecular diversity. Int J Mol Sci. 2015;16(3):4429–52.

6. Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron
structure. Nat Struct Mol Biol. 2009;16(9):990–5.

7. Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-
Coco F, Tay Y, Beck AH, Pandolfi PP. Oncogenic role of fusion-circRNAs
derived from cancer-associated chromosomal translocations. Cell. 2016;
165(2):289–302.

8. Dragomir M, Calin GA. Circular RNAs in cancer - lessons learned from
microRNAs. Front Oncol. 2018;8:179.

Telonis and Rigoutsos BMC Biology           (2021) 19:60 Page 17 of 19

https://doi.org/10.1186/s12915-020-00928-8
https://doi.org/10.1186/s12915-020-00928-8


9. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,
Manolio TA. Potential etiologic and functional implications of genome-wide
association loci for human diseases and traits. Proc Natl Acad Sci U S A.
2009;106(23):9362–7.

10. Vaz-Drago R, Custodio N, Carmo-Fonseca M. Deep intronic mutations and
human disease. Hum Genet. 2017;136(9):1093–111.

11. Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol.
2017;91(Pt B):145–55.

12. Rose AB. Introns as gene regulators: a brick on the accelerator. Front Genet.
2018;9:672.

13. Pozzoli U, Menozzi G, Comi GP, Cagliani R, Bresolin N, Sironi M. Intron size
in mammals: complexity comes to terms with economy. Trends Genet.
2007;23(1):20–4.

14. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006; 15(Spec No
1):R17–29.

15. Keane PA, Seoighe C. Intron length coevolution across mammalian
genomes. Mol Biol Evol. 2016;33(10):2682–91.

16. Roy M, Kim N, Xing Y, Lee C. The effect of intron length on exon
creation ratios during the evolution of mammalian genomes. RNA.
2008;14(11):2261–73.

17. Zhou K, Kuo A, Grigoriev IV. Reverse transcriptase and intron number
evolution. Stem Cell Investig. 2014;1:17.

18. Fedorov A, Fedorova L. Introns: mighty elements from the RNA world. J Mol
Evol. 2004;59(5):718–21.

19. Seoighe C, Korir PK. Evidence for intron length conservation in a set of
mammalian genes associated with embryonic development. BMC
Bioinformatics. 2011;12(Suppl 9):S16.

20. Heyn P, Kalinka AT, Tomancak P, Neugebauer KM. Introns and gene
expression: cellular constraints, transcriptional regulation, and evolutionary
consequences. Bioessays. 2015;37(2):148–54.

21. Eisenberg E, Levanon EY. Human housekeeping genes, revisited. Trends
Genet. 2013;29(10):569–74.

22. Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA. Selection
for short introns in highly expressed genes. Nat Genet. 2002;31(4):415–8.

23. Vinogradov AE. “Genome design” model: evidence from conserved intronic
sequence in human-mouse comparison. Genome Res. 2006;16(3):347–54.

24. Woody JL, Shoemaker RC. Gene expression: sizing it all up. Front Genet. 2011;2:70.
25. Jeffares DC, Penkett CJ, Bahler J. Rapidly regulated genes are intron poor.

Trends Genet. 2008;24(8):375–8.
26. Heyn P, Kircher M, Dahl A, Kelso J, Tomancak P, Kalinka AT, Neugebauer KM.

The earliest transcribed zygotic genes are short, newly evolved, and
different across species. Cell Rep 2014;6(2):285-92.

27. Swinburne IA, Silver PA. Intron delays and transcriptional timing during
development. Dev Cell. 2008;14(3):324–30.

28. Carmel L, Koonin EV. A universal nonmonotonic relationship between gene
compactness and expression levels in multicellular eukaryotes. Genome Biol
Evol. 2009;1:382–90.

29. Sahakyan AB, Balasubramanian S. Long genes and genes with multiple
splice variants are enriched in pathways linked to cancer and other
multigenic diseases. BMC Genomics. 2016;17:225.

30. Baralle FE, Giudice J. Alternative splicing as a regulator of development and
tissue identity. Nat Rev Mol Cell Biol. 2017;18(7):437–51.

31. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg
effect: the metabolic requirements of cell proliferation. Science. 2009;
324(5930):1029–33.

32. Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM,
Christophersen NS, Christensen LL, Borre M, Sorensen KD, et al. A dual
program for translation regulation in cellular proliferation and
differentiation. Cell. 2014;158(6):1281–92.

33. Hutchins AP, Pei D. Transposable elements at the center of the crossroads
between embryogenesis, embryonic stem cells, reprogramming, and long
non-coding RNAs. Sci Bull (Beijing). 2015;60(20):1722–33.

34. Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D, Firth
A, Singer O, Trono D, Pfaff SL. Embryonic stem cell potency fluctuates with
endogenous retrovirus activity. Nature. 2012;487(7405):57–63.

35. Kelley D, Rinn J. Transposable elements reveal a stem cell-specific class of
long noncoding RNAs. Genome Biol. 2012;13(11):R107.

36. Theunissen TW, Friedli M, He Y, Planet E, O'Neil RC, Markoulaki S,
Pontis J, Wang H, Iouranova A, Imbeault M, et al. Molecular criteria
for defining the naive human pluripotent state. Cell Stem Cell. 2016;
19(4):502–15.

37. Gerdes P, Richardson SR, Mager DL, Faulkner GJ. Transposable elements in
the mammalian embryo: pioneers surviving through stealth and service.
Genome Biol. 2016;17:100.

38. Tsirigos A, Rigoutsos I. Alu and b1 repeats have been selectively retained in
the upstream and intronic regions of genes of specific functional classes.
PLoS Comput Biol. 2009;5(12):e1000610.

39. Hasler J, Strub K. Alu elements as regulators of gene expression. Nucleic
Acids Res. 2006;34(19):5491–7.

40. Rigoutsos I, Huynh T, Miranda K, Tsirigos A, McHardy A, Platt D. Short blocks
from the noncoding parts of the human genome have instances within
nearly all known genes and relate to biological processes. Proc Natl Acad
Sci U S A. 2006;103(17):6605–10.

41. Ponicsan SL, Kugel JF, Goodrich JA. Genomic gems: SINE RNAs regulate
mRNA production. Curr Opin Genet Dev. 2010;20(2):149–55.

42. Chen LL, Yang L. ALUternative regulation for gene expression. Trends Cell
Biol. 2017;27(7):480–90.

43. Rigoutsos I, Lee SK, Nam SY, Anfossi S, Pasculli B, Pichler M, Jing Y,
Rodriguez-Aguayo C, Telonis AG, Rossi S, et al. N-BLR, a primate-specific
non-coding transcript leads to colorectal cancer invasion and migration.
Genome Biol. 2017;18(1):98.

44. Wang J, Vicente-Garcia C, Seruggia D, Molto E, Fernandez-Minan A, Neto A,
Lee E, Gomez-Skarmeta JL, Montoliu L, Lunyak VV, et al. MIR retrotransposon
sequences provide insulators to the human genome. Proc Natl Acad Sci U S
A. 2015;112(32):E4428–37.

45. Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J,
Ng HH, Perera RJ, et al. MicroRNA-134 modulates the differentiation of
mouse embryonic stem cells, where it causes post-transcriptional
attenuation of Nanog and LRH1. Stem Cells. 2008;26(1):17–29.

46. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4
and Sox2 coding regions modulate embryonic stem cell differentiation.
Nature. 2008;455(7216):1124–8.

47. Meynert A, Birney E. Picking pyknons out of the human genome. Cell. 2006;125(5):
836–8.

48. Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME,
De Figueiredo Pontes LL, Alberich-Jorda M, Zhang P, et al. DNMT1-interacting RNAs
block gene-specific DNA methylation. Nature. 2013;503(7476):371–6.

49. Pichler M, Rodriguez-Aguayo C, Nam SY, Dragomir MP, Bayraktar R, Anfossi S, Knutsen
E, Ivan C, Fuentes-Mattei E, Lee SK, et al. Therapeutic potential of FLANC, a novel
primate-specific long non-coding RNA in colorectal cancer. Gut. 2020;69(10):1818-31.

50. Xie D, Chen CC, Ptaszek LM, Xiao S, Cao X, Fang F, Ng HH, Lewin HA,
Cowan C, Zhong S. Rewirable gene regulatory networks in the
preimplantation embryonic development of three mammalian species.
Genome Res. 2010;20(6):804–15.

51. Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP, Codeluppi S, Plaza
Reyes A, Linnarsson S, Sandberg R, Lanner F. Single-cell RNA-seq reveals
lineage and X chromosome dynamics in human preimplantation embryos.
Cell. 2016;165(4):1012–26.

52. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C,
Kucukural A, Serra RW, Sun F, et al. Biogenesis and function of tRNA
fragments during sperm maturation and fertilization in mammals. Science.
2016;351(6271):391–6.

53. Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H,
Reik W, Smith A, Sasaki E, Nichols J, Bertone P. Single cell transcriptome
analysis of human, marmoset and mouse embryos reveals common and
divergent features of preimplantation development. Development. 2018;
145(21):dev167833.

54. Jukam D, Shariati SAM, Skotheim JM. Zygotic genome activation in
vertebrates. Dev Cell. 2017;42(4):316–32.

55. Boroviak T, Nichols J. Primate embryogenesis predicts the hallmarks of
human naive pluripotency. Development. 2017;144(2):175–86.

56. Muller FJ, Laurent LC, Kostka D, Ulitsky I, Williams R, Lu C, Park IH, Rao MS,
Shamir R, Schwartz PH, et al. Regulatory networks define phenotypic classes
of human stem cell lines. Nature. 2008;455(7211):401–5.

57. Yi H, Xue L, Guo MX, Ma J, Zeng Y, Wang W, Cai JY, Hu HM, Shu HB, Shi YB, et al.
Gene expression atlas for human embryogenesis. FASEB J. 2010;24(9):3341–50.

58. Kim JJ, Khalid O, Namazi A, Tu TG, Elie O, Lee C, Kim Y. Discovery of
consensus gene signature and intermodular connectivity defining self-
renewal of human embryonic stem cells. Stem Cells. 2014;32(6):1468–79.

59. Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C, Shao Y, Liechti
A, Ascencao K, Rummel C, Ovchinnikova S, et al. Gene expression across
mammalian organ development. Nature. 2019;571(7766):505–9.

Telonis and Rigoutsos BMC Biology           (2021) 19:60 Page 18 of 19



60. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat
Genet. 2013;45(6):580–5.

61. Telonis AG, Magee R, Loher P, Chervoneva I, Londin E, Rigoutsos I.
Knowledge about the presence or absence of miRNA isoforms (isomiRs) can
successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Res.
2017;45(6):2973–85.

62. Havecker ER, Gao X, Voytas DF. The diversity of LTR retrotransposons.
Genome Biol. 2004;5(6):225.

63. Kramerov DA, Vassetzky NS. Origin and evolution of SINEs in eukaryotic
genomes. Heredity (Edinb). 2011;107(6):487–95.

64. Deininger P. Alu elements: know the SINEs. Genome Biol. 2011;12(12):236.
65. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M,

Imbeault M, Izsvak Z, Levin HL, Macfarlan TS, et al. Ten things you should
know about transposable elements. Genome Biol. 2018;19(1):199.

66. Platt RN 2nd, Vandewege MW, Ray DA. Mammalian transposable elements and
their impacts on genome evolution. Chromosom Res. 2018;26(1–2):25–43.

67. Jjingo D, Huda A, Gundapuneni M, Marino-Ramirez L, Jordan IK. Effect of
the transposable element environment of human genes on gene length
and expression. Genome Biol Evol. 2011;3:259–71.

68. Grishkevich V, Yanai I. Gene length and expression level shape genomic
novelties. Genome Res. 2014;24(9):1497–503.

69. Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S, Blower
MD, Lai EC. A broadly conserved pathway generates 3'UTR-directed primary
piRNAs. Curr Biol. 2009;19(24):2066–76.

70. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E,
Anger M, Sachidanandam R, Schultz RM, et al. Pseudogene-derived small
interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008;
453(7194):534–8.

71. Rigoutsos I. Short RNAs: how big is this iceberg? Curr Biol. 2010;20(3):R110–3.
72. Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E, Kotani H, Asai

K, Siomi H, Siomi MC. A regulatory circuit for piwi by the large Maf gene
traffic jam in Drosophila. Nature. 2009;461(7268):1296–9.

73. Allegrucci C, Young LE. Differences between human embryonic stem cell
lines. Hum Reprod Update. 2007;13(2):103–20.

74. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M,
Sproesser K, Brafford PA, Xiao M, et al. Rare cell variability and drug-induced
reprogramming as a mode of cancer drug resistance. Nature. 2017;
546(7658):431–5.

75. Jjingo D, Conley AB, Wang J, Marino-Ramirez L, Lunyak VV, Jordan IK.
Mammalian-wide interspersed repeat (MIR)-derived enhancers and the
regulation of human gene expression. Mob DNA. 2014;5:14.

76. Xie M, Hong C, Zhang B, Lowdon RF, Xing X, Li D, Zhou X, Lee HJ, Maire CL,
Ligon KL, et al. DNA hypomethylation within specific transposable element
families associates with tissue-specific enhancer landscape. Nat Genet. 2013;
45(7):836–41.

77. Shapiro JA, von Sternberg R. Why repetitive DNA is essential to genome
function. Biol Rev Camb Philos Soc. 2005;80(2):227–50.

78. Rohrmoser M, Kluge M, Yahia Y, Gruber-Eber A, Maqbool MA, Forne I, Krebs
S, Blum H, Greifenberg AK, Geyer M, et al. MIR sequences recruit zinc finger
protein ZNF768 to expressed genes. Nucleic Acids Res. 2019;47(2):700–15.

79. Sonawane AR, Platig J, Fagny M, Chen CY, Paulson JN, Lopes-Ramos CM,
DeMeo DL, Quackenbush J, Glass K, Kuijjer ML. Understanding tissue-specific
gene regulation. Cell Rep. 2017;21(4):1077–88.

80. Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G.
Transposable elements have rewired the core regulatory network of human
embryonic stem cells. Nat Genet. 2010;42(7):631–4.

81. Telonis AG, Rigoutsos I. Race disparities in the contribution of miRNA
isoforms and tRNA-derived fragments to triple-negative breast cancer.
Cancer Res. 2018;78(5):1140–54.

82. Telonis AG, Loher P, Magee R, Pliatsika V, Londin E, Kirino Y, Rigoutsos I.
tRNA fragments show intertwining with mRNAs of specific repeat content
and have links to disparities. Cancer Res. 2019;79(12):3034–49.

83. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the
Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8.

84. Guzzi N, Ciesla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, Pimkova K,
Sommarin MNE, Munita R, Lubas M, et al. Pseudouridylation of tRNA-
derived fragments steers translational control in stem cells. Cell. 2018;
173(5):1204–16 e1226.

85. Krishna S, Yim DG, Lakshmanan V, Tirumalai V, Koh JL, Park JE, Cheong JK,
Low JL, Lim MJ, Sze SK, et al. Dynamic expression of tRNA-derived small
RNAs define cellular states. EMBO Rep. 2019;20(7):e47789.

86. Rojas-Rios P, Simonelig M. piRNAs and PIWI proteins: regulators of gene
expression in development and stem cells. Development. 2018;145(17):
dev161786.

87. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.

88. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P.
The Molecular Signatures Database (MSigDB) hallmark gene set collection.
Cell Syst. 2015;1(6):417–25.

89. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K,
Cummins C, Gall A, Giron CG, et al. Ensembl 2018. Nucleic Acids Res. 2018;
46(D1):D754–61.

90. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied
to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):
5116–21.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Telonis and Rigoutsos BMC Biology           (2021) 19:60 Page 19 of 19


	The transcriptional trajectories of pluripotency and differentiation comprise genes with antithetical architecture and repetitive-element content.
	Let us know how access to this document benefits you
	Recommended Citation

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Biases in length and repetitive-element content among expressed genes change monotonically with the preimplantation developmental stage
	Examples of protein-coding genes having conspicuous overlaps with repetitive elements
	The up-regulated and down-regulated genes contain unique pyknon signatures while the pyknons they have in common correspond to SINE/Alu elements
	The architecture of early-expressed genes mirrors that of genes comprising the stem cell signature
	Gene expression trajectories of differentiation and organogenesis involve longer genes that are less dense in repetitive elements
	In differentiated tissues, tissue-specific genes are longer and repeat-depleted whereas ubiquitously expressed genes are shorter and repeat-enriched

	Discussion
	Conclusions
	Materials and methods
	Definitions
	Data acquisition and processing
	Genomic computations
	Repetitive elements
	Statistical analyses, machine learning, and visualization

	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

