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Technologies for profiling samples using different omics platforms have been at the forefront 
since the human genome project. Large-scale multi-omics data hold the promise of 
deciphering different regulatory layers. Yet, while there is a myriad of bioinformatics tools, 
each multi-omics analysis appears to start from scratch with an arbitrary decision over 
which tools to use and how to combine them. Therefore, it is an unmet need to 
conceptualize how to integrate such data and implement and validate pipelines in different 
cases. We have designed a conceptual framework (STATegra), aiming it to be as generic 
as possible for multi-omics analysis, combining available multi-omic anlaysis tools (machine 
learning component analysis, non-parametric data combination, and a multi-omics 
exploratory analysis) in a step-wise manner. While in several studies, we have previously 
combined those integrative tools, here, we provide a systematic description of the 
STATegra framework and its validation using two The Cancer Genome Atlas (TCGA) case 
studies. For both, the Glioblastoma and the Skin Cutaneous Melanoma (SKCM) cases, 
we demonstrate an enhanced capacity of the framework (and beyond the individual tools) 
to identify features and pathways compared to single-omics analysis. Such an integrative 
multi-omics analysis framework for identifying features and components facilitates the 
discovery of new biology. Finally, we provide several options for applying the STATegra 
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framework when parametric assumptions are fulfilled and for the case when not all the 
samples are profiled for all omics. The STATegra framework is built using several tools, 
which are being integrated step-by-step as OpenSource in the STATegRa Bioconductor 
package.1

Keywords: multi-omic analyses, data-integration, next-generation sequencing, component analysis, 
non-parametric combination, GeneSetCluster

1 https://bioconductor.org/packages/release/bioc/html/STATegra.html

INTRODUCTION

Computational and experimental developments have enabled 
the profiling of multiple layers of cell regulation: genome, 
transcriptome, epigenome, chromatin conformation or 
metabolome, among many globally known “omics” (Ramos 
et  al., 2017; Gomez-Cabrero et  al., 2019). The development 
of such technologies was driven by the understanding that a 
single-omic does not provide enough information to allow 
dissecting biological mechanisms (Joyce and Palsson, 2006; 
Gomez-Cabrero et  al., 2014). For instance, while specific DNA 
variations have been linked with multiple diseases, the associated 
mechanisms are not fully understood (Gilad et al., 2008; James 
et  al., 2018). As a result, multi-omics data-sets are increasingly 
applied across biological domains such as cancer biology 
(Gerstung et  al., 2015; Tomczak et  al., 2015; Iorio et  al., 2016; 
Mertins et  al., 2016; de Anda-Jáuregui and Hernández-Lemus, 
2020). Furthermore, single-cell multi-omics analysis (Macaulay 
et  al., 2017; Colomé-Tatché and Theis, 2018; Chen et  al., 2019; 
Welch et  al., 2019) has just become a reality.

However, from the necessity of multi-omics profiling came 
the need for multi-omics analysis tools. Thus, integrative approaches 
are expected to generate significantly more comprehensive insights 
into the biological systems under study (SuS). A myriad of such 
tools in the literature may be categorized and classified differently 
(possibly in complex ways; Gomez-Cabrero et al., 2014; Hofmann-
Apitius et  al., 2015; Kannan et  al., 2016; Meng et  al., 2016; 
Rohart et  al., 2017; Argelaguet et  al., 2018; Stein-O’Brien et  al., 
2018). While each of the tools is a valuable resource for any 
multi-omics research, combining them into a conceptually unified 
framework is key. Equally important is the fact that each framework 
must be as generic as possible. Thus, we introduce the STATegra 
framework, in which we  integrate three multi-omics based 
approaches into a single pipeline: (a) Component Analysis (CA) 
to understand the coordination among omics data-types (Måge 
et  al., 2019); (b) Non-Parametric Combination (NPC) analysis 
to leverage on paired designs to increase statistical power 
(Karathanasis et  al., 2016); and (c) an integrative exploratory 
analysis (Ewing et  al., 2020). Furthermore, this framework may 
be extended by including additional tools such as network analysis 
(Barabási et  al., 2011; Yugi et  al., 2016). We  incorporated most 
of these tools into the STATegRa Bioconductor package to 
facilitate their use.2 The package is continuously being updated 

2 https://bioconductor.org/packages/release/bioc/html/STATegra.html

and developed. Furthermore, as described in the framework, 
additional tools are planned to be  incorporated into the 
Bioconductor package, e.g., the pESCA (Song et  al., 2020) for 
multi-omics CA and the GeneSetCluster (Ewing et  al., 2020) 
for multi-omics exploratory analysis.

To demonstrate the added value of the STATegra framework 
as a whole, we  applied it to two data-sets from The Cancer 
Genome Atlas (TCGA): the glioblastoma data-set (Turcan et al., 
2012) and the melanoma data-set (Akbani et al., 2015). We also 
explored (i) the use of samples for which only a subset of 
omics profiles is available and (ii) the use of parametric vs. 
non-parametric analysis.

MATERIALS AND METHODS

Additional information is included in Supplementary 
Material, and an html-R Markdown document is provided 
for each data-set in Supplementary Material; each document 
provides a comprehensive overview of the code used to enhance 
their reproducibility.

Downloading and Preprocessing Data
We selected the Glioblastoma Multiforme (GBM) and the SKCM 
data-sets from TCGA. The level 3 publicly available data for 
gene expression (gene expression calls), miRNA (miRNA 
expression calls), and DNA methylation (beta values per CpG, 
DNAm) were obtained per sample through the NCI’s Genomic 
Data Commons (GDC) portal (Tomczak et  al., 2015). The 
associated metadata for each project was also obtained. 
Additionally, for the SKCM data-set, curated metadata generated 
in a previous TCGA study was also used (Akbani et  al., 2015).

Glioblastoma multiforme: three data types were downloaded: 
array-based expression (mRNA) – Affymetrix Human Genome 
HT U133A, array-based expression (miRNA) – Agilent 
Microarray, and array-based DNA Methylation (DNAm) – 
Illumina Human Methylation 450  K. The number of available 
samples differed depending on the omic: mRNA, miRNA, and 
DNAm profiles are available for 523, 518, and 95 samples, 
respectively (Supplementary Table 1; Supplementary Figure 2A).

Skin Cutaneous Melanoma: three data types were downloaded: 
RNA-seq-based expression (mRNA) – Illumina HiSeq  2000, 
miRNA-Seq-based expression (miRNA) – Illumina HiSeq 2000, 
and array-based DNA Methylation (DNAm) – Illumina Human 
Methylation 450 K. The data from these three omics are available 
for all the individuals (n = 425); however, divergences between 
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the initial date of diagnosis (driving the metadata information) 
and the TCGA specimen date were identified 
(Supplementary Figure 1). Consequently, we decided to include 
only those cases for which specimens were obtained within a 
1-year window from diagnosis (n  =  104).

Supplementary Table  1 describes the characteristics of the 
two data-sets and the pre-processing steps applied before starting 
the integrative workflow of multi-omics data. We  conducted 
an exhaustive exploration for each data type assessing the need 
for data normalization and/or filtering (Supplementary Material). 
Metadata is available for GBM and SKCM (summarized in 
Supplementary Table 2 and described in Supplementary 
Tables 3, 4 for a detailed description of the variables). In 
general, the data provided by TCGA contains information on 
demographic features (age, gender, race, and ethnicity), tumor 
characteristics (age at diagnosis, the primary site of the disease, 
stage of the neoplasm, prior glioma, ulceration in melanoma, 
Karnofsky score for GBM, and Breslow thickness for SKCM), 
survival outcome (vital status, days to death, days to the last 
follow-up), and technical processes (batch number, tissue source 
site – TSS, i.e., centers which collect samples and 
clinical metadata).

At the end of the preprocessing, numerous matrices, i.e., 
one matrix per every omics data-type (mRNA, miRNA, and 
DNAm), plus one additional matrix containing the metadata 
of the samples, compose each data-set (GBM, SKCM). Omics 
data-type matrices are arranged placing measurements (a.k.a. 
features) on rows and samples in columns, while metadata 
matrices include samples as rows and metadata information 
(e.g., age, gender, etc.) in columns.

Component Analysis for Two Data-Types 
(omicsPCA)
To perform joint exploration of data, the two data-types must 
fulfill the following criteria: (i) each feature must be  scaled 
and (ii) only samples that are common to the two data types 
can be  analyzed. Each feature was mean-centered and then 
normalized to the unit sum of squares (Frobenius normalization). 
Due to sample availability, component analysis for two data-
type matrices was restricted for each analysis for common 
samples (Supplementary Figure  2A).

Once input data were ready, the two main omicsPCA steps 
were applied: model selection and subspace recovery. For model 
selection, we aimed to identify the correct model, which means 
the exact number of common (shared) components and the 
number of distinctive components per data-type. We investigated 
the following methodologies: JIVE (Lock et  al., 2013; the jive 
R package), PCA-GCA (Gu and Van Deun, 2019; RegularizedSCA 
R package), and pESCA (Song et  al., 2020; RpESCA and 
Rspectra R packages; Supplementary Table 5 and Supplementary  
html-R Markdown document).

Finally, the association between metadata and the shared/
individual components obtained was assessed using the Kruskal-
Wallis test, Spearman’s correlation, or the Cox regression model, 
depending if the variable of interest was categorical, numerical 
or time-to-event, respectively.

All analyses were conducted in R (R Core Team, 2017).

Non-Parametric Combination for Two 
Data-Types (omicsNPC)
Non-Parametric Combination techniques allow combining 
statistical evidence (p-values) across data-types to obtain a 
more precise characterization of the changes associated with 
the outcome of interest (Karathanasis et  al., 2016).

The above-described approach allows to integrating data 
matrices defined on overlapping sets of samples. Taking 
advantages of this possibility, we  explored the NPC following 
two strategies: analyzing only common samples or analyzing 
all available samples (including non-overlapping ones, 
when applicable).

Importantly, NPC methods require linking the features 
across data-types. To that end, the relation between mRNA 
and miRNA and mRNA and methylation were obtained using 
the SpidermiR R package (Cava et  al., 2017) and RGmatch 
(Furió-Tarí et  al., 2016), respectively.

In the case of mRNA and miRNA mapping, different versions 
of annotation were found; we  combined the following two: 
the miRNAmeConverter (Haunsberger et al., 2017) and anamiR 
(Wang et  al., 2019) R packages.

Finally, the NPC may be  run using the omicsNPC function 
from the STATegRa package using the two data-types, the 
mapping file (i.e., mRNA – miRNA), and the variables to 
include in the model (see R-code below) as inputs.

In our analyses, the outcomes of interest were survival for 
the GBM data-set and the primary site of tumor for the SKCM 
data-set. Additionally, age was included as a co-variable in all 
the models. Depending on the nature of the outcome of interest 
the analysis performed during NPC differs. In the case of 
GBM, the association between each molecular quantity and 
the time-to-event was assessed through a Cox Regression model 
(Cox, 1972). Since age is by itself a relevant factor (Supplementary 
Figure 5), it was treated as a time-varying factor by specifying 
a time-transform function (Therneau et  al., 2020). In SKCM 
associations between each molecular quantity and the primary 
site of the tumor were assessed through a differential expression 
analysis using Limma (Robinson, 2009; highlighted lines from 
the R-code).

-------CODE-------
# Detailed version of the code is provided as Supplementary 
Material (RMarkDown)
#NPC input
mRNA_data #mRNA expression data matrix
miRNA_data #miRNA expression data matrix
mapping_gene #mapping of mRNA to genes
mapping_mirna #mapping of miRNA to genes

#1 – Generate the mapping between mRNA and miRNA; a 
data frame describing how to map measurements across data-sets
dataMappingExprMirna <- combiningMappings 
(mappings =   list(expr = mapping_gene, mirna 
= mapping_mirna), retainAll =  TRUE, reference 
= ‘Gene’)

#2 – Specify data type.
# The type of analysis to be  performed is defined here.
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# For GBM, as the output of interest is the survival outcome, 
we  must define a coxph function that considers the age as a 
co-variable. This defined function is called “ttCoxphContinuous”
dataTypesExprMirna <- list(ttCoxphContinuous
,ttCoxphContinuous)

#For SKCM, as our output of interest is the differential expression 
between primary site of tumor, it is only necessary to define 
that our data-types are continuous.
dataTypesExprMirna <- c(expr = ‘continuous’, 
mirna = ‘continuous’).

#3 - Preparing the data-sets as an ExpressionSet object (outcome 
variable refers to our variable of interest, in that case, “survival” 
for GBM data-set and “primary site of tumor” for SKCM 
data-set).
mRNA <- createOmicsExpressionSet(Data = mRNA_
data, pData = metadata[,c(“age”,“outcome”)]0029

miRNA <- createOmicsExpressionSet(Data = miRNA_ 
data, pData = metadata[,c(“age”“outcome”)])
dataInputExprMirna <- list(expr = mRNA, mirna  
= miRNA)

#4  - Setting methods to combine p-values
combMethods <- c(“Fisher”,“Liptak”,“Tippett”)

# Setting number of permutations
numPerms <- 1000

# Setting number of cores
numCores <- 4

# Setting omicsNPC to print out the steps that it performs.
verbose <- TRUE

#Run the omicsNPC
omicsNPC_output <- omicsNPC(dataInput = 
dataInputExprMirna,
dataMapping = dataMappingExprMirna,
dataTypes = dataTypesExprMirna,
combMethods = combMethods,
numPerms = numPerms,
numCores = numCores,
verbose = verbose)
-------------------------

GeneSetClustering
Significant genes from omicsNPC in the different approaches 
(Adj.value of p  <  0.05 or Fisher p-value <0.05  in NPC) were 
uploaded to the Ingenuity Pathway Analysis (IPA; Krämer 
et  al., 2014) database (Qiagen), and core expression analysis 
was performed to identify affected canonical pathways and 
functional annotations. Right-tailed Fisher’s exact test was used 
to calculate a p-value. Canonical pathways/functional annotations 
were clustered together using GeneSetCluster (Ewing et  al., 
2020). Briefly, the gene-sets were grouped into clusters by 
calculating the similarity of pathways/annotations of the gene 

content using the relative risk (RR) of each e-set appearing 
with each other. Only significant gene-sets (values of p < 0.05) 
with a minimum of three genes were selected for functional 
exploration. RR scores were clustered into groups using k-means 
with the optimal number of genes determined using gap statistics.

RESULTS

We designed the STATegra framework as a four-step analysis 
(Figure  1). In the first step, each data-type was analyzed 
separately using state-of-the-art tools for each omic. Next, in 
a second step, we  explored the shared variability between the 
different data-types using unsupervised techniques such as Joint 
and Individual Variation Explained (JIVE; Lock et  al., 2013), 
implemented in OmicsPCA. This analysis provided qualitative 
and quantitative insights into how much the different data-
types (e.g., different omics) and their features were “coordinated.” 
Moreover, the analysis provided useful information for targeting 
specific omics combinations (Gomez-Cabrero et  al., 2019). In 
the third step, for those combinations of omics characterized 
as coordinated, NPC analysis allowed increasing the statistical 
power to identify significant features as we  have recently 
demonstrated (Ewing et  al., 2019; Fernandes et  al., 2019). For 
that purpose, we used the NPC within the omicsNPC function 
(Karathanasis et  al., 2016). In the final step, clustering tools 
(e.g., OmicsClustering) and gene-set enrichment analysis 
summarizing tools (such as GeneSetCluster, Ewing et al., 2020) 
allowed an integrated approach.

Selected Case Studies
We selected two case studies: GBM and SKCM. GBM is the 
first cancer studied by TCGA (McLendon et al., 2008; Brennan 
et  al., 2013). The TCGA GBM data-set consists of primary 
tumor samples from roughly 600 cases. The data-set contains 
gene expression, miRNA, and DNA methylation microarrays. 
Several findings have been reported on these data, including 
a molecular classification of glioblastoma based on gene 
expression profiles (classical, proneural, neural, and mesenchymal; 
Verhaak et  al., 2010). The TCGA Consortium published the 
landscape of SKCM in 2015 (Akbani et  al., 2015). The TCGA 
SKCM data-set consists of melanoma samples from patients 
diagnosed with either primary or metastatic cutaneous melanoma 
or metastatic melanoma of unknown primary from ~400 cases. 
The data-set contains genotype information, gene expression, 
and methylation microarrays. Based on these data, several 
findings have been reported, including the genomic identification 
of four mutant subtypes (BRAF hotspot, NF1 mutant, RAS 
hotspot, and triple wild-type) and a molecular classification 
based on gene expression profiles (immune, keratin, and 
MITF-low related profiles) associated with survival time. In 
general, patients from both studies were Caucasian with a 
median age of 58–59  years and a higher proportion of males 
(~60%). The mortality rate in GBM was high (78%) with a 
median life expectancy of around 1  year. For SKCM, 42% of 
patients died during follow-up and median life expectancy 
was of 1  year and 3  months (Supplementary Tables 1, 2).
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Step 1: Independent Data-Type Exploration 
and Characterization
Once the data is pre-processed, we  recommend conducting 
quality controls for each individual data-type as the first step 
in the STATegra framework. In our example we  made use of 
principal component analysis (PCA) as an unsupervised exploratory 
analysis. However, other matrix-factorization techniques may 
be  used, e.g., Independent Component Analysis (ICA; Lee and 
Batzoglou, 2003) or Non-negative Matrix Factorization (NMF; 
Lee and Seung, 1999). It is important to emphasize the relevance 
of setting up a proper study design to avoid possible batch-
effects not to be  confounded with the biological effects under 
study: a component analysis will not overcome a wrong design.

In the GBM data-set case, the two first PCA components 
showed a limited amount of variability explained for all omics 
(Supplementary Figure  2B), suggesting a large per sample 
variability. As expected from the original TCGA publication 
(Verhaak et al., 2010), we found a significant association between 
the previously defined “gene expression subtypes” (Verhaak et al., 
2010) and the first PCs of mRNA (Bonferroni adjusted value 
of p  <  0.001; refer to Supplementary Material). Interestingly, 
such association was also found for miRNA and DNAm 
(Supplementary Figure 2C; adjusted value of p < 0.005). Moreover, 
we  identified several clinical variables associated with at least 

one of the first three main components of omics data (refer to 
Supplementary Material; Bonferroni adjusted value of p < 0.05): 
survival outcome (mRNA, miRNA, DNAm) and TSS (mRNA).

In the case of the SKCM data-set, the two first PCA 
components showed a limited amount of variability explained 
for all omics (Supplementary Figure 3A). We identified several 
clinical variables associated with at least one of the first three 
main components of omics data (refer to Supplementary  
Material; Bonferroni adjusted value of p  <  0.05): primary site 
of disease (mRNA, miRNA), neoplasm (mRNA), and pathological 
stage of the disease (mRNA, miRNA).

It is worth noting that some of the clinical variables were 
associated with at least one of the first three components in the 
individual data-type exploration for more than one omics data 
type. Such results apply to both GBM and SKCM data-sets. 
Consequently, we  hypothesize that several omics are coordinated 
and their analytical integration would bring more statistical power 
and synergistic insights. In Step 2, we investigated such assumptions.

Step 2: Joint Exploration and 
Characterization
As previously shown, several clinical variables were associated 
with more than one omics data-type in both selected data-sets. 
Such observations may indicate that some (if not all) those 

FIGURE 1 | Workflow diagram of the multi-omics analysis framework.
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omics profiles are coordinated (or at least some of their features 
are). Therefore, the next step in the STATegra framework was 
to investigate and quantify a potential coordination.

Thus, instead of looking at the PCA-derived components of 
mRNA and miRNA separately, we  investigated the existence of 
components (or factors) shared by both omics (Gomez-Cabrero 
et  al., 2019). Intuitively, while in PCA we  projected using the 
main components per omic (refer to Supplementary 
Figures 2B, 3A as examples), we next aimed to identify projections 
where the components are informative for more than one data-
type simultaneously (refer to Figures 2A,C). In summary, when 
analyzing the variability of data-types A and B, we  aimed to 
identify components associated to both A and B (shared 
components), components associated only to A, and components 
associated only to B (distinctive components).

Multi-data-set component analysis methodologies have three 
key steps: (a) model selection, (b) subspace recovery, and (c) 
estimation of robustness. In (a) model selection, we  aimed to 
identify the correct model, which means the exact number of 
common (shared) components and the number of distinctive 
components per data-type. The determination of model selection, 
although fundamental, remains an open question (van der 
Kloet et  al., 2016; Måge et  al., 2019); hence, no final function 

has yet been included in the STATegRa package. However, 
we explored several methods [JIVE (Lock et al., 2013), PCA-GCA 
(Smilde et  al., 2017), and pESCA (Song et  al., 2020)]. Both, 
common and distinctive components obtained for each method 
are summarized in Supplementary Table 5. In our experience, 
the selected method depends on the nature of the data [as 
shown in (Måge et  al., 2019)]. We  do however recommend 
the use of several methodologies to establish more robust 
insights. While identifying the best model is an open challenge, 
we  considered – based on the estimates – using the results 
from pESCA (Song et al., 2020), specifically pESCA (1%). Once 
the number of shared and distinctive components was determined, 
the subspace recovery (identification of loads and scores for 
the components) should be  conducted using the same 
methodology used to identify space. Finally, to address robustness 
estimation we  refer to the method in Måge et  al. (2019).

In the current data-sets we  were prioritizing a gene-centric 
analysis for both data-sets (GBM and SKCM); therefore, we posed 
two scenarios; the joint analysis of mRNA and miRNA, and 
the joint analysis of mRNA and methylation. We  acknowledge 
that there are tools in development for integrating more than 
two omics; see for instance (Srivastava et  al., 2013) and its 
application in Gomez-Cabrero et  al. (2019).

A C

B D

FIGURE 2 | Multi-omics component analysis. (A,C) Component-based representation of Glioblastoma Multiforme (GBM) and Skin Cutaneous Melanoma (SKCM) 
joint exploration; mRNA + miRNA (left) and mRNA + methylation (right). First and second common components (or auxiliary if only one common component is 
found) are shown. Samples are colored based on gene expression subtype for GBM and primary site of disease for SKCM. (B,D) Heatmap representation of –log10 
(p-values) of the statistical test between metadata and common and distinctive components of GBM and SKCM joint analysis; mRNA + miRNA (left) and 
mRNA + methylation (right). Color ranges from white to black, understood as p-values with no significance to significant p-values. Based on the nature of the 
variables, p-values were obtained by association, correlation, or using a survival test. Radiations rri, dts, and dipd denote, respectively, “Radiations radiation regimen 
indication,” “Days to submitted specimen dx,” and “Date of initial pathologic diagnosis.” See Supplementary Tables 3, 4 for a detailed description of the variables.
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GBM data-set: we identified seven shared components between 
mRNA and miRNA and one between mRNA and DNAm (refer 
to Supplementary Table  5). Figure  2A shows two PC score 
plots; the association between components (shared and distinctive) 
and clinical variables is shown in Figure  2B. After investigating 
all pairs of “share components vs. factors,” we  observed that at 
least one shared component was significantly associated (Bonferroni 
adjusted value of p  <  0.05) with: “gene expression subtype” 
derived from (Verhaak et  al., 2010; mRNA-miRNA, mRNA-
DNAm), survival outcome (mRNA-miRNA), and age (mRNA-
miRNA; Figure 2B). No significant relationship was seen between 
gene expression subtype and survival outcome (Supplementary  
Figure 4, value of p  =  0.06), although a relationship between 
age and survival outcome was observed (adjusted value of  
p <0.05). Based on these results, we  hypothesized a coordination 
between the mRNA and miRNA profiles, and such coordination 
is associated with survival. Consequently, we  also considered that 
integrating both data types will contribute to increasing the 
knowledge regarding GBM survival. We identified a limited global 
coordination when considering the mRNA and DNAm profiles.

SKCM data-set: seven shared components were identified 
between mRNA and miRNA profiles, and four common 
components between mRNA and DNAm profiles (refer to 
Supplementary Table 5). Figure 2C shows two PC score plots, 
and the association between components (shared and distinctive) 
and clinical variables is shown in Figure  2D. At least one 
component identified is significantly associated with the primary 
site of the disease for both mRNA-miRNA and mRNA-DNAm 
pairs and the disease stage for the mRNA-miRNA pair (refer 
to Supplementary Material; Bonferroni adjusted value of p 
<0.05). Based on these results, we  concluded that mRNA, 
miRNA and DNAm are globally coordinated, and this is mainly 
associated with the primary site of the disease. Therefore, the 
integration of the three data-types may contribute to increase 
the knowledge on SKCM primary site.

Importantly, based on the complexity of the data, the joint 
exploration may allow data-type specific related batch effects (identified 
in Step  1) from batch effects associated with sample collection 
(which will be  associated to all omics). Interestingly, more than 
two omics (blocks) can be analyzed to identify shared components 
(Srivastava et al., 2013; Argelaguet et al., 2018; Song et al., 2020).

The next challenge, Step 3, was to leverage the coordination 
identified among omics to gain statistical power to identify 
the relevant features that explain the SuS.

Step 3: Integrative Differential Analysis, 
omicsNPC
In Step  3 we  used NPC to increase the statistical power for 
the analysis of the SuS (Pesarin and Salmaso, 2010). Briefly, 
NPC non-parametrically combines p-values from associated 
features, such as a miRNA and one of its target genes measured 
on overlapping sets of samples. We  used the omicsNPC 
(Karathanasis et  al., 2016) included in the STATegRa package, 
specifically tailored for the characteristics of omics data.

The main advantages of the NPC include: (a) high statistical power 
with minimal assumptions; (b) wide applicability on different study 
designs; (c) it allows integrating data modalities with different 

encodings, ranges, and data distributions; and (d) it models the 
correlation structures present in the data producing unbiased/
calibrated p-values, an interpretable metric (Pesarin and Salmaso, 2010).

OmicsNPC first analyses each data-type separately through 
a permutation-based scheme. Currently, omicsNPC uses the 
package limma or survival (coxph) for computing statistics 
and p-values; however, the user may also customize the functions 
(refer to “Materials and Methods”). The resulting permuted-
based p-values may be  combined using Tippett’s (aimed to 
identify findings supported by at least one omics modality), 
Liptak’s (by most omics modalities), or Fisher’s (intermediate 
behavior between Tippett and Liptak) combination function. 
Following the original NPC, omicsNPC (Karathanasis et  al., 
2016) makes minimal assumptions: as permutation is employed 
throughout the process, no parametric form is assumed for 
the null distribution of the statistical tests, and the main 
requirement is that samples are freely exchangeable under the 
null-hypothesis. This frees the researcher from the need of 
defining and modeling between dataset dependencies. Most 
importantly, it provides global p-values for assessing the overall 
association of related features across different data modalities 
with the specified outcome (Pesarin and Salmaso, 2010).

GBM analysis: we aimed to investigate GBM survival through 
its relationship with omic features corrected for age, based on 
the association identified in Supplementary Figure 5. We only 
used samples profiled for all data-types (n  =  515 and n  =  83 
for the mRNA-miRNA and mRNA-DNAm pairs, respectively). 
Table 1 (Overlapping samples column) presents the NPC outputs. 
When the NPC is applied on “mRNA and miRNA,” the 
integration allowed identifying 23 new genes and four new 
miRNAs. For “mRNA and DNAm,” the integration allowed 
identification of 106 new genes and 150 new CpG sites.

TABLE 1 | Non-parametric combination analysis results of two-omics data from 
the GBM and SKCM projects.

GBM
SKCM

mRNA + miRNA Overlapping 
samples

Whole 
dataset

mRNA dimension 7.814 × 515 7.814 × 523 9,491 × 104
mRNA significant 1 4 216
miRNA dimension 325 × 515 323 × 518 239 × 104
miRNA significant 1 1 6
mRNA-miRNA total pairs 24,665 24,665 20,225
NPC_Fisher significant pairs 27 50 114
New mRNA from NPC 23 43 48
New miRNA from NPC 4 7 14
mRNA + DNAm

mRNA dimension 9,620 × 83 9,620 × 523 9,564 × 104
mRNA significant 2 7 277
Methylation dimension 57,645 × 83 57,645 × 95 55,729 × 104
Methylation significant 1 0 12
mRNA-methylation total pairs 57,645 57,645 55,729
NPC_Fisher significant pairs 150 332 432
New mRNA from NPC 106 174 116
New methylation sites from 
NPC

150 332 428

Significance was considered for a False Discovery Rate <0.05. Bold values highlight the 
number of significant features.
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SKCM analysis: we explored the omics characterization associated 
to the primary site of the disease. When the NPC was applied 
on “mRNA and miRNA,” the integration allowed identifying 48 
new genes and 14 new miRNAs. For “mRNA and DNAm,” the 
integration allowed identifying 116 new genes and 428 new CpG 
sites. This increase of the statistical power was expected based 
on the results from the joint exploration (Figure  2).

Alternatives to Step 3
Including samples available for a sub-set of data-types: when 
doing the NPC analysis, we  considered samples available for 
both omics. However, in the case of GBM we  discarded a large 
number of samples. In (Karathanasis et  al., 2016; Ewing et  al., 
2019), we  modified the NPC permutation protocol to include 
the discarded samples. We  observed that the use of all samples 
allowed us to identify a larger number of novel features (“mRNA 
and miRNA” identified 43 new genes instead of 23; for complete 
results refer to Table  1, Column Whole data-set).

Parametric version: The NPC requires a large number of 
permutations, which is time consuming. To address this, the 
STATeRra package includes a parametric combination 
methodology (Benjamini and Heller, 2008; Karathanasis et  al., 
2016). This parametric approach is a faster alternative to NPC, 
which we  suggest to use in preliminary explorations. In our 
analyses, the parametric approach generated a larger number 
of significant results in comparison to the non-parametric 

counterpart (Supplementary Table 6), which may be explained 
by unaccounted inter-data-sets correlations that inflate the 
significance of the p-values.

Step 4: Exploratory Analysis and 
Determination of the Framework’s Added 
Value
The STATegra framework provided novel genes, miRNAs, and 
CpG sites for the two selected cases in comparison to unimodal 
analyses. We  investigated if such novel elements could also 
provide new insights at gene-set level. For this, we  made use 
of the GeneSetCluster (Ewing et al., 2020), a tool that summarizes 
gene-set analysis (GSA) results derived from multiple analyses. 
It allows identifying core-results by clustering gene-sets and 
posterior exploration; furthermore, it analyzes the integration 
of more than one gene-set (which could be derived from more 
than one omic) simultaneously. When investigating SKCM, 
we  compared three GSA: (Ramos et  al., 2017) using genes 
derived from mRNA single-omic analysis, (Gomez-Cabrero 
et  al., 2019) using genes derived from mRNA-miRNA NPC 
analysis, and (Gomez-Cabrero et  al., 2014) genes in (Gomez-
Cabrero et  al., 2019) not identified in (Ramos et  al., 2017). 
We  observed that the set of genes in (Ramos et  al., 2017) 
identified several relevant canonical pathways, which are also 
identified in (Gomez-Cabrero et al., 2019) and (Gomez-Cabrero 
et al., 2014); but, especially, (Gomez-Cabrero et al., 2014, 2019) 

A B

FIGURE 3 | GeneSetCluster analysis. Each heatmap depicts the gene-set to gene-set RR distance (Ewing et al., 2020). In each case several gene-set analyses 
have been conducted. Red (yes)/black (no) shows which gene-sets have been identified for each gene-set analysis. (A) GBM and (B) SKCM. In SKCM, clusters 
presented as black lines are those associated to discoveries through multi-omics integration.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Planell et al. STATegra: Multi-Omics Data Integration Framework

Frontiers in Genetics | www.frontiersin.org 9 March 2021 | Volume 12 | Article 620453

GSA identified many additional relevant pathways as shown 
in Figure  3B for Canonical Pathways analysis (see box strokes 
on clusters). In the case of GBM, four GSAs were conducted 
with the following pair combinations: (a) “considering only 
samples with all omics available (OVERLAP)” or “considering 
all samples (ALL),” and (b) “considering all identified genes” 
or “considering genes only identified by NPC.” We  observed 
major differences in the summarized gene-sets between 
OVERLAP vs. ALL; see for instance Figure 3A, when analyzing 
“Gene Ontology – Biological Functions” (Blake et  al., 2015). 
The use of GeneSetCluster allowed us to demonstrate the added 
value of the STATegra framework. Furthermore, it is also a 
tool for multi-omics GSA integrative analysis that we  consider 
as part of the STATegra framework. We  plan to integrate such 
tools continuously to the STATegRa package.

DISCUSSION

There are many bioinformatics integrative tools (Gomez-Cabrero 
et  al., 2014; Yugi et  al., 2016; Hasin et  al., 2017; Argelaguet 
et  al., 2018; Shafi et  al., 2019). However, when carrying out 
multi-omics analysis, as a rule, researchers use custom pipelines 
that combine some of the available tools. While every multi-
omics data combination is different, we  believe that a general 
framework is key to gain knowledge for an “optimized” integrated 
research analysis in the future. We  here present the STATegra 
framework, a multi-omics integrative pipeline, the result of 
integrative analyses done over the last decade (Karathanasis 
et  al., 2016; Carlström et  al., 2019; Ewing et  al., 2019, 2020; 
Fernandes et  al., 2019). In the two chosen case studies used 
to evaluate the STATegra framework, GBM and SKCM, we show 
through a consecutive four-step process (Figure 1), how single 
omics integration generates additional information. Step  2, 
Component Analysis, quantifies the coordination of the different 
data-types, a key phase to identify where omic-combination 
can be  leveraged, and Step  3 -Non-Parametric Combination 
is used to gain statistical power. In both case studies, we detect 
a greater number of genes as shown in Table  1. Interestingly 
and following the gene expression vs. DNA Methylation relation, 
in the case of the statistically significant pair of features identified 
in the mRNA-DNAm analysis, were showing a bimodal – but 
mostly negative – distribution of the correlation between gene 
expression and DNA methylation (see Supplementary Figure 6). 
Step  4 examines the added value of the biological-insights of 
the features identified by the integration process.

In GBM we  examine the association of the omics profiles 
with survival. In comparison to single-omic analysis, the 
STATegra framework identifies additional genes already known 
to be  associated with GBM such as CAST, ATF5, GANAB 
[glycoprotein associated with GBM cancer stem cells (Dai et al., 
2011)], ICAM [overexpressed in bevacizumab-resistant GBM 
(Piao et al., 2017)], CORO1A [upregulated in GBM (Berezovsky 
et  al., 2014)], LYN [in vitro association of enhanced survival 
of GBM cells (Liu et  al., 2013)], MET (proto-oncogene) and 
STAT5 [enhances GBM cells migration, survival (Roos et  al., 
2018), and proliferation (Feng and Cao, 2014)], among others. 

Most have been previously associated with cancer and particularly 
to glioblastoma. We  also compare the identified miRNAs with 
existing miRNA-derived survival signatures (Srinivasan et  al., 
2011); only miR222 is identified in the single-omic analysis, 
while three additional miRNAs (miR31, miR221, and miR200b) 
are identified by STATegra.

With the analysis of GSA, STATegra identifies new gene-
sets, e.g., the TREM1 signaling pathway, previously associated 
with GBM (Kluckova et  al., 2020). In SKCM we  investigated 
the omics association with the primary site of disease. In 
addition to the newly identified genes (refer to Table  1), the 
major STATegra-associated novel insights are derived from GSA 
analysis as shown in Figure  3B, particularly regarding the 
identification of the IL8 signaling, which is known to be relevant 
in SKCM (Shoshan et  al., 2016; Tobin et  al., 2019).

Importantly, the new results are not derived only because of 
the application of the tools, but also because the application of 
their combination as a framework (see also Figure  1). For 
instance, the outcome of the Component Analysis provides insights 
into which clinical variables to investigate or which combination 
of omics to prioritize in the next steps. Furthermore, as shown, 
the outcome of the NPC (identification of features by a single-
omic or by paired-multi-omic-features) can be  leveraged in the 
GeneSetCluster tool to identify pathways derived from single-
omic or coordinated among omics as shown in Figure 3. Adding 
new tools to the framework or modifying the existing ones 
should aim to generate greater synergies between the selected tools.

It is important to point out that we  are not comparing our 
analysis against the original publications: GBM (McLendon 
et  al., 2008; Brennan et  al., 2013) and SKCM (Akbani et  al., 
2015). The idea is to compare a generic framework with single-
omic approaches. Moreover, since the questions and data-sets 
used are different from those in the original TCGA publications, 
a back-to-back comparison is not justified.

The results generated by STATegra show the added value 
of a general integrative framework. Still, we acknowledge that, 
similarly to Operations Research there is “no-free-lunch” 
(Wolpert and Macready, 1997). Generic frameworks provide 
an initial approximation to any integrative analysis. Once 
completed, they may be  further customized – and therefore 
further optimized – to account for the characteristics of the 
data and considered SuS. Still, the STATegra framework’s value 
is its solid integration starting point, and - after being applied 
in many projects – generic rules can be  extracted to allow 
an easier and faster customization.

Frameworks as the one we  present here or complementary 
ones aimed to supervised learning (Rohart et  al., 2017) are 
becoming increasingly necessary due to the amount of growing 
multi-omics data, particularly in the context of single-cell 
multi-omics (Colomé-Tatché and Theis, 2018). Further 
developments are required in multi-omics visualization (González 
et  al., 2012), simulated data (Martínez-Mira et  al., 2018), or 
further exploitation of Component Analysis as shown in (Stein-
O’Brien et  al., 2018), among others. Thus, we  consider that 
the STATegra framework is the starting point that will be further 
developed over time. The next immediate steps are the inclusion 
of pESCA (Song et al., 2020) for multi-omic component analysis 
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and GeneSetCluster (Ewing et  al., 2020) for multi-omic 
exploratory analysis within the STATegRa Bioconductor package.
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