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REVIEW Open Access

Cancer stem cell metabolism
Maria Peiris-Pagès1,2, Ubaldo E. Martinez-Outschoorn3, Richard G. Pestell3, Federica Sotgia1,2* and Michael P. Lisanti1,2*

Abstract

Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of
cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to
mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their
metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to
another, or by acquiring intermediate metabolic phenotypes. Determining the role of cancer stem cell metabolism
in carcinogenesis has become a major focus in cancer research, and substantial efforts are conducted towards
discovering clinical targets.

Cancer, above all other diseases, has countless
secondary causes.
But even for cancer, there is only one prime cause …:
metabolism.
Otto Warburg

The cancer stem cell model: Omnis cellula e cellula
Adult stem cells, in contrast to most cells in our body,
which are differentiated and have a specific role, are rare
cells that harbour unique biological properties such as a
lack of differentiation and indefinite self-renewal. Stem
cell asymmetrical division into one new stem cell and a
committed progenitor, which can give rise to a function-
ally mature progeny, helps maintain tissue homeostasis
[1].
Cancer is characterized by an unrestrained prolifera-

tion of malignant cells that are morphologically and
functionally different. Two models have been proposed
in order to explain this cellular diversity within tumours.
The traditional, stochastic way of explaining cancer
initiation and development is through sequential ac-
cumulation of mutations, each of which promotes the
loss of specific tissue traits until dedifferentiation and
regression into a more primitive phenotype occurs.
According to this clonal evolution model, each cancer cell
has a similar potential to grow a tumour. A second model,

the cancer stem cell (CSC) hypothesis, postulates that a
reduced group of stem-like cells is responsible for the
development of the disease. Accordingly, tumours are
hierarchically organized and sustained by a distinct
self-renewal subpopulation of cancer cells. These
tumour-initiating cells (TICs) with stemness properties
are located at the apex of a pyramid and are responsible
for the generation of a varied progeny of highly prolifera-
tive cells forming the bulk of the tumour [1, 2]. Both
models are not mutually exclusive and can be viewed as
integrated processes because CSCs can themselves
undergo clonal evolution, through which a second more
dominant population of CSCs may emerge. In addition,
recent reports add more complexity to this scenario by
demonstrating that cancer cells have a remarkable degree
of plasticity. Indeed, it is thought that CSCs may arise
from different cell types such as normal adult stem cells
or differentiated cancer cells [2, 3].
CSCs share numerous properties with normal stem cells

besides their ability to renew themselves by remaining in
an undifferentiated state: the expression of surface
markers, such as CD44, CD133 or the enzyme aldehyde
dehydrogenase (ALDH), the activation of particular cell
signalling pathways, such as Wnt, Notch or Hedgehog, a
relative quiescence or an active DNA repair capacity [2].
Given that CSCs are considered to be the source from
which cancer cells arise, are therapy resistant and are re-
sponsible for metastatic dissemination, eliminating them
could potentially achieve a permanent cure for the patient.
In addition, if conventional therapy fails to kill CSCs,
acting only against differentiated cancer cells, the tumour
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can eventually relapse [2]. The specific elimination of
CSCs may thus represent one of the most important
challenges of current cancer research (Fig. 1). Because
of their similarity, an accurate distinction between CSCs
and normal stem cells is needed, and once these differences
are identified new therapies can be developed to eliminate
CSCs without damaging normal cells. In particular, the
metabolic features of CSCs might represent a promising
target. In this review we summarize the latest findings and
most significant discoveries on CSC metabolism.

When metabolism takes over
Metabolic adaptation is believed to be one of the hallmarks
of cancer cells [4]. The role of metabolism in cancer has
become a dynamic field of research and a broad spectrum
of novel strategies to target cancer metabolic pathways is

emerging. However, the cellular heterogeneity present in
tumours is not taken into account by most studies. It is im-
portant to highlight that different phenotypes such as hyp-
oxic versus normoxic or quiescent versus proliferative will
have substantially different metabolic requirements, which
in turn may result in notably different responses to meta-
bolic therapies. For example, CSCs – generally considered
quiescent or slow-cycling compared with their differenti-
ated cancer cell progeny – can re-enter into the cell cycle
after exposure to radiotherapy, whereas most differentiated
cells die or undergo cell cycle arrest [5].
Glycolysis is the enzymatic conversion of glucose into

lactate, which concomitantly produces 2 molecules of ATP
per molecule of glucose. In the presence of oxygen,
cells generally adopt oxidative phosphorylation (OXPHOS)
as the main pathway to produce energy, which is more

CSC-targeted therapy
Traditional chemotherapy 

or radiotherapy

InvasionRelapse

Aggressive recurrence Distant metastasis

Primary tumor 

Remission

Self-renewal

Traditional chemotherapy 
or radiotherapy

Differentiated cancer cell

Cancer stem cell

Cancer-associated stromal cell

Fig. 1 Potential impact of strategies that target cancer stem cells (CSCs) on the effectiveness of cancer treatment. Conventional cancer therapies
result in a transient reduction of the tumour by killing non-stem cancer cells whilst failing to eliminate CSCs. Two major obstacles are limiting
success in these cancer therapies: the ability of CSCs to survive cytotoxic treatments, and their potential to form metastases. The use of CSC
specific inhibitors would reduce their therapy resistance and reduce relapse, and would prevent their spread, as the loss of stem cell properties
reduces invasiveness and the capacity of disseminated cells to initiate distant secondary colonies
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efficient than glycolysis because it theoretically generates
36 molecules of ATP per molecule of glucose. Cancer cells
can generate ATP via glycolysis even under normoxic con-
centrations in what is known as the Warburg effect. In fact,
gycolysis can more rapidly produce ATP compared with
OXPHOS in the presence of abundant levels of glucose
[6]. Stem cells also rely more on glycolysis when compared
with their differentiated offspring, which preferentially me-
tabolizes glucose via mitochondrial respiration. Of note,
the metabolic reprogramming of normal somatic cells into
induced pluripotent stem (iPC) cells actually requires a
shift from mitochondrial respiration to a metabolism that
is mainly glycolytic [7], a switch which precedes the acqui-
sition of pluripotency markers, suggesting that changes in
metabolism occur before changes in stemness [8]. During
differentiation, stem cells are also able to adjust their
metabolic infrastructure, as they can rapidly shift from a
preferentially glycolytic profile in undifferentiated cells to
a more oxidative phenotype to generate the large amounts
of energy needed for this process [9].
Studies of mitochondrial morphology and mitochondrial

DNA levels indicate that stem cells have fewer mitochon-
dria, which are less mature and relatively inactive compared
with those of differentiated cells, resulting in reduced react-
ive oxygen species (ROS) levels [10]. Low amounts of ROS
are actually needed to maintain quiescence and the self-
renewal potential [11]. In sum, stem cells favour glycolysis
and have less mitochondria, hence producing small
amounts of ROS, which induce little mitochondrial DNA
damage [9]. Thus, a glycolytic phenotype seems to be a
shared feature of normal stem cells and differentiated can-
cer cells in culture. However, very few studies have directly
investigated the metabolism of CSCs.

The metabolic profile of cancer stem cells
Are cancer stem cells mainly glycolytic?
Glucose seems to be an essential nutrient for CSCs, as
its presence in the microenvironment significantly in-
creases the amount of stem-like cells in the overall cancer
cell population. On the other hand, glucose deprivation in-
duces the depletion of CSCs in vitro [12]. However, the
metabolic singularities of CSCs and the effects of different
metabolites on CSC physiology remain largely unexplored,
because the number of publications studying the metabol-
ism of CSCs is small. Nevertheless, these studies indicate
that CSCs have a distinctive metabolic phenotype com-
pared with the bulk of the tumour and with normal stem
cells, although there is so far no consensus on this [13].
Several reports suggest that CSCs are more glycolytic

than other differentiated cancer cells in vitro and in vivo.
These studies were performed in many tumour types in-
cluding osteosarcoma, glioblastoma, breast cancer, lung
cancer, ovarian cancer and colon cancer [14–18]. Glucose
uptake, glycolytic enzyme expression, lactate production

and ATP content are significantly increased in CSCs
compared with their differentiated counterparts. This
glycolytic phenotype seems to be linked to a decrease
in mitochondrial oxidative metabolism [16–18]. Likewise,
mutations in mitochondrial DNA and low mitochondrial
DNA copy number have been associated with increased
metastasis and poor prognosis [19, 20]. The mitochondrial
DNA copy number not only affects the viability and func-
tionality of the cell but also its differentiation potential.
Cyclin D1 regulates stemness of cancer cells and mito-
chondrial DNA copy number [21, 22]. Also, during differ-
entiation, the mitochondrial DNA copy number and the
levels of mature cell gene expression patterns increase,
whereas the expression of pluripotency genes such as
OCT4, TERT and MYC decreases [23]. Instead, partial de-
pletion of mitochondrial DNA increases the levels of these
pluripotency genes.

Or do they rely more on mitochondrial respiration?
In clear contrast with these publications, growing evi-
dence shows that CSCs have a preference for mitochon-
drial oxidative metabolism (Fig. 2). According to these
other studies, CSCs are less glycolytic, consume less glu-
cose, produce less lactate and maintain higher ATP
levels than their differentiated progeny. Moreover, the
mitochondria of CSCs have an increased mass and
membrane potential, which is a reflection of mitochon-
drial function, higher mitochondrial ROS and enhanced
oxygen consumption rates compared with the bulk of
differentiated cancer cells, which generate their energy
mainly via glycolysis [24–30]. Mitochondrial mass
confers stem-like traits and is associated with metastatic
potential and resistance to DNA damage [31]. Invasive mi-
gratory cancer cells also exhibit high mitochondrial me-
tabolism via activation of a mitochondrial biogenesis
mediator, the transcription co-activator peroxisome
proliferator-activated receptor gamma co-activator 1 alpha
(PGC1α) [32]. PGC1α has also been found overexpressed
in circulating tumour cells [33], and its expression in a
subset of human melanomas produces an increase in
OXPHOS that is necessary for survival [34]. Moreover,
PGC1α inhibition reduces the stemness properties of
breast CSCs [24]. Oncogene ablation-resistant pancreatic
cancer cells with features of CSCs also rely more on mito-
chondrial function to survive, and depend less on glucose
and glutamine and more on pyruvate and palmitate to fuel
the tricarboxylic acid (TCA) cycle [10]. Similarly, a popu-
lation of CSCs isolated from ovarian cancer patients
overexpressed genes associated with mitochondrial
OXPHOS and fatty acid oxidation [28]. This oxidative
phenotype seems to be related to the capacity to re-
sist apoptosis in CSCs [35]. Despite mitochondrial
ROS levels being high in these studies, total amounts
of ROS are significantly lower in CSCs, which also
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show a more powerful antioxidant defence system
compared with their progeny. A strong antioxidant
response keeps ROS levels at bay, and helps in the
maintenance of the stemness and tumourigenic cap-
acities of CSCs, therefore contributing to therapy resistance
[28, 36].
During differentiation under hypoxic conditions, CSCs

from several tumour types are able to switch from an
oxidative to a glycolytic metabolism in order to compen-
sate for deficient mitochondrial machinery [37]. Like-
wise, CSCs might be able to regulate their differentiation
via subtle changes of the redox status, with transitory
bursts of ROS production that stimulate differentiation
of CSCs towards their non-stem cancer cell counterparts
[38]. Indeed, administration of antioxidants such as
N-acetyl-cysteine (NAC) reduces ROS, suppressing the
differentiation of CSCs and increasing metastatic burden
[38, 39]. Furthermore, a recent study shows that epithelial

stem-like cells apportion aged mitochondria asymmetric-
ally between the two daughter cells with different fates.
Those daughter cells that receive fewer old mitochondria
maintain stem cell traits, whereas cells with a higher con-
tent of aged mitochondria are more prone to differentiate.
This asymmetrical division of mitochondria requires the
pertinent functioning of the mitochondrial fission machin-
ery that spatially restricts old mitochondria to the peri-
nuclear region of the mother cell [40]. Indeed, increased
mitochondrial fission appears to be a characteristic of
CSCs and its pharmacological or genetic inhibition leads
to the loss of stemness traits and differentiation [40, 41].
Hence, the control mechanisms involved in the asymmet-
rical sorting of aged and young mitochondria, such as
mitochondrial fission, also play an important role in CSC
maintenance.
Finally, CSCs seem to be vulnerable to mitochondria-

targeted drugs and the inhibition of OXPHOS seems to

Fig. 2 Bioenergetic pathways underlying CSC metabolism. In more differentiated cancer cells, the glycolytic phenotype might predominate over
oxidative phosphorylation (OXPHOS). CSCs instead might rely more on an oxidative metabolism for their energy production. CSCs also appear to
be metabolically plastic: when OXPHOS is blocked they can eventually develop resistance by acquiring an intermediate glycolytic/oxidative
phenotype. ROS reactive oxygen species, TCA tricarboxylic acid
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inhibit tumour formation [29, 42–44]. Treatment with
metformin, an inhibitor of the OXPHOS complex I, in-
duces the partial suppression of stemness traits, such as
mammosphere formation, and in-vivo tumour growth
delay, although the effects are not lasting and resistance
to treatment is observed [29, 45, 46]. CSCs treated with
a mitochondrial ROS inducer such as menadione do not
become resistant, suggesting that increasing mitochon-
drial ROS levels to non-viable levels might be a better
approach to eliminate CSCs [29]. Other studies indicate
that the use of mitochondria-located antioxidants can
prevent metastatic dissemination, suggesting that fine-
tuning of oxidative stress to keep it below a critical
threshold may be crucial for the maintenance of the
CSC phenotype [47, 48]. According to symbiogenesis,
which states that the origin of eukaryotic mitochondria
was the engulfment of aerobic bacteria [49], the use of
antibiotics has been postulated as an effective treatment
to target mitochondrial mass and metabolism. Indeed,
several approved antibiotics such as salinomycin, eryth-
romycins, tetracyclines or glycylcyclines have already
shown effects on CSC survival in preclinical models and
in clinical studies via reduction of stemness properties
[50–55]. Mitochondrial health is thus fundamental for
the maintenance of CSCs and can be targeted for cancer
therapy.

The metabolic plasticity of cancer stem cells
One possible explanation for the discrepancies in CSC
metabolism reported in the scientific literature may be
found in the metabolic adaptability that CSCs show fol-
lowing microenvironmental fluctuations. For example,
most in-vitro studies are carried out in non-physiological
high glucose and oxygen concentrations, which favour a
glycolytic phenotype. Ideally, the optimal experimental
conditions to keep the metabolic traits of CSCs intact
would be to isolate them directly from patients and ana-
lyse them immediately or within the first steps of in-vitro
culture. In fact, when patient-derived, low-passage CSCs
are used, OXPHOS seems to be the preferred metabolic
pathway for the energy production of CSCs [56].
Breast CSCs in mouse and human tumours have a

more glycolytic phenotype compared with their differ-
entiated progeny [57]. CSCs from low-passage, patient-
derived glioblastoma specimens relied more on OXPHOS
than their differentiated progeny [56]. These glioma
stem cells have high metabolic plasticity since they
can switch to a glycolytic metabolism when OXPHOS
is blocked [58]. Leukaemia stem cells also rely primarily
on OXPHOS [26].
This observed adaptive metabolic plasticity might

allow CSCs to survive in changeable, sometimes hostile,
environments or unfavourable circumstances encoun-
tered during tumour progression, such as at metastatic

sites. In support of this metabolic malleability scenario,
some publications show that CSCs are able to switch to a
glycolytic metabolism when OXPHOS is blocked [56, 59].
CSCs have been shown to adapt to starvation and hyp-

oxia by upregulating glucose transporters and switching
to a more glycolytic phenotype to outcompete their
differentiated progeny [58, 60]. Hypoxia and changes in
glucose concentration induce CSC enrichment, which is
mediated by hypoxia-inducible factor 1 alpha (HIF1α) and
the AKT/MTOR/beta-catenin (CTNNB1) stem cell regu-
latory pathway [61–63]. Inhibiting HIF1α in combination
with anti-angiogenic therapy reduces CSCs in mouse
models of breast cancer and holds promise to be an effect-
ive therapy in breast cancer, which is currently being in-
vestigated in clinical trials [64].
K-Ras ablation-resistant pancreatic cells with stem-like

characteristics are unable to increase compensatory
fluxes such as glycolysis following OXPHOS inhibition,
despite being more resistant to nutrient deprivation and
other environmental stresses. This lack of plasticity may
be attributed to the shutdown of the K-Ras-driven meta-
bolic programme [65]. On the contrary, in pancreatic
CSCs the lack of plasticity seems to be independent of
K-Ras. Instead, another oncogene, MYC, controls the
observed limited metabolic adaptability of most
metformin-treated CSCs, which undergo energetic crisis
and die. However, MYC-dependent resistant clones even-
tually emerge [29]. These data suggest that oncogene acti-
vation is sufficient for the induction of a particular
metabolic pathway in CSCs, and the extent of its effects
on metabolic reprogramming may depend on the context;
for example, on the differentiation status of the cell. De-
termining the mechanisms behind this specificity will be
critical to understanding tumour heterogeneity and
complexity.
Normal stem cells and iPS cells utilize glycolysis, while

CSCs have the capacity to shift to OXPHOS and mito-
chondrial metabolism. One can speculate that differences
in signalling pathways mediated by OCT3/4, SOX2, KLF4,
MYC in iPS cells and by SHH, NOTCH, WNT, PTEN,
MAPK, KRAS, HIF and TP53 in CSCs drives these diver-
gent metabolic phenotypes. Understanding the metabolic
differences between normal stem cells and CSCs and their
regulators will be important for the process of developing
novel therapeutics that metabolically target, but preserve,
the key functions of normal stem cells.

Glycolysis or mitochondrial respiration: is it really one or
the other?
The CSC phenotype may not necessarily be uniform be-
tween cancer subtypes or even between tumours of the
same subtype. For instance, the preferred metabolic
pathway to produce energy may depend on the meta-
static site, indicating extensive metabolic variability [66].
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Moreover, different subpopulations of CSCs exhibit dif-
ferent metabolic patterns. Recent publications imply the
existence of an epithelial-like (mesenchymal to epithelial
transition (MET)) and a mesenchymal-like (epithelial to
mesenchymal transition (EMT)) CSC phenotype, states
that might be interconvertible [67, 68]. In breast cancer,
MET CSCs are characterized by high ALDH activity and
enhanced proliferative capacity, whereas EMT CSCs are
identified by the expression of the CD44hi/CS24– surface
markers and a slow-cycling, quiescent state [68].
Mesenchymal-like EMT CSCs seem to favour glycolysis,
and have a marked reduction in oxygen consumption,
decreased mitochondrial mass and membrane potential,
lower ROS production and higher antioxidant capacity
compared with the epithelial-like fraction of CSCs [36, 67].
Indeed, CD44 acts as a metabolic modulator, by activating
glycolysis under hypoxia. CD44 ablation reduces glycolysis
and the antioxidant response, and moves the energy
production to the mitochondria, with an increase in ROS
[69]. Conversely, a proteomics study revealed that the
ALDH-expressing population of CSCs express more
glycolytic enzymes than the CD44hi/CS24– CSCs [70].
Finally, a recent study shows that highly metastatic mur-
ine cancer cells enhance both glycolysis and OXPHOS
pathways compared with cells with the same genetic
background that lack metastatic potential [66]. Another
report links metabolic plasticity to the acquisition of
therapy resistance by showing that although most CSCs
have limited metabolic malleability and predominantly
rely on OXPHOS, a subpopulation of metformin-resistant
CSCs is able to acquire a more adaptable intermediate
glycolytic/respiratory phenotype. The metabolic phenotype
of CSCs thus appears to be heterogeneous with distinct
metabolic programmes activated in different subpopula-
tions of cancer cells (Fig. 2).
These results suggest that the dual blockade of gly-

colysis and mitochondrial respiration may represent a
better way to eradicate CSC heterogeneity than focus-
ing exclusively on glycolysis inhibition or suppression
of mitochondrial respiration. Indeed, combined inhib-
ition of glycolysis and mitochondrial respiration has
been shown to be effective in suppressing tumour
growth and metastasis [71].
Genetic analysis of breast cancers has demonstrated

different mutational profiles across the subtypes of
breast cancer. For example, the most frequent genetic
alteration found in luminal breast cancers is mutational
activation of PI3K signalling [72]. In contrast, triple
negative breast cancer (TNBC) almost always contain
mutations in TP53 and also frequently display deletions or
epigenetic silencing of the PTEN tumour suppressor gene.
In addition to HER2 gene amplification, HER2-positive
breast cancers frequently display deletions in PTEN, and
indeed this is a likely cause of resistance to HER2-

targeted therapies [73–75]. BRCA1 germline mutations or
epigenetic silencing of the BRCA1 locus are most fre-
quently associated with TNBCs [76]. All of these molecu-
lar alterations have been demonstrated to increase CSC
frequency in pre-clinical models as well as in patient
samples [3].

The contribution of the microenvironment
The effects of the niche on CSC metabolism are also
starting to be recognized. High catabolism in the micro-
environment with NF-κB, HIF-1α and TGF-β activation
coincides with glycolysis and ketogenesis, and promotes
CSC features [77–80]. A model of reverse Warburg me-
tabolism in which non-glycolytic stem-like cells may be
fed by more differentiated glycolytic cells in normoxic
conditions has also been observed in breast cancer [60].
Another study shows that EMT-induced cancer cells
with CSC features have enhanced ability to utilize catab-
olites taken up from the extracellular microenvironment,
such as the glycolytic end products pyruvate and lactate,
the amino acids glutamine, glutamate and alanine, or ke-
tone bodies, especially upon starvation, to support their
mitochondrial energy production [81]. Indeed, glutam-
ine, glutamate and alanine have been identified as EMT-
associated metabolites in another report, which demon-
strates that this oncometabolite signature correlates with
poor survival in breast cancer [82]. Similarly, high lactate
concentrations achieved by exogenous lactate adminis-
tration increase the metastatic potential of breast cancer
cells in vivo [83]. Finally, recent studies show that mito-
chondrial DNA transfer from host cells of the tumour
microenvironment to tumour cells with compromised
respiratory function re-establishes not only their mito-
chondrial respiration but also their tumour-initiating
capacity and resistance to therapy [84, 85]. CSCs may
thus enable the internalization of energy-rich nutrients
or energy-producing mitochondrial components from
the extracellular milieu to exploit in their own bio-
energetic pathways. Although most studies focus on
the interaction between cancer cells and host cells in-
cluding immune cells, communication between het-
erogeneous populations of tumour cells might also be
relevant.
Metabolic stresses also induce significant changes in

non-malignant cells within tumours. T cells can preferen-
tially develop into the immunosuppressive regulatory sub-
type (Tregs) following glucose restriction, which promotes
tumour growth [86, 87]. Hypoxia alters interactions be-
tween breast CSCs and macrophages with transformation
of macrophages to an immunosuppressive phenotype with
upregulation of HIF-1α and HIF-2α [88, 89].
Conversely, inflammatory cytokines generated by the

tumour microenvironment (such as IL-6 and IL-8) with
activation of NF-κB induce glycolysis with activation of
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PI3K and AKT and stimulate CSC self-renewal, which
then may promote tumour growth and metastasis
[62, 90–92]. Drugs targeting IL-6 and IL-8 are being in-
vestigated as a therapeutic strategy specifically for CSCs
[63]. Future studies will need to determine the effects of
metabolic modulating therapies on the phenotype of dif-
ferent tumour cell populations and the role of metabolism
modulation in the anticancer effects of drugs targeting
CSC-sensitive cytokines and signalling pathways.

Additional metabolic singularities of cancer stem
cells
The role of cell metabolism has evolved into an active
area of research during the last decade, with a strong
focus on glucose metabolism. Unfortunately, scarce at-
tention has been directed to amino acid and lipid metab-
olism. A recent report shows that pancreatic CSCs are
glutamine dependent. Inhibiting glutamine availability by
targeting glutaminase or glutamine oxaloacetic trans-
aminase (GOT), accountable for the conversion of glu-
tamine into oxaloacetate, reduces the expression of
stemness genes, inhibits self-renewal and sensitizes CSCs
to radiation therapy via accumulation of ROS in vitro
and in vivo [93]. Colon adenocarcinoma circulating
tumour cells are able to colonize hepatic tissue due to
their elevated lysine catabolism, which reduces ROS
levels, promotes self-renewal potential and activates the
stemness-related Wnt signalling pathway [94]. Other
studies show the importance of fatty acid metabolism
and in particular the mevalonate pathway in the gener-
ation of CSCs [28, 65, 95]. Thus, very little is known re-
garding the role of protein and fatty acid metabolism in
CSC biology, and further investigations will be required
to elucidate their contribution to such CSC traits and
their relationship with glucose metabolism. Likewise, a
strong dependence of CSCs on other catabolic processes
such as autophagy, which makes them more resistant to
nutrient deprivation and other stresses [96], should be
further investigated. An entire world of metabolic path-
ways might be awaiting future discovery.

Final remarks and challenges ahead
Over the years, substantial evidence for the existence of
CSCs has strengthened the view that these cells are ac-
countable for cancer development. CSCs renew them-
selves and at the same time generate progenitors that
lose their stemness, ultimately giving rise to the bulk of
the tumour. In addition, the last decade of research
highlights that metabolism is not a mere player subordi-
nated to CSC physiology, but actually may orchestrate it.
Given that changes in metabolism precede changes in
stemness, a perturbation in the metabolic phenotype of
CSCs could be essential for the acquisition of the CSC
state. Conventional therapy targets rapidly proliferating

cancer cells that make up the bulk of the tumour with-
out necessarily having an effect on the CSC population.
CSCs possess special metabolic traits that distinguish
them from the bulk of the tumour and that may consti-
tute the basis for the development of new therapeutic
strategies to eradicate them. From a clinical point of
view, targeting the particularities of CSC metabolism is
more likely to translate into permanently curing cancer
or at least providing long-term disease-free survival, be-
cause these cells are responsible for resistance to therapy
and metastasis, the main cause of cancer-related deaths.
The interest in exploiting CSC metabolism for drug
targeting is therefore gaining ground. However, a well-
defined portrait of the singularities of CSC metabolism
still needs to be depicted and CSC metabolism remains a
controversial issue, with studies supporting a glycolytic
phenotype of CSC and others stating that CSC metabolism
is mainly oxidative.
Many other unresolved issues need to be addressed.

Elucidating the differences in metabolism between CSCs
and non-stem cancer cells, and between CSCs and nor-
mal progenitor stem cells, will be crucial to develop new
therapies and may reveal new ways to distinctively target
these TICs. Whereas normal stem cells rely more on
glycolysis, CSCs might depend more on mitochondrial
oxidative metabolism. If this is the case, why would the
stemness state of cancer cells require a different metabolic
state than normal stem cells? In contrast with normal
physiological development, tumourigenesis tends to be
highly disorganized and cancer metabolic malleability
could provide a niche more prone to CSC survival. Never-
theless, the stability or plasticity of the CSCs phenotype
needs to be verified. Are CSCs really able to metabolically
adapt depending on microenvironmental fluctuations? Is
the CSC population metabolically heterogeneous or does
it exhibit different degrees of stemness-related pheno-
types? During tumourigenesis, characteristics of the CSCs
might mutate, and distinct CSC populations could eventu-
ally emerge in what it would be a metabolically changeable
or versatile target. In such a scenario, future therapies de-
signed to eradicate CSCs via targeting their metabolism
might need to simultaneously block glycolysis and mito-
chondrial respiration.
We therefore need to overcome multiple obstacles be-

fore we can effectively eliminate CSCs. First of all, to
properly recognize CSCs and differentiate them from
other cell types, greater efforts should be made towards
the identification of specific CSC markers, because none
of the markers so far defined is unique for CSCs. Likewise,
a combination of markers could greatly improve the purity
of CSCs for research purposes. Finally, it is important to
note that CSCs are settled in a niche formed by multiple
other cell types and cancer heterogeneity is clearly more
complex than originally thought. Hence, studying the
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metabolism of CSCs in experimental settings that do not
reflect the heterogenic architecture of tumours such as
the absence of a pertinent microenvironment is not ideal.
Better models that preserve the CSC physiological state
and structure should be developed.
Despite the limited information we currently have on

the role of metabolism in the ability of CSCs to self-
renew, initiate tumours, metastasize and survive therapy,
targeting CSCs by blocking their metabolic singularities
holds great potential in improving current cancer treat-
ments. In practice, combinational treatments involving
both a standard cytotoxic therapy and a CSC-targeted
therapy will probably be required to ablate all cancer
cells (Fig. 1).
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