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Levels of Par-1 kinase determine 
the localization of Bruchpilot at the 
Drosophila neuromuscular junction 
synapses
Kara R. Barber1,2, Martin Hruska3, Keegan M. Bush1,2, Jade A. Martinez2, Hong Fei3, 
Irwin B. Levitan3, Matthew B. Dalva3 & Yogesh P. Wairkar1,2,4

Functional synaptic networks are compromised in many neurodevelopmental and neurodegenerative 
diseases. While the mechanisms of axonal transport and localization of synaptic vesicles and 
mitochondria are relatively well studied, little is known about the mechanisms that regulate the 
localization of proteins that localize to active zones. Recent finding suggests that mechanisms involved 
in transporting proteins destined to active zones are distinct from those that transport synaptic vesicles 
or mitochondria. Here we report that localization of BRP-an essential active zone scaffolding protein 
in Drosophila, depends on the precise balance of neuronal Par-1 kinase. Disruption of Par-1 levels leads 
to excess accumulation of BRP in axons at the expense of BRP at active zones. Temporal analyses 
demonstrate that accumulation of BRP within axons precedes the loss of synaptic function and its 
depletion from the active zones. Mechanistically, we find that Par-1 co-localizes with BRP and is present 
in the same molecular complex, raising the possibility of a novel mechanism for selective localization of 
BRP-like active zone scaffolding proteins. Taken together, these data suggest an intriguing possibility 
that mislocalization of active zone proteins like BRP might be one of the earliest signs of synapse 
perturbation and perhaps, synaptic networks that precede many neurological disorders.

Assembly of active zones on the presynaptic side of a synapse is one of the earliest steps in the formation of 
nascent synaptic communication networks1,2. Initiation of presynaptic assembly is accomplished, in part, by the 
transport of synaptic vesicle precursors (SVPs) and Piccolo-Bassoon transport vesicles (PTVs) that carry the 
components of active zones2,3. Interestingly, active zone density is maintained after its formation and decreases 
only later with aging4. Indeed, many synapses are thought to be stable for long periods of time after they are estab-
lished5. Therefore, mechanisms must exist that maintain the presynaptic components such as active zones and 
postsynaptic density for their long-term stability. One way presynaptic components are maintained at the synapse 
is by active replenishment of synaptic proteins via axonal transport6. Although such mechanisms are relatively 
well studied for synaptic vesicles and mitochondria7–9, little is known about how cargo destined for active zones 
is transported and how the transport is regulated.

Par-1 kinase is a Drosophila homolog of Microtubule affinity regulating kinase (MARK), which is elevated in 
many diseases10–12 including, neurodevelopmental and neurodegenerative disorders10,13–15. At the synapse, Par-1, 
a cell polarity kinase16, has been previously implicated in regulating the postsynaptic glutamate receptor local-
ization17. Interestingly, it was also noted that Par-1 is present in the presynaptic compartment albeit at very low 
levels17, suggesting that Par-1 may also have a role in the presynaptic compartment. It was recently demonstrated 
that elevated levels of presynaptic Par-1 lead to selective localization defects of BRP, with a significant accumu-
lation of BRP within the axons and a corresponding decrease of BRP from the active zones18. While it is clear 
that the effect of increased Par-1 on localization of BRP is independent of Tau-a microtubule associated protein 
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(MAP) and a well studied substrate of Par-118–21, it is unclear whether other microtubule binding proteins such 
as Futsch (a MAP1B homolog)22, which has been proposed to be a likely substrate of Par-116, might be involved. 
Also, it is unclear whether increased localization of BRP to the axons is a cause of the decreased BRP at the active 
zones. This is important because while the disruption of axonal transport has been implicated in many neuro-
degenerative diseases, it has been difficult to tease out whether axonal transport is a cause or consequence of 
synaptic demise6. In this report, using temporal expression of Par-1, we show that BRP accumulation precedes 
decreased BRP at the synapse and that it is independent on Futsch-the neuron specific MAP22. Interestingly, 
we find that increased levels of BRP in axons are accompanied by decrease in synapse function followed by an 
increase in “floating” T-bars- a electron dense structure present at active zones of invertebrates as well as verte-
brates23,24, suggesting that active zones of these flies may be unstable. Finally, we show that BRP and Par-1 are 
present in the same complex raising the interesting possibility that presynaptic Par-1 may regulate the localization 
of BRP by interacting with it.

Results
Levels of Presynaptic Par-1 are important in determining the proper localization of BRP.  A 
previous study18 revealed that elevated levels of presynaptic Par-1 lead to a selective accumulation of BRP in the 
axons concomitant with loss of BRP from the synapses. Since this study largely used overexpression of Par-1 as a 
means to increase its levels, we wondered whether physiological manipulations that lead to increased Par-1 levels 
would also show selective axonal accumulations of BRP. To test this, we used well-characterized mutations in E3 
ubiquitin ligase, Slimb (Slmb), which is known to increase the levels of Par-125. Consistent with our hypothesis, 
mutations in Slmb led to a selective increase in the levels of BRP within the axons (Fig. 1A–C). Thus, the overex-
pression model of Par-1 has the same effect as physiologically increasing the levels of Par-1 by mutations in Slmb. 
Although it is important to note that the accumulation of BRP in Slmb mutants could be due to other possible 
downstream affects, the combination of increase in Par-1 levels in Slmb mutants25, and the selective increase in 
BRP suggests the possibility that increased Par-1 levels in Slmb mutants cause increased BRP accumulation within 
the axons.

Since increased levels of Par-1 caused increase in BRP accumulation in axons, we hypothesized that decrease 
in the levels of Par-1 would lead to a decrease in BRP levels in axons. To test this hypothesis, we knocked 
down Par-1 presynaptically using a previously characterized Par-1 RNAi line17 using the presynaptic driver 
BG380-Gal426. Surprisingly, decrease in the presynaptic Par-1 also led to an increase in selective accumula-
tion of BRP (Fig. 1D–F). RNAi knockdown of Par-1 with multiple presynaptic drivers yielded the same results 
(Supplemental Fig. 1A,B). These data indicate that not only does Par-1 have a physiological role in regulating the 
localization of BRP but also that its fine balance is required for the its precise localization.

Figure 1.  Precise levels of Par-1 are required for BRP localization. (A) Representative confocal stacks 
showing axon bundles from third instar larvae of WT and Slmb mutant (slmb3A1). Axon bundles are stained 
with antibodies against BRP (Red), DVGLUT (Green) and HRP (Blue), n > 10, Scale bar = 10 μm. (B) Mean 
fluorescent intensity of BRP (BRP fluorescence normalized to HRP) in axon bundles represented in A. (C) Mean 
fluorescence intensity of DVGLUT normalized to HRP intensity (D) Representative confocal stacks showing 
axon bundles from third instar larvae of WT and Par-1RNAi. Axon bundles are stained with antibodies against 
BRP (Red), DVGLUT (Green) and HRP (Blue), n > 10, Scale bar = 10 μm. (E) Mean fluorescence intensity of 
BRP normalized to HRP intensity. (F) Mean fluorescent intensity of DVGLUT normalized to HRP intensity. 
Error bars represent S.E.M. N.S. = p > 0.05, **p ≤ 0.01, ****p ≤ 0.0001.
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Accumulation of BRP precedes its decrease from synapses.  There are at least two possible reasons 
why BRP might accumulate within the axons. First, levels of neuronal Par-1 may determine proper transport BRP 
to the active zones. Second, precise levels of Par-1 may be required at the synapses to stabilize BRP at the active 
zones and breakdown of either of these processes may lead to BRP accumulating in the axons. If transport of BRP 
were the primary issue, we expect to find accumulation of BRP in axons to precede its reduction at the synapses. 
To test these possibilities, we took advantage of the GeneSwitch-Gal4 system27. This system allows the temporal 
expression of a transgene by feeding the larvae with a progesterone homolog, RU-486. In these experiments, we 
expressed the Par-1 transgene for a given period of time and then tested the effect of its expression on BRP accu-
mulation within the axons and its loss from the synapses. Flies were allowed to lay eggs and develop on normal 
food and were transferred to food containing RU-486 at or just before the early third instar stage. Transfer onto 
the RU-486 containing food should turn “ON” the expression of Par-1 transgene. We systematically stained the 
larvae with antibodies against Par-1, BRP and HRP after 0, 9, 12, 24, 48 and 72 hours exposure to RU-486 and 
tested the expression of Par-1 transgene and the localization of BRP. Little to no detectable Par-1 was observed 
within axons from 0–9 hours (Supplemental Fig. 2A,B). The BRP intensity within the axons remained similar 
to the zero time point after the exposure to RU-486 (Supplemental Fig. 2A,C). We started to detect a signifi-
cant increase in Par-1 within the axons at 12 hours (Supplemental Fig. 2A,B), along with a small but significant 
increase in the levels of BRP within the axons (Supplemental Fig. 2A,C). At 48 hours, the levels of Par-1 within 
the axons increased further (Fig. 2A,C) along with a significant increase in Par-1 levels at the NMJs (Fig. 2B,E). 
However, the number of BRP per NMJ area at 48 hours was unaltered (Fig. 2B,F); indicating that accumulation 
of BRP within axons precedes the detectable reductions of BRP from the synapses. Consistent with this idea, at 
72 hours after induction of Par-1 we observed a significant reduction in the average number of BRP puncta at 
the NMJs (Fig. 2B,F). We also measured average synaptic span, and bouton numbers normalized to muscle area 
in the same larvae (Supplemental Fig. 3B,C) and found no change in these parameters to the control group. The 
intensity of BRP within the axons and at the number of BRP at the synapses were unaltered in the group that 
were exposed to RU-486 for the same time period as the experimental group but did not contain Par-1 transgene 
(Supplemental Fig. 4A–D). These data indicate that there was no “leaky” expression of Par-1 in the experimental 
group. Together, these data indicate that BRP accumulation precedes the loss of BRP at the synapses and thus 
points to the possibility that Par-1 may primarily regulate the transport of BRP.

Figure 2.  Accumulation of BRP in axons precedes its loss from synapses. (A,B) Representative axon bundles 
from larvae overexpressing Par-1 using GeneSwitch-Elav-Gal4. Time (T) represents time after exposure to RU-
486 (T0, T24, T48, and T72) containing food. Axon bundles (A) are stained with antibodies against Par-1 (Green), 
BRP (Red) and HRP (Blue). Scale bar = 10 μm. Synaptic boutons (B) are stained with identical antibodies as A. 
Scale bar = 5 μm. (C) Mean Par-1 intensity normalized to HRP intensity within axons bundles (D) and mean 
BRP intensity normalized to HRP intensity in axon bundles (D) from same series of time points as A. n > 20. (E) 
Mean Par-1 intensity from synaptic boutons normalized to HRP (F) and quantification of the number of active 
zones (BRP puncta) per NMJ from same time points as B. n > 15. Error bars represent S.E.M. N.S. = p > 0.05, 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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Synaptic function is altered before the loss of BRP from active zones.  To test whether decreased 
synaptic transmission18 was an early consequence of increased accumulation of BRP within axons, we performed 
intracellular recordings from larvae that had just begun to accumulate BRP (~24 Hours post induction of Par-1 
transgene) and time points in between until the synapses started to show a significant decrease in BRP (~72 
Hours). We found that at 0 hours when accumulation of BRP within the axons is not increased significantly, the 
synaptic transmission (mEJP amplitude, frequency and EJP amplitudes) (Fig. 3A–F) is indistinguishable from 
the controls (WT larvae raised on RU-486) (Supplemental Fig. 5A–F). Similarly, at 24 hours after the induction 
of Par-1 transgene although there was a significant increase in BRP levels within the axons, there was no change 
in the synaptic transmission. However, at 48 hours after the induction of Par-1 transgene, we began to observe 
a significant decrease in the EJP amplitudes and mini frequency while the mEJP amplitudes were unchanged 
(Fig. 3A–E). Interestingly, of note, at this time point there is a significant increase in the levels of Par-1 at the NMJs 
(Fig. 2B,E). However, the number of BRP puncta at the synapses were unaltered at this time point (Fig. 2B,F). At 
72 hours after the induction of Par-1, there was a further decrease in EJP amplitudes while the mini EJP ampli-
tudes remained unaltered (Fig. 3A–D), consistent with the previous observation that neither apposition nor the 
intensity of DGluRIII were significantly altered in lines overexpressing Par-118. It is important to note while there 
were some effects of the drug RU-486 on mEJP amplitudes and frequency (Supplemental Fig. 4B,D,E), the EJP 
amplitudes and the quantal content remained unaltered (Supplemental Fig. 5C,F). These data show that disrup-
tion of synaptic transmission is an early consequence of increased BRP accumulation in axons.

Axonal accumulation of BRP causes active zones to be unstable.  So far, our data indicate that 
decreased BRP at the synapses might be a consequence of axonal accumulation of BRP. If WT Par-1 levels are 
required for the proper localization of BRP to the active zones, increase in BRP within axons could cause active 
zones to be unstable by “starving” the active zones of “fresh” BRP. This could possibly compromise active zone 
integrity and make them unstable. Instability of synapses in Drosophila is often associated with a loss of micro-
tubule binding protein Futsch28. Interestingly, a previous report has found that loss of Futsch leads to decrease 
in BRP density at the synapses and that Futsch interacts with BRP in situ at synapses29. Finally, Futsch has KXGS 
motif that can potentially be phosphorylated by Par-1 kinase16. Therefore, changes in the levels of Par-1 could 
alter the levels and/or localization of Futsch. To test these possibilities we stained the NMJ preparations from 
WT and Par-1 overexpressing flies with anti-Futsch antibodies. We observed no change in the intensity of Futsch 
within axons of flies overexpressing WT Par-1 (Supplemental Fig. 6A,B). Interestingly, however, there was a 

Figure 3.  Functional deficits precede detectable decrease in BRP at synapses of flies overexpressing Par-1. (A,B) 
Representative traces of EJPs (A) and mEJPs (B) from larvae overexpressing Par-1 using GeneSwitch-Elav-Gal4. 
Time (T) represents time after exposing larvae to the RU-486 (T0, T24, T48, and T72). (C–F) Quantification of 
EJPs (C) and mEJP amplitudes (D), frequency (E), and quantal content (F) N = 8. Error bars represent S.E.M. 
N.S. = p > 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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significant reduction in the intensity of synaptic Futsch (Fig. 4A,B). Importantly, such reductions were not appar-
ent in Par-1T408A expressing flies, indicating that the defect was not a result of secondary affect of Par-1 overex-
pression (Fig. 4A,B). To test whether the loss of Futsch might mediate affects of Par-1 overexpression, we tested 
whether futsch mutants accumulated BRP within their axons. Consistent with the previous report29, we did not 
observe axonal accumulation of BRP within the axons of futsch mutants (Supplemental Fig. 6C,D), indicating 
that Futsch may not mediate the affects of Par-1 overexpression. Finally, in the Gene Switch experiments (even 
at ~72 hrs post-induction of Par-1 transgene), we did not observe any alterations in the levels of synaptic Futsch 
(Fig. 4C,D) while there was a significant reductions of synaptic BRP (Fig. 2B,F). Although we cannot rule out the 
role of Futsch and/or cytoskeleton at later stages, these data indicate that Futsch, similar to tau18 is not required 
for the increase in BRP accumulation within axons at the initial time points.

Next, we reasoned that perhaps, the first signs of changes in active zone structure might manifest as subtle 
changes in the structure of T-bars. To test this possibility, we utilized simulated emission depletion microscopy 
(STED). When viewed using STED microscopy, BRP generally appears as a “doughnut” shaped structure at the 
active zones30. Subtle changes to this structure have previously been reported and are thought to be one of the early 
signs of active zone disassembly in a fly model of ALS31, perhaps by causing active zone instability. To test whether 

Figure 4.  Futsch does not mediate accumulation of BRP within axons. (A) Representative confocal image 
stacks showing NMJ synapses from WT, Par-1OE and Par-1T408A third instar larvae stained with anti-Futsch 
(Red) and anti-HRP (Blue) antibodies. (B) Mean Futsch fluorescence intensity (A.U.) normalized to HRP 
intensity from entire NMJ arbor. n > 10. (C) Representative confocal stacks from larvae overexpressing Par-1 
using GeneSwitch-ElavGal4 at T0, T24, T48, and T72. NMJ synapses are stained with anti-Futsch (Red) and anti-
HRP (Blue) antibodies. (D) Mean Futsch fluorescent intensity (A.U.) normalized to HRP intensity from entire 
NMJ arbor. n > 20. Error bars represent S.E.M. N.S. = p > 0.05, **p ≤ 0.01.
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elevated levels of Par-1 lead to structural disruption of BRP doughnut structure, we performed STED on third instar 
larvae from WT, Par-1OE and Par-1T408A synapses. As expected, most BRP at the WT synapses showed the typical 
“doughnut” like structure, which was indistinguishable from larvae expressing Par-1T408A. However, Par-1 overex-
pressing active zones showed significant reductions in visible BRP doughnuts (Fig. 5A–D). These data indicate that 
synapses in Par-1 overexpressing flies might be unstable. It is interesting to note that although futsch mutants have 
decreased BRP density, the doughnut structure of BRP is indistinguishable from WT29 further supporting the idea 
that reductions in Futsch may not be the primary reason for the accumulation of BRP within axons.

Since the STED data suggest that active zones in Par-1 expressing neurons might be unstable, we decided to 
test this directly by performing transmission electron microscopic analysis of active zones. An unstable active 
zone has previously been described at the ultrastructural level as diffuse and having long active zones with 
increased frequency of floating T-bars28. We found a significant increase in all these criteria in neurons express-
ing WT Par-1 (Fig. 6A–G). The length of active zones at Par-1OE synapses as compared to WT was significantly 
increased. Furthermore, the electron-dense active zone regions in Par-1OE flies were significantly more diffuse/
wider than WT active zones, which were more tightly packed (Fig. 6D–F). While this pattern was consistent 
and was present in most sections from the EMs of the Par-1 overexpressing flies, it is possible that most of these 
sections are not from the middle of the bouton giving it a diffuse appearance. Finally, we observed there was a 
strong positive relationship between increased Par-1 and increase in the frequency of detached or floating T-bars 
(p = 009) (Fig. 5G). Together, these data indicate that synapses in Par-1 overexpressing flies are unstable.

Par-1 associates with BRP in a complex.  What might be the mechanism of action of Par-1? We have 
already explored two possible substrates of Par-1. Both these substrates of Par-1-Tau18 and Futsch (this study) do 
not seem to mediate the affect of Par-1 overexpression. Because BRP selectively accumulates in Par-1 express-
ing flies, we wondered whether one way Par-1 could selectively regulate BRP localization could be by interact-
ing with it. To test this possibility, we first tested whether overexpressed Par-1 and BRP co-localized. We noted 
that overexpressed Par-1 and BRP were partially co-localized with each other in the axons and at the NMJs 
(Fig. 7A). However, co-localization is not a proof of interaction and one of the caveats of this experiment is that, 
co-localization can be attributed to the overexpression of Par-1, which saturates the axons and the synapses. 
Therefore, we went back to the geneswitch experiments where there was little to no detectable Par-1 at zero 
hours of Par-1 transgene induction (Fig. 2A–C,E), and performed the proximity ligation assay (PLA29,). PLA 
signal relies on proximity of two proteins to each other (<40 nm apart) such that the secondary antibodies that 

Figure 5.  Elevated levels of Par-1 lead to alterations in BRP doughnuts. (A) Representative STED images 
showing BRP doughnuts at synapses from WT, Par-1OE and Par-1T408A third instar larvae stained against BRP. 
Scale bar = 1 μm. Insets highlight a representative BRP structure at boutons of the respective genotype. (B–D) 
Quantification of the percent BRP with doughnut structure (B), area of BRP puncta (C), and perimeter of BRP 
puncta (D). n > 700 BRP puncta count. Error bars represent S.E.M. N.S. = p > 0.05, *p ≤ 0.05, ***p ≤ 0.001, 
****p ≤ 0.0001.
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are conjugated to fluorescent oligonucleotides can be ligated giving rise to a bright fluorescent signal32. We used 
anti-BRP and anti-Par-1 antibodies to perform the PLA assays. At zero hours of Par-1 transgene induction we 
detected little to no PLA signal in axons or synapses consistent with the data that at zero hours we detect little 
to no of Par-1 expression (Fig. 7C,E). We detected a significant increase in PLA signal in axons at 24–72 hours 
(Figure C,E). This is consistent with the increase in Par-1 intensity in the axons for these time points (Fig. 2A,C). 
Interestingly, we also detected significant increases in the PLA signal at the synapse at 24 hours when the expres-
sion of Par-1 transgene was not detectably increased (Fig. 7D,F). This could be because PLA leads to a signifi-
cant amplification of signal33. These data suggest that Par-1 is in a complex with BRP in situ. To further test this 
interaction under endogenous conditions, we performed co-immunoprecipitation assay with anti-BRP antibody. 
Protein extracts from the fly heads were used to test this interaction. BRP successfully immunoprecipitated Par-1 
from WT heads indicating that Par-1 and BRP are present in the same protein complex (Fig. 7B and Supplemental 
Fig. 7). BRP also immunoprecipitated overexpressed Par-1 and surprisingly, overexpressed Par-1T408A. These data 
indicate that even inactive Par-1 can interact with BRP and show that Par-1 and BRP are in the same molecular 

Figure 6.  Elevated levels of Par-1 lead to disruption of active zone structure. (A) Representative electron 
micrographs from WT and Par-1OE third instar larvae showing T-bars (red asterisks), synaptic vesicles (SV) and 
sub-synaptic reticulum (SSR). Scale Bar = 500 nm. (B) Mean number of T-bars per bouton (C) and AZ’s per 
boutons. (D) Representative T-bars with electron dense Active Zones (orange bracket), and synaptic vesicles 
(green arrows) from WT and Par-1OE. Scale bar = 100 nm. AZ width (E), and AZ length (F), from WT and Par-
1OE larvae. N = 20. (G) Quantification of detached T-bars in WT and Par-1OE. Par-1OE larvae show a significant 
increase in detached T-bars. Error bars represent S.E.M. N.S. = p > 0.05, *p ≤ 0.05, ***p ≤ 0.001, ****p ≤ 0.0001.
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complex (Fig. 7B). There was no signal in the beads only control (Fig. 7B). Together, these data indicate that Par-1 
and BRP are in the same complex and that Par-1 and BRP may share a functional relationship.

Discussion
Par-1 is an evolutionarily conserved serine threonine kinase that has many diverse roles, including important 
roles in regulating cell polarity and regulating microtubule stability16,34. Genome-wide association studies have 
implicated Par-1 (MARK) in Alzheimer’s disease (AD)13. While accumulations of Aβ and tau are implicated in 
the widespread neuronal death found in late stages of AD, synapse instability is often associated with early stages 

Figure 7.  Par-1 and BRP are present within the same molecular complex. (A) Representative confocal stacks 
showing co-localization of Par-1 and BRP in the axons and boutons from third instar larvae of Par-1OE. Axons 
(Scale bar = 10 μm) and synaptic boutons (Scale bar = 5 μm) are stained with antibodies against BRP (Red), 
and Par-1 (Green). (B) Representative Western blot of proteins pulled down using the anti-BRP antibody and 
probed using anti-Par-1 antibody. Both the input and the IP were performed in the same blot and loaded on the 
same gel (different lanes). Beads only control shows no signal (C,D) Representative PLA signal (red) from larvae 
overexpressing Par-1 using GeneSwitch-ElavGal4 at T0, T24, T48, and T72 from axon bundles (C) and synaptic 
boutons (D). HRP marks presynaptic membrane boundary (blue) and arrows mark the punctate pattern and 
examples of brightest PLA signals. (E,F) Average PLA fluorescent intensity (A.U.) normalized to HRP intensity 
in axons bundles (E) and synaptic boutons (F). (n > 10). Error bars represent S.E.M. ****p ≤ 0.0001.
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during the progression of AD35,36. Indeed, animal models of tauopathy show an increase in synapse instability37. 
Therefore, we propose that synapse instability might be one of the early events in neurodegenerative diseases like 
AD and that increase in Par-1/ MARK4 could facilitate the instability and hasten the demise of synapses.

Synaptic plasticity is determined by its ability to modulate its response to stimulation38. Generally, activity 
leads to strengthening of synapses, which is bigger response to stimulation39. Therefore, maintenance of synapses 
is important in maintaining the synaptic networks, which are disrupted in both neurodevelopmental and neuro-
degenerative diseases40–42. Indeed, mutations in cysteine string protein (CSP), which plays an important role in 
synaptic maintenance, causes a progressive motor neuron disorder characterized by neurodegeneration43. Thus, 
maintaining stable synapses might be important to avoid the failure of synaptic networks.

At the Drosophila NMJ synapses, active zones can be rapidly modified to induce synaptic homeostatic changes, 
which are partly dependent on BRP44. Interestingly, in a Drosophila model of ALS, disruption of shape and size 
of T-bars, which consists primarily of BRP, precedes synapse degeneration31. These data suggest that disruption 
of T-bars might be an early marker for synapse breakdown31. Our data support this hypothesis because we find 
that the doughnut shape of T-bars is dramatically altered in flies overexpressing Par-1 and this happens before 
the decrease in the number of AZs marked by BRP. Finally, we posit that loss of BRP from synapses could lead to 
a failure of synaptic homeostasis because BRP plays an important role in synaptic vesicle release30. Interestingly, 
loss of synaptic homeostasis has been implicated in early phases of neurodegeneration45 and, restoring synaptic 
homeostasis can restore synaptic strength in a Drosophila model of ALS46. Thus, gradual loss of BRP from synapse 
may impair the ability of a synapse to efficaciously respond to changes that perturb synaptic homeostasis leading 
to catastrophic failure of neural networks40.

Role of Par-1 in regulating synapse maintenance.  One of the vital functions performed by axonal 
transport is to maintain steady state levels of synaptic proteins required for the efficacious release of neuro-
transmitter release47,48. Disruption of axonal transport has been implicated in neurodegenerative diseases6. 
Indeed, mutations that affect axonal transport lead to neurodegenerative diseases49. A recent study suggests that 
active zone density is maintained during the developmental stages but is significantly decreased with aging4. 
Interestingly, axonal transport also declines with aging50 suggesting that a combination of decreased axonal trans-
port of active zone proteins along with aging may lead to a gradual decrease in the maintenance of active zones. 
This may eventually lead to a failure to maintain synaptic function and ultimately lead to synapse degeneration. 
While this hypothesis is generally accepted, it has proven difficult to determine whether axonal transport is a 
cause or consequence of synapse loss. Our temporal analysis suggests that following sequence of events: Par-1 
localizes to the axons followed by BRP accumulation in axons likely leading to the decreased synaptic function 
and finally the reduction of BRP from synaptic active zones likely leading to synapse instability. Together, these 
findings support the hypothesis that defects in axonal transport cause synapse degeneration.

How does Par-1 regulate localization of BRP?.  While so far we do not precisely understand how active 
zone scaffold proteins like BRP are localized, based on our present study, we can speculate that phosphorylation 
of Par-1 substrate may be important in determining the localization of BRP. This is because while the expression 
of WT Par-1 causes accumulation of BRP within axons, expression of inactive Par-1 does not lead to show any 
aberrant localization of BRP. Our data suggest that defects in BRP localization are not mediated either by tau18 or 
Futsch (this study) but BRP may be a possible substrate of Par-1. This is because our data indicate that BRP and 
Par-1 may be in the same molecular complex. However, it remains to be determined whether Par-1 can phos-
phorylate BRP and whether phosphorylation of BRP is required for its localization. Previous studies have shown 
that BRP can be acetylated, and that this posttranslational modification is important in regulating the structure 
of T-bars51 but whether BRP can be phosphorylated remains to be studied. Finally, our data indicate that presyn-
aptic Par-1 levels are important in determining BRP localization because Par-1 knockdown also results in the 
accumulation of BRP within the axons. Thus, Par-1 not only has an important role in postsynaptic compartment17 
but also has an important function on the presynaptic side. Finally, it should be noted that this study is a limited 
but an important extension of our previous study of how Par-1 regulates the localization of important active zone 
proteins such as BRP1. Our study also opens up a lot of questions. For example, what is the half life of BRP at the 
AZs? Does BRP get replaced? If so, at what rate? These are some important questions that should be addressed by 
future studies but our study opens up the possibility to study these processes in much more detail.

Materials and Methods
Fly Stocks.  Flies were reared at 25 °C in medium containing Nutri-FlyTM Bloomington formulation 
(Genesee Scientific, San Diego, CA), Jazz mix (Fisher Scientific, Waltham, MA, USA), sugar and powdered yeast 
(Genesee Scientific) in an 8:5:1:1 ratio and made according to standard procedures. The following fly stocks 
were used in this study: UAS-Par-1, UAS-Par-1T408A, and UAS-Par-1RNAi (All gifts from Bingwei Lu, Stanford 
School of Medicine, Stanford, CA, USA25), slmb3A1 (Bloomington Stock Center)52, olk1 and olk3 (a gift from Doris 
Kretzschmar, Oregon Health and Science University, Portland, OR, USA)53. The following GAL4 lines were used: 
BG380-Gal4 (A gift from Aaron DiAntonio, Washington University Medical School, St. Louis, MO, USA)26, and 
ELAV-GeneSwitch (Bloomington Stock Center)27.

RU486-GeneSwitch experiments.  All experiments using the RU486-GeneSwitch system were performed 
according to Osterwalder et al.27. For overexpression of Par-1, UAS-Par-1 and ELAV-GeneSwitch adults were 
placed on normal food and allowed to mate for two days at 25 °C. Late second instar larvae or early third instar 
larvae were then placed on RU486 containing food (20 μg/ml RU486 diluted in EtOH)(Mifepristone; Sigma, St. 
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Louis, MO) and dissected at time points following RU486 exposure, T0, T24, T48, and T72. Dissections, imaging, 
electrophysiology and analyses for these experiments are described in the following sections.

Immunohistochemistry.  Larvae were dissected and stained as previously described54. Briefly, the larvae 
were dissected in cold 1X PBS solution followed by fixation in Bouin’s fixative for 5 minutes. Larvae were washed 
3X with PBS-Triton (0.1% solution) and blocked using 5% NGS solution in PBS. Following primary antibodies 
were used: anti-BRP (1:250, DSHB, Iowa city, IA)55, anti-Futsch (1:100, DSHB, Iowa City, IA)22, anti-DVGLUT 
(1:10,000, gift from Aaron DiAntonio, Washington University in St. Louis, MO)56 and anti-Par-1 (1:1,000, gift 
from Bingwei Lu, Stanford School of Medicine, CA)17. Dylight conjugated goat anti-HRP antibody (1:1,000), 
Goat Cy3-, and Alexa 488 conjugated secondary antibodies against mouse and rabbit IgG (1:1000) were obtained 
from Jackson ImmunoResearch, West Grove, PA.

Confocal microscopy and analysis.  Imaging and analysis of intensity of proteins within axons was per-
formed as described previously57 using a Nikon C1 confocal microscope. To compare different genotypes, sam-
ples were processed simultaneously. Imaging was performed on the same day and same slide, with an appropriate 
control. Each staining was repeated at least three times with at least four larvae per genotype and at east 10 NMJs 
per individual experiment were included in the analyses.

For quantification of intensities within axon bundles and NMJs, a complete z-series stack collected at intervals 
of 0.4 μm was projected using the maximum intensity method. Staining intensities of various proteins within 
the axon bundles and the NMJs were quantified by using MetaMorph software (Molecular Devices, Sunnyvale, 
CA, USA). For axon bundles and synaptic boutons, HRP was used to set the color threshold. Only the axonal 
compartment and the region of synaptic bouton determined by HRP staining were used to measure the intensity 
of the red, green and blue channels. Intensity measurements at boutons were taken across the entire NMJ arbor. 
At axon bundles, intensity measurements were taken from axon bundles passing over the segments A3-A457,58. 
Measurements were taken from a box of 50 μm2 and 3 random samples were taken per images, with a total of 
at least 10 images per genotype per experiment, which was repeated three times57,58. Intensity measurements 
at boutons and within axon bundles were normalized to HRP intensity. Quantification of active zones (BRP) at 
synaptic boutons and bouton size was performed from the entire NMJ arbor and the number of BRP was counted 
manually and the count was tracked using Fiji59,60. Bouton number and synaptic span were normalized to the 
mean muscle surface area of each genotype. Synaptic span was quantified using Simple Neurite Tracer plugin in 
Fiji59. Experimenter was blinded to the genotypes of the larvae while performing and analyzing the experiments.

Electrophysiology.  Intracellular electrophysiological recordings were performed on muscle 6, segment 
A3-A4 as previously described61. Dissections and intracellular recording were performed in HL3 saline62 con-
taining 0.45 mM Ca2+. The cells with input resistance of at least 5 MΩ and resting membrane potentials of less 
than -63mV were used for analyses. Mean EJP amplitudes, mEJP amplitudes and frequency, were calculated from 
75 consecutive traces or events using pClamp 9 software (Molecular Devices). Quantal content was estimated 
by dividing the mean EJP amplitude by the mean mEJP amplitude (EJP/ mEJP) from the same synapse. For 
GeneSwitch experiments recordings were performed within a 2-hour window around the time point indicated 
in figures. A total of 5 recordings from 5 larvae per genotype were made per experiment and the experiment was 
repeated three times.

Electron Microscopy.  Transmission electron microscopy (TEM) was performed on wandering third instar 
larvae as previously described in Barber et al.18. EM sections were obtained using a JEOL 1200EX microscope. 
Sections analyzed were all mid bouton sections from 1b boutons and showed clear SSR and synaptic vesicles. 
T-bars, AZ count, AZ length, and AZ width were quantified using Fiji distribution in ImageJ59. Quantification for 
each genotype was performed on N of 20 or more synaptic boutons from at least 4 larvae per genotype. Floating 
T-bars were counted manually, and the experimenter was blinded to the genotype. Floating T-bars were defined 
as having at least a few synaptic vesicles localizing between the T-bar structure and the electron-dense AZ.

Proximity Ligation Assay (PLA).  Third instar larvae were dissected in cold HL3 solution62 and were incu-
bated with anti-BRP (1:250, DSHB, Iowa city, IA)55 and anti-Par-1 antibodies (1:10,000, gift from Bingwei Lu, 
Stanford School of Medicine, CA) overnight at 4 °C. Cy5-conjugated anti-HRP antibody raised in Goat was used 
(Jackson ImmunoResearch) at 1:500 to label the neuronal membranes. For PLA, Duolink Mouse Rabbit in situ 
PLA kit (Sigma-Aldrich, St. Louis, MO) was used and the PLA assay was performed as previously described29,63. 
Synaptic boutons and axon bundles passing over A3–4 were imaged using Nikon C1 confocal microscope and 
analyzed as described above. At least 4 larvae from each time point and 10 NMJs were analyzed. Analysis of aver-
age PLA signal intensity was performed using MetaMorph software (Molecular Devices, Sunnyvale, CA, USA) as 
described in the confocal microscopy analysis section (above) and normalized to HRP intensity.

Stimulated emission depletion microscopy and analysis.  Stimulated emission deletion microscopy 
(STED) on NMJ preparations and analysis of BRP structure was done as previously described in Shahidullah et 
al.31. Images were taken of type 1b boutons from muscle 4 segments A3–4. BRP doughnuts at synaptic boutons 
were defined as having a “doughnut shape” when a hole could be visualized in the center of BRP puncta and were 
counted manually and the count was tracked using Fiji59. Images analyzed were maximum projections. Perimeter 
and area of BRP puncta at synaptic boutons were quantified using particle analysis in Fiji59. At least 4 larvae and 
10 NMJs were used in this analysis.
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Co-immunoprecipitation.  Frozen (−80 °C) WT, Par-1OE and Par-1T408A adult flies were vortexed and the 
vortexed (Separated parts) while still frozen, were passed through a sieve (No. 40) to separate the heads. At least 
100 heads were collected per genotype and used for the Co-IP experiment. Heads were homogenized mechan-
ically in 200 μl of lysis buffer64 and incubated at 4 °C for one hour. The head lysate was then incubated with 
anti-BRP antibody (1:25) overnight at 4 °C. BRP along with its binding partners were isolated by incubating with 
Dynabeads (Invitrogen) for 1–3 hours at 4 °C. After washing and elution, the samples were resolved using 4–20% 
gradient SDS-PAGE gel followed by western blotting. Blots were then probed using anti-Par-1 antibody (1:8,000) 
followed by HRP-conjugated goat α-rabbit (Jackson ImmunoResearch) secondary antibodies (1:3000). The blot 
was immersed in BIORAD clarity western ECL blotting substrate and images were acquired using Bio-Rad’s 
ChemiDoc XRS + system.

Statistical analysis.  Experimenters were generally blinded to the genotypes. Analyses were performed on 
at least 4 larvae per genotype for a single experiment and each experiment was repeated at least 3 times. Statistical 
analyses and graphs were generated using GraphPad Prism (GraphPad Software, Inc.). Student’s T-test was used 
to compare within two groups or one-way ANOVA followed by Dunnett’s or Tukey’s post-hoc tests were per-
formed to compare means between three or more groups. Fisher’s exact test was used to test the occurrence of 
detached T-bars in WT and Par-1OE. P values less than 0.05 were considered significant. However, in most cases 
the p values obtained in this study were less than 0.01.
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