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Abstract

Abnormal phosphorylation of the microtubule-associated protein tau is observed in many 

neurodegenerative diseases, including Alzheimer’s disease (AD). AD-related phosphorylation of 

two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of 

mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. 

However, the relative contribution of phosphorylation at each of these sites to tau stabilization has 

not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was 

phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased 

total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was 

hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau 

were significantly elevated, and prevention of tau phosphorylation at both residues was necessary 

to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 

plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas 

Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is 

abnormally elevated, as in diseased brains.
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INTRODUCTION

Tau is a microtubule-associated protein predominantly localized in axons, where it regulates 

microtubule stability. However, in the brains of patients suffering from disorders such as 

Alzheimer’s disease (AD), frontotemporal dementia with parkinsonism associated with 

chromosome 17 (FTDP-17), progressive supranuclear palsy, corticobasal degeneration, and 

chronic traumatic encephalopathy, tau is detached from microtubules and accumulates in the 

cytosol to form neurofibrillary tangles. Several lines of evidence suggest that tau misfolding 

and accumulation is the common molecular mechanism underlying the pathogenesis of 

tauopathies [1].

Tau is phosphorylated at more than 45 sites in paired helical filaments (PHF) [2–5], and 

phosphorylation of specific sites plays critical roles in regulating the protein’s aggregation 

and neurotoxicity [6–8]. Ser262 and Ser356 are located in the KXGS motifs in the first and 

fourth microtubule-binding repeats, respectively. Tau phosphorylated at these sites is the 

epitope of antibody 12E8, an established marker for tau pathology in the early stages of AD 

[9, 10]. Ser262 and Ser356 are phosphorylated by PAR-1/MARK1-4 [11], a widely 

conserved family of kinases [12, 13].

PAR-1/MARK activity is elevated in several neurodegenerative conditions, including AD 

[14–17]. In vitro studies have shown that phosphorylation of tau by PAR-1/MARK causes 

detachment of tau from microtubules [18]. In cultured neurons, PAR-1/MARK 

phosphorylation can induce mislocalization of tau from the axon to dendrite [19, 20], an 

early marker of tau abnormality under disease conditions. Tau phosphorylation at Ser262 

and Ser356 due to MARK overexpression increases tau toxicity, whereas preventing tau 

phosphorylation at these residues by introducing unphosphorylatable alanine substitutions 

reduces tau toxicity in cellular and Drosophila models [8, 13, 21]. Moreover, tau toxicity is 

elevated under pathological conditions such as β-amyloid accumulation and mitochondrial 

dysfunction [22–26], and increases in PAR-1/MARK activity, as well as the level of tau 

phosphorylated at Ser262 and Ser356, correlate with tau toxicity [24, 25, 27]. Recently, we 

showed in a Drosophila model that tau phosphorylation at Ser262 and Ser356 by PAR-1 

stabilizes tau at the initial step of mismetabolism, thereby promoting tau toxicity [28]. 

However, the relative contribution of tau phosphorylation at each of these sites to tau 

stabilization remained unclear.

In this study, we sought to investigate how Ser262 and Ser356 contribute individually to 

stabilization of tau when PAR-1/MARK activity is normal or abnormally elevated. Using a 

Drosophila model of tau toxicity [25, 29], we found that tau phosphorylation at Ser262 plays 

a predominant role in tau stabilization. Tau phosphorylation at Ser356 was not detectable 

under normal conditions; however, when PAR-1 was overexpressed, tau was phosphorylated 

at Ser356, and this phosphorylation contributed to tau stabilization. These results suggest 

that tau phosphorylation at Ser356 plays a role in stabilizing tau under pathological 

conditions in which PAR-1 activity is very high.
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MATERIALS AND METHODS

Fly stocks

Flies were maintained in standard cornmeal media at 25 ºC. The transgenic fly lines carrying 

the human 0N4R tau, which has four tubulin-binding domains (R) at the C-terminal region 

and no N-terminal insert (N), include a gift from Dr. M. B. Feany (Harvard Medical School) 

[29] and the lines established in our labs following the standard method [27, 30] by using 

human 0N4R tau (a gift from Dr. Mike Hutton (Mayo Clinic Jacksonville)). The transgenic 

fly line carrying UAS-S262Atau and UAS-S2Atau are established in our labs and reported 

previously [27, 28, 30]. GMR-GAL4 was obtained from the Bloomington Stock Center. 

UAS-PAR-1 is a gift from Dr. Bingwei Lu (Stanford University) [31]. All experiments were 

performed using female flies at 3–5 day-old after eclosion. Genotypes are described in Table 

S1.

Western blotting

Western blotting was carried out as described previously [27, 28]. Multiple membranes were 

prepared with the same samples, and one of the membranes was probed with anti-tubulin 

and used as the loading control for other blots. Anti-tau monoclonal antibody (Tau46, 

Zymed), anti-tau phospho-Ser262 (AbCam), phospho-Ser356 (Biosource), TAU1 

(Millipore), and anti-tubulin (Sigma) were purchased. Anti-tau pS202 (CP13) was a gift 

from Dr. Peter Davis (Albert Einstein College of Medicine, USA), and anti-tau polyclonal 

antibody (tauC) was a gift from Dr. A. Takashima (Gakushuin University, Japan) [32]. The 

signal intensity was quantified using ImageJ (NIH). Western blots were repeated a minimum 

of three times with different animals.

Phosphatase treatment

As described previously [28], twenty fly heads were homogenized in NEBuffer1 for PMP 

(50 mM HEPES, 100 mM NaCl, 2 mM DTT, 0.01% Brij 35, pH 7.5) supplemented with 1 

mM MnCl2 (NEB) and 0.4 mM 4-(2-aminoethl)-benzenesulfonyl fluoride hydrochloride 

(Pefabloc) (Wako Chemicals), 10 μg/ml leupeptin (Peptide Institute), and incubated with λ 
protein phosphatase (NEB) for 3h at 37°C.

RNA extraction and quantitative real-time PCR analysis

Heads from more than thirty flies were mechanically isolated, and total RNA was extracted 

using ISOGEN (NipponGene) followed by reverse-transcription using PrimeScript RT 

reagent kit (Takara). The resulting cDNA was used as a template for PCR with 

THUNDERBIRD SYBR qPCR mix (TOYOBO) on a Thermal Cycler Dice real time system 

TP800 (Takara). Expression of genes of interest was standardized relative to rp49. Relative 

expression values were determined by the deltaCt method.

Primers were;

htau for 5′-CAAGACAGACCACGGGGCGG-3′

htau rev 5′-CTGCTTGGCCAGGGAGGCAG-3′
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rp49 for 5′-GCTAAGCTGTCGCACAAATG-3′

rp49 rev 5′-GTTCGATCCGTAACCGATGT-3′

Statistics

Statistics was done with Microsoft Excel (Microsoft) with Student's t.

RESULTS

Tau phosphorylation at Ser262 is critical for stabilization of tau in a Drosophila model of 
human tau toxicity

Wild-type human 0N4R tau proteins expressed in the fly retina under the control of the eye-

specific GMR-Gal4 driver were detected as two major bands by western blotting with pan-

tau antibody (Figure 1, total tau). The difference in migration speed between these two 

bands is related to their phosphorylation levels: tau in the slower-migrating band (tauupper) is 

more highly phosphorylated than tau in the faster-migrating band (taulower) [28]. In addition, 

taulower can be distinguished by TAU-1 antibody (TAU-1-positive tau) [28], which 

recognizes tau that is non-phosphorylated at the AD-related sites Ser195, 198, 199 and 

Ser202 [33]. The levels of taulower and TAU-1-positive tau are prominently decreased by 

introduction of S262A/S356A double mutation (S2A) or knockdown of PAR-1, the major 

kinase that phosphorylates tau at both sites [28].

Wild-type human 0N4R tau overexpressed in fly retina was phosphorylated at Ser262 ([8, 

13, 21, 25] and Figure 1, pS262), whereas phosphorylation at Ser356 was not detectable 

(Figure 1, pS356). However, Ser356 was strongly phosphorylated when PAR-1 was co-

expressed (Figure 3A), confirming that the antibody used in this study can recognize tau 

phosphorylated at this residue. These results suggest that tau phosphorylation levels at 

Ser356 are very low in fly retina.

To investigate the role of Ser262 in stabilization of tau, wild-type human 0N4R tau or tau in 

which Ser262 was replaced with unphosphorylatable alanine (S262A) was expressed in the 

fly retina. qRT-PCR analysis revealed that mRNA levels of S262A tau were higher than 

those of wild-type tau (Figure 2A). However, western blotting revealed that S262A tau was 

significantly less abundant than wild-type tau (Figure 2B, quantitation, top, total tau). 

Interestingly, in contrast to wild-type tau, S262A tau exhibited a major band corresponding 

to tauupper (Figure 2B, total tau, tauupper). The signal intensities of taulower normalized to 

total tau was significantly lower for S262A tau than for wild-type tau (Figure 2B, 

quantitation, middle, taulower), whereas that of tauupper was not significantly different 

(Figure 2B, quantitation, middle, tauupper ). Moreover, western blotting with TAU-1 

antibody, which only detects taulower [28], revealed that the level of TAU-1-positive tau 

normalized to total tau was significantly lower for S262A tau than for wild-type tau (Figure 

2B, TAU-1; also see quantitation, bottom, TAU-1). Because taulower or TAU-1 tau represents 

less phosphorylated forms of tau, S262A mutation might reduce the levels of taulower or 

TAU-1-positive tau by promoting tau phosphorylation. However, this was not the case: the 

levels of tau phosphorylated at Ser202 normalized to total tau were also significantly lower 

in S262A tau than in wild-type tau (Figure 2B, pSer202; also see quantitation, bottom, 
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pSer202). Taken together, these results indicate that Ser262 phosphorylation plays a major 

role in stabilizing tau, especially the less extensively phosphorylated forms.

Tau phosphorylation at Ser356 contributes to stabilization of tau when PAR-1 activity is 
abnormally elevated

Phosphorylation at Ser356 was not detectable normally (Figure 1); accordingly, it is unlikely 

to play a major role in stabilizing tau [28]. However, tau was phosphorylated at Ser356 when 

PAR-1 was overexpressed (Figure 3A) [28], suggesting that Ser356 contributes to 

stabilization of tau when PAR-1 activity is abnormally elevated. Therefore, we asked 

whether blocking tau phosphorylation at Ser262 would be sufficient to suppress the increase 

in tau levels caused by co-expression of PAR-1 (Figure 3A). To this end, we analyzed tau 

levels by western blotting with a pan-tau antibody. To rule out the possibility that changes in 

tau phosphorylation affect the affinity of a pan-tau antibody, lysates used for quantitation 

were treated with phosphatase prior to western blotting. We found that introduction of the 

Ser262Ala mutation alone partially, but not completely, suppressed increases in tau levels 

(Compare Figure 3A and B). Because co-expression of PAR-1 significantly increased 

phosphorylation levels of S262Atau at Ser356 (Figure 3B, pSer356), Ser356 

phosphorylation may contribute to tau stabilization under this condition. Consistent with this 

idea, introduction of alanine mutations at both Ser262 and Ser356 (S2A) completely blocked 

the increase in tau levels caused by PAR-1 overexpression (Figure 3C and [28]). These 

results suggest that tau phosphorylation at both Ser262 and Ser356 contributes to 

stabilization of tau under conditions in which PAR-1 activity is very high.

DISCUSSION

Multiple residues in tau are phosphorylated in brains of tauopathy patients, but the roles of 

each site in disease pathogenesis remain incompletely understood. Ser262 and Ser356 are 

both disease-specific phosphorylation sites [2] and have been implicated in structure, 

turnover, intracellular distribution, and promotion of tau toxicity in disease pathogenesis [8, 

13, 18–27]. In this study, we investigated the effect of Ser262 and Ser356 on the stabilization 

of various tau species and the accumulation of tau caused by PAR-1 overexpression. Our 

results revealed that phosphorylation at Ser262 plays the predominant role in the 

stabilization of TAU-1-positive, less extensively phosphorylated forms of tau (Figures 1 and 

2). This observation is consistent with a previous report that introduction of a single 

substitution of Ser262 to unphosphorylatable alanine is sufficient to suppress 

neurodegeneration caused by tau overexpression in the Drosophila model [25]. By contrast, 

Ser356 phosphorylation was only detectable when PAR-1 was overexpressed, suggesting 

that phosphorylation at this residue contributes additively to tau stabilization under this 

condition in our Drosophila model (Figure 3). Together, these results suggest that tau 

phosphorylated at Ser356 is associated with abnormal tau metabolism and represents a more 

advanced stage of tau pathology than tau phosphorylated at Ser262 (summarized in Figure 

4).

PAR-1/MARK activity is elevated in several pathological contexts, including AD [14–17]. 

MARK4 is co-expressed with tau phosphorylated at Ser262 in a Braak stage-dependent 
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manner [14]. The level of active MARKs is increased by β-amyloid, which is thought to be 

the primary causative agent of AD pathology and to act upstream of tau toxicity [23, 24, 34]. 

The level of active MARKs is also increased by mitochondrial abnormality [35], stimulation 

of NMDA receptor [36], and ischemic events [37], all of which also promote pathological 

changes in tau. High MARK activity is associated with AD risk factors such as obesity: 

MARKs regulate the metabolic rate, and MARK activity is elevated in animals with diet-

induced obesity [38, 39]. These reports suggest that neurons in AD brains have higher levels 

of active MARKs than those in normal brain, and tau is stabilized more often by Ser356 

phosphorylation. In addition to MARK, tau phosphorylation at Ser356 is regulated by 

several kinases, including AMPK, AKAP14, DYRK1A, S6K, and PKA, phosphorylase 

kinase, and PKR [22, 40–43]. Disruption of the regulatory mechanisms of these kinases 

and/or phosphatases may also contribute to the stabilization of abnormal tau in disease 

neurons.

How does tau phosphorylation at Ser262 and Ser356 stabilize tau proteins? Ser262 and 

Ser356 are located in KXGS motifs in the first and fourth microtubule-binding repeat 

domains, respectively. In addition to directly binding microtubule [44], the microtubule-

binding domain affect the structure, metabolism, and intracellular distribution of tau [18–20, 

45–48]. Interestingly, the microtubule-binding domain is also critical for self-association of 

tau [49]. Because both the binding of tau to microtubules and its self-association/aggregation 

could affect its stability, tau phosphorylation at both Ser262 and Ser356 is expected to affect 

these processes [18, 20, 22, 28, 45, 50].

In brains of tauopathy patients, tau exists in multiple forms associated with distinct 

modifications, binding partners, and/or cellular locations, and its toxicity is likely to be 

qualitatively and quantitatively heterogeneous [51]. Therefore, targeting tau species in the 

initial phase of abnormal metabolism represents a promising therapeutic strategy. This study 

underscores the importance of tau phosphorylation at Ser356 in stabilizing tau when PAR-1/

MARK activity is abnormally elevated. Further study of the mechanisms underlying 

dysregulation of Ser262 and Ser356 phosphorylation, as well as the molecular mechanisms 

underlying tau stabilization, will identify therapeutic strategies to delay onset and 

progression of tauopathies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Ser262, but not Ser356, is phosphorylated in tau overexpressed in fly eyes.

• Ser262 phosphorylation plays a predominant role in tau stability.

• Tau phosphorylation at Ser356 occurs when PAR-1 is co-overexpressed.

• Tau phosphorylation at Ser356 stabilizes tau when PAR-1 activity is high.
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Figure 1. Wild-type human 0N4R tau overexpressed in fly retina is phosphorylated at Ser262, 
but not Ser356
Western blot analysis of fly heads carrying the eye-specific GMR-Gal4 driver alone 

(negative control) or expressing human tau driven by GMR-Gal4 (tau) with a pan-tau 

antibody (total tau) or antibodies that recognize the phosphorylation status of tau at specific 

sites (pSer262 and pSer356). Tau in the slower-migrating band (tauupper) and the faster-

migrating band (taulower) are indicated. The asterisk indicates a non-specific band detected 

by pSer356 antibody in the negative control. Tubulin was used as a loading control.
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Figure 2. Blocking tau phosphorylation at Ser262 with unphosphorylatable alanine substitutions 
(S262A) preferentially reduces the levels of less extensively phosphorylated forms of tau
(A) Tau mRNA levels in fly heads expressing human wild-type tau (tau) and S262A tau 

(S262A) were quantitated by qRT-PCR (means ± SD, n = 3; *p<0.05, Student's t-test). (B) 

Introduction of the S262A mutation decreased the levels of tau, with a more pronounced 

effect on taulower. Western blotting of wild-type tau or S262Atau with pan-tau antibody 

(total tau) or antibodies that recognize the phosphorylation status of tau at specific sites 

(TAU-1 and pS202). Representative blot (left), relative ratio of signal intensities of total tau 

(right, top), the relative ratio of signal intensities of tauupper and taulower (right, middle), and 

relative ratio of signal intensities of TAU-1 and pS202 (right, bottom) are shown. Means ± 

SD, n = 5; *, p < 0.05; ***, p < 0.005, n.s., not significant by Student's t-test. Tubulin was 

used as a loading control.
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Figure 3. Tau phosphorylation at Ser356 contributes to stabilization of tau when PAR-1 activity 
is abnormally elevated
(A) Western blot of fly heads expressing tau (tau) or co-expressing tau and PAR-1 (tau

+PAR-1), with or without phosphatase treatment, with anti-pan-tau antibody (tau) or an 

antibody that recognizes tau phosphorylated at Ser356 (pS356). The asterisk indicates a non-

specific band detected by the anti-pSer356 antibody after phosphatase treatment. (B) 

Western blot analyses of fly heads expressing S262A tau (S262A) or co-expressing S262A 

and PAR-1 (S262A+PAR-1) with anti-tau antibody (tau) or anti-pSer356 antibody (pS356). 

(C) Western blot of fly heads expressing tau carrying the S262A/S356A double mutation 

(S2A) or co-expressing S2A and PAR-1 (S2A+PAR-1), with anti-tau antibody (tau). 

Representative blots are shown, along with the relative ratios of signal intensities of total tau 
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blots of phosphatase-treated samples. Means ± SD, n = 4–5; ***, p < 0.005 by Student's t-

test. Tubulin was used as a loading control.
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Figure 4. Working model of the roles of Ser262 and Ser356 in tau stabilization
(Left) When PAR-1/MARK activity is normal, tau phosphorylation at Ser262 plays the 

predominant role in the stabilization of tau. (Right) By contrast, when PAR-1/MARK 

activity is high, tau phosphorylation at Ser356 occurs and contributes additively to tau 

stabilization. This process promotes subsequent tau phosphorylation, accumulation and 

toxicity.
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