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Research Article

Modulation of Aub–TDRD interactions elucidates piRNA
amplification and germplasm formation
Nicholas Vrettos1, Manolis Maragkakis2, Panagiotis Alexiou3, Paraskevi Sgourdou4, Fadia Ibrahim1, Daniel Palmieri1 ,
Yohei Kirino5 , Zissimos Mourelatos1

Aub guided by piRNAs ensures genome integrity by cleaving ret-
rotransposons, and genome propagation by trapping mRNAs to
form the germplasm that instructs germ cell formation. Arginines at
the N-terminus of Aub (Aub–NTRs) interact with Tudor and other
Tudor domain–containing proteins (TDRDs). Aub–TDRD interactions
suppress active retrotransposons via piRNA amplification and form
germplasm via generation of Aub–Tudor ribonucleoproteins. Here,
we show that Aub–NTRs are dispensable for primary piRNA bio-
genesis but essential for piRNA amplification and that their sym-
metric dimethylation is required for germplasm formation and germ
cell specification but largely redundant for piRNA amplification.

DOI 10.26508/lsa.202000912 | Received 22 September 2020 | Revised 13
December 2020 | Accepted 14 December 2020 | Published online 29
December 2020

Introduction

PIWI proteins belong to the Argonaute family of RNA binding
proteins; they are expressed in the germline of all animals and bind
to small RNAs termed (piRNAs) PIWI-interacting RNAs (1). A major
and ancestral function of PIWI proteins and piRNAs is to suppress
retrotransposons and viruses (1, 2, 3, 4). The PIWI domain of
Argonaute proteins contains an RNAse-H fold that can cleave target
RNAs complementary to their bound (guide) small RNA, whereas
the PAZ domain binds and protects the 39 end of the guide RNA (1).
The N-terminus of PIWI proteins contains arginines (NTRs) that are
symmetrically dimethylated (sDMA) by protein arginine meth-
yltransferase 5 (PRMT5) (5), known as Capsuleen/Dart5 (Csul) in
Drosophila (6, 7), and bind to Tudor domain–containing proteins
(TDRDs) (8, 9, 10, 11, 12). Primary piRNAs are derived from long,
single-stranded RNAs that are processed on the surface of mito-
chondria (1). PIWI proteins are intimately involved in piRNA bio-
genesis by using their MID domain to bind the 59 phosphate of
longer piRNA precursors, protecting a ~26- to 30-nucleotide frag-
ment that will give rise to the mature piRNA, and positioning the

Zucchini endonuclease to cleave the precursor right downstream of
the PIWI footprint (13, 14, 15). A second PIWI protein may use the
newly created 59 end of the precursor to generate another phased
(trailing) piRNA, and the process may be repeated until the entire
precursor RNA is converted to piRNAs (13, 14, 15, 16). The initial cut of
the piRNA precursor is often generated by piRNA-guided cleavage
(17).

Drosophila melanogaster expresses three PIWI proteins termed
Aubergine (Aub), Piwi, and Ago3 (18, 19, 20, 21). Most primary piRNAs
are derived from piRNA clusters, which contain sequence fragments
of retrotransposons, often arranged in an antisense orientation, as a
form ofmolecular memory of past retrotransposon activity (20). Piwi-
bound piRNAs are imported to the nucleus where Piwi functions in
chromatin silencing of nascent transposon transcripts (1, 22). In
cytoplasmic, perinuclear structures known as nuage, Aub–piRNAs
target and cleave transposons, and the piRNA response is amplified
by successive rounds of Aub and Ago3 interactions, in a process
known as heterotypic ping-pong (1, 20, 21, 22). The Krimper (Krimp)
TDRD is essential for piRNA amplification by assembling a complex of
methylated Aub bound to piRNAs that are antisense to transposons
and nonmethylated Ago3 that receives the Aub-generated, cleaved,
retrotransposon products to form sense piRNAs. Ago3 is then
methylated and presumably released from Krimp (22, 23, 24). The
DEAD box protein Vasa (Vas) facilitates transfer of cleaved piRNA
precursors during heterotypic ping-pong (25), whereas homotypic
Aub–Aub ping-pong is suppressed by Qin (Kumo) (26, 27).

During Drosophila oogenesis, germline mRNAs in the form of ri-
bonucleoproteins (mRNPs) assemble at the posterior of the oocyte to
form germ granules in a specialized cytoplasmic structure known as
germ (pole) plasm. The germplasm is transmitted to the embryo and,
its mRNPs are necessary and sufficient to induce the formation of
primordial germ cells (PGCs, germ stem cells) from undifferentiated
cells (28, 29). Genetic studies have identified factors that are critical
for germplasm formation and among them are Tudor (Tud), a large
protein containing 11 TUD domains (30, 31), Aub (19) and Csul (6, 7).
sDMAs in Aub N-terminus, generated by Csul, are required for
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germplasm assembly in vivo (5) via interactions with Tud (9, 10).
Structural studies have shown that extended TUDdomains (eTUD) of Tud
specifically recognize sDMAs and surrounding Aub backbone and sup-
port a multivalent Aub–Tud interaction (32, 33, 34). Aub-bound piRNAs
tether and trapmRNAs to the germplasm in a Tud-dependentmanner to
form thegermlinemRNPs that are essential for PGCspecification (35) and
piRNA inheritance, which will initiate piRNA biogenesis and transposon
control in the germline of the offspring (36).

Here, we report that the dual role of Aub in transposon control and
germline mRNP formation is orchestrated by Aub–NTRs and their
methylation status. We find that Aub–NTRs are dispensable for primary
piRNA biogenesis but essential for piRNA amplification and that their
symmetric dimethylation is required for germplasm formation and
germ cell specification but largely redundant for piRNA amplification.

Results

Arginine (R) to lysine (K) mutation in Aub is a new hypomorphic
allele

Weengineered anaubmutant by replacing the four arginine residues
(R11, R13, R15, and R17) that are subjected to symmetrical dimethy-
lation, with lysines (RK), and inserted three tandem HA epitopes
(3xHA) at the N-terminus. A corresponding wild-type (WT) aub rescue
construct was also created (Fig 1A). The RKmutation in Aub abolishes
direct interactions with Tud (9) and Krimp (24) but not Qin (Kumo)
(27). Transgenes were recombined downstream of UASp promoter,
and select WT and RK lines were expressed by nos-Gal4-VP16
germline–specific driver under a heteroallelic aub null background
(QC42/HN2) (Fig S1A and B). Thus, the only source of Aub in these flies
is from the HA-tagged transgene. To examine Aub methylation, we
performed anti-HA immunoprecipitations (IP) and probed the im-
munoprecipitates on Western blots (WBs) with SYM11, an antibody
that specifically recognizes sDMAs. As shown in Fig 1B, SYM11 reac-
tivity is lost specifically in aubRK, consistent with R11, R13, R15, and R17
being the main arginines in Aub that are subject to symmetric
methylation. We find equivalent protein levels of Aub, Ago3, Piwi, Tud,
and Vas between aubWT and aubRK ovaries (Fig 1C). Females from aub
mutants exhibit low fecundity rates and carry egg chambers with severe
axonal defects, and embryos laid by aub mothers arrest before gas-
trulation and never form PGCs (19, 37). We find that AubWT restores
fecundity to normal levels, whereas the egg laying rate in aubRK is
improved compared with aub but lags behind that of aubWT (Fig S1C). In
aubandotherpiRNApathway componentmutants, dorsoventral defects
appear as a result of inadequate Grk signaling from dorsal follicle cells
(38). We find, by immunofluorescent microscopy (IF), that Grk levels and
localization pattern appear normal in stage 9-10 aubRK egg chambers
(Fig S1D). More than 60% of embryos laid by aubRK mothers do not
display dorsal appendage abnormalities and are similar to aubWT (Fig
S1E and Table S1). Nevertheless, only 4% of them are able to complete
development, but in all cases, the adult offspring are devoid of germline
(Table S2, see below). These findings show that unlike the severe
germline defects of Aub loss of function, aubRK flies lay adequate
amount of eggs in the first week of maturity, do not display body axis
pattern defects, and express piRNA pathway proteins at normal levels.
The AubRK protein itself does not have toxic/gain of function properties,

as it does not affect viability or fertility of flies when expressed alongside
endogenous Aub.

Aub, Tud, and Krimp nuage localization is disrupted in aubRK

Wenext examinedby IF the localizationof relevant PIWI pathwayproteins
in ovaries from yw (wild-type), aub,aubWT, andaubRKflies.Wefind that in
the absence of endogenous Aub, and in contrast to AubWT, AubRK does
not localize to nuage, irrespective of which promoter drives transgene
expression, nanos (Figs 1D and S2A) ormaternalα-tubulin (Fig S1F). In the
presence of endogenous Aub, AubRK localizes to nuage, although in a less
granular fashion (Fig S1G), as previously reported (24), mimicking the
localization pattern of endogenous Aub seen in nurse cells from tud null
ovaries (tud1/Df(2R)PurP133) (Fig S1H). Similarly, Krimp and Tud do not
localize to nuage in aubRK ovaries, with Krimp aggregating in cytoplasmic
bodies (23) and Tud found diffusely in the cytoplasm (Figs 1D and S2A). In
aub, Ago3 is absent from nuage and concentrates in Krimp bodies (23)
(Figs 1D and S2A). Surprisingly, we find that Ago3 persists in nuage
structures, although at lower levels than that in aubWT (Figs 1D and S2A).
The nuage localization of Qin and Vas and the nuclear localization of Piwi
are unaffected inaubRK (Figs 1D andS2A). Thesefindings support roles for
bothAub–NTRs andAubRNA–binding capacity in nuage formation. In the
presence of endogenous Aub, the RNA binding of AubRK is sufficient to
recruit it to nuage structures nucleated by endogenous Aub, but AubRK

does not properly condensate in granules as it does not associate with
Krimp and likely other TDRDs. In the absence of endogenous Aub, AubRK

alone is unable to build nuage structures, and Tud and Krimp are es-
sentially absent from nuage.

AubRK is loaded with piRNAs, but piRNA amplification collapses

Next, we examined the piRNAs that are bound to Aub, Ago3, and Piwi in
aubRK and aubWT ovaries. We performed IPs, extracted bound RNA from
equivalent protein amounts, as determinedbyWB, andanalyzed themby
denaturing PAGE after 59 end radiolabeling. We find in aubRK that all PIWI
proteins are loaded with piRNAs (Fig 2A). To further characterize these
piRNApopulations, we generated cDNA libraries followedby sequenceby
synthesis. We find that Aub piRNAs and Piwi piRNAs from aubRK have
similar nucleotide lengths (Fig 2B) and display the characteristic 59
Uridine preference (1U) (39) (Fig 2C) as those from aubWT indicating that
primary piRNA biogenesis is intact and that the RK mutation does not
impair piRNA loading to Aub. Ago3 piRNAs derived from sense retro-
transposons after heterotypic ping-pong, display a 10th nucleotide
Adenosine bias (10A) (20, 21), and are typically trimmed at the 39 end by
the Nibbler (Nib) exonuclease (1, 40). We find that Ago3 piRNAs in aubRK

are longer by onenucleotide than those fromaubWT (Fig 2B), withmarked
reduction of 10A and increase of 1U (Fig 2C), indicating a drastic reduction
of ping-pong amplification. Longer piRNA lengths have also been re-
ported in Drosophila tud (8), Nib (40), and papi orthologues in silkworm
(12, 41) and mouse (42). To further analyze the impact of aubRK in het-
erotypic ping-pong and piRNA population shaping, we plotted the 59-59
position between Aub, Ago3, and Piwi piRNAs in aubRK versus aubWT. As
shown inFig 2D, the59-59positionbetweenAubandAgo3piRNAs inaubWT

shows a peak at position 10 (blue line), consistent with robust Aub-Ago3
ping-pong, which is abolished in aubRK (red line). Similar analysis be-
tween Ago3 and Piwi reveals the expected phasing signature of ~27
nucleotides (40) of Piwi trailing piRNAs initiating downstream of Ago3
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cleavage in aubWT, which is dramatically reduced in aubRK (Fig 2D),
although the lesser pathway of Aub-generated, Piwi trailing piRNAs is
not affected (Fig 2D). The profound collapse of Aub–Ago3 ping-pong
in aubRK ovaries extends to all transposon classes (Fig 2E). Collec-
tively, our findings show that Aub–NTRs are dispensable for primary
piRNA biogenesis, which takes place on the cytoplasmic surface of
mitochondria, as Aub piRNAs in aubRK are identical to those from
aubWT. However, AubRK is unable to interact with Krimp and build the
piRNA amplification complex in nuage that would recruit unloaded
Ago3 to receive the products of transposon cleavage by Aub piRNAs.
As a result, heterotypic Aub–Ago3 collapses, Ago3 enters the primary
piRNA pathway (Fig S2B), and Piwi piRNA population is altered, as
trailing piRNAs disappear.

Methylation of Aub–NTRs is largely dispensable for piRNA
amplification

By replacing Aub–NTRs with lysines, the RK mutant abolishes meth-
ylation but also changes the arginines. To examine in more detail the
Aub–NTR methylation itself in piRNA biogenesis and amplification, we
employed csulRM50, a genetic loss of function mutant of Drosophila
PRMT5 (5, 7), and two short hairpin (sh) RNA knockdown lines, csulTRiP1

and csulTRiP2, generated by the Transgenic RNAi Project (TRiP). Germline
knockdown of Csul was accomplished by driving shRNA expression
with the triple Gal4 germline driver, which led to complete loss of Aub
sDMAs in these flies (Fig 3A). WBs of ovary extracts from csul knock-
down flies show reduction of Aub, Ago3, and Tud proteins (Fig 3B),
similar to what we have previously reported for csulRM50 (5). Unlike
AubRK, nonmethylated Aub is found in nuage of csuli1, although at
lesser amounts and forming a thinner and less granular perinuclear
circle than methylated Aub; the same is true for Krimp, Ago3, and Tud
(Figs 3C and S3). To characterize the impact of nonmethylated Aub in
piRNA biogenesis and amplification, we sequenced and analyzed Aub-
bound and Ago3–piRNAs from csulRM50 ovaries and compared them
with those from w ovaries, expressing wild-type methylated Aub. We
find that Aub piRNAs from csulRM50 ovaries display 1U preference and
Ago3 piRNAs show a 10A bias, similar to those from w ovaries (Fig 3D).
The 59-59 distance between Aub and Ago3 piRNAs in csulRM50 shows a
peak at position 10 (red line), which is similar to that seen in w (Fig 3E)
and similar Aub–Ago3 ping-pong z-scores for the various transposon
classes (Fig 3F). These results indicate that nonmethylated Aub is still
capable of assembling the piRNA amplification complex and engages
in heterotypic Aub–Ago3 ping-pong for transposon control.

Neither AubRK nor nonmethylated Aub can assemble germplasm
resulting in sterile offspring

Aub and Tud are essential components of the mRNP granules that
constitute the germplasm (43), which by IF appears as a thick
crescent at the oocyte posterior. In the presence of endogenous

Figure 1. Aub, Tud, and Krimp do not localize to nuage in aubRK.
(A) Schematic representation of wild type (WT) and arginine to lysine (RK) Aub
constructs. (B) Western blot detection of immunoprecipitated Aub from ovary
lysates of indicated genotypes. aubWT = aubQC42/HN2; nos > 3xHA-aubWT, aubRK =
aubQC42/HN2; nos > 3xHA-aubRK. NI, nonimmune serum, sDMA-Aub is
detected with SYM11 antibody. (C)Western blot analysis in ovary lysates from

indicated genotypes. y w = y1 w1, aub = aubHN2/QC42. Tub serves as loading
control. (D) Color-inverted confocal images depicting the localization pattern
of indicated proteins (grey) in stage 4–7 egg chambers from indicated
genotypes. Scale bar = 5 μm.
Source data are available for this figure.
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Aub, AubRK localizes to the germplasm (Fig S4A), indicating that the
RNA binding of AubRK is sufficient to recruit it to germplasm nu-
cleated by endogenous Aub. In contrast, we find a drastic reduction
of Aub and Tud at the oocyte posterior of stage 10 egg chambers in

ovaries from aubRK (which lack endogenous Aub) and csuli1, similar
to that of tud (Fig 4A). As a consequence, PGCs are not induced and
the viable offspring of mothers expressing AubRK or nonmethylated
Aub never form a germline (Fig 4B).

Figure 2. Intact primary piRNA biogenesis and
AubRK piRNA loading but collapse of
heterotypic ping-pong in aubRK.
(A) Proteins (top) and bound piRNAs (bottom) of
immunoprecipitated Aub, Ago3, and Piwi from
indicated genotypes. aubWT,RK = aubQC42/HN2; nos >
3xHA-aubWT,RK. NI, nonimmune serum. (B) piRNA
length distribution. (C) piRNA nucleotide
composition. (D) Relative position of piRNA 59
ends bound to indicated proteins. (E) Heat map
representing z-scores for a 10-nt overlap
between Aub–Ago3 transposon aligning piRNA
pairs in indicated libraries. piRNA transposons are
ranked by mean total piRNA abundance. ppkm,
piRNA pairs per kilobase per million.
Source data are available for this figure.
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Discussion

Altogether our findings elucidate the role of Aub–NTRs and their
methylation in transposon control and germplasm formation, in

vivo. By replacing Aub–NTRs with lysines, essential interactions
between Aub and Krimp and Aub and Tud are abolished, leading to
collapse of piRNA amplification and transposon control, and of
germplasm and germ cell specification, respectively. Although

Figure 3. piRNA biogenesis and ping-pong are
largely intact in the absence of sDMAs.
(A) Western blot detection of immunoprecipitated
Aub from ovary lysates of indicated genotypes. wi =
MTD > wTRiP, csuli1 = MTD > csulTRiP1, csuli2 = MTD >
csulTRiP2. NI, nonimmune serum, sDMA-Aub is
detected with SYM11 antibody. (B) Western blot
detection analysis in ovary lysates from indicated
genotypes. Tub serves as loading control. (C) Color-
inverted confocal images depicting the localization
pattern of indicated proteins (grey) in stage 5–8
egg chambers from indicated genotypes. Scale
bar = 5 μm. (D) piRNA nucleotide composition.
(E) Relative position of piRNA 59 ends bound to
indicated proteins. (F) Heat map representing
z-scores for a 10-nt overlap between Aub–Ago3
transposon-aligning piRNA pairs in indicated
libraries. piRNA transposons are ranked by mean
total piRNA abundance. ppkm, piRNA pairs per
kilobase per million.
Source data are available for this figure.
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secondary piRNAs may induce the generation of additional primary
piRNAs, our data align with previous reports (44, 45) that the
amplification loop is not required for primary piRNA biogenesis. In
addition, we provide in vivo evidence that the phased nature of
primary piRNA processing may be decoupled from ping-pong, as
previously suggested (39, 46).

aubRK shows high embryo lethality because transposons are
deregulated. The small percentage of embryos that achieve adulthood
most likely represent escapers, where transposon overexpression did
not reach a lethal thresholdduringoocyte nucleusmaturation. The few
embryos that survive give rise to agametic offspring because germ-
plasm does not form and germ cells are not specified. The hypo-
morphic character of aubRK allows us to dissect its pleiotropic role in
the piRNA pathway and unmasks the grand-childless nature of the
phenotype. Although this article was in the final stages of preparation,
a preprint from the Aravin Lab (47 Preprint) showed a similar impact of
Aub–RK mutant protein in piRNA amplification and elucidated the
structural determinants of Krimp that build the piRNA amplification
complex (47 Preprint).

By removing the methylation marks deposited by Csul in Aub–NTRs,
we find that heterotypic ping-pong is largely intact, indicating that
nonmethylated arginines are sufficient for interacting with Krimp, and
likely other nuage TDRDs, to suppress transposons resulting in much
higher embryo viabilities and normal somatic development of the
offspring (6, 7). Aub regulates mRNAs in the embryo soma (48), and this
function appears independent of Aub methylation and Aub–Tud in-
teraction, given the viability and normal somatic development of csul
and tud offspring. However, because nonmethylated Aub is unable to
interact with Tud, germplasm does not form and offspring are agametic
(Fig 4B). The biological significance of Aub–Tud interactions in germ

granule assembly is further supported by the similar grand-childless
phenotypeof Tud loss of function. Somatic development in the absence
of Tud still takes place, but germ granule mRNPs do not assemble, and
PGCs are not induced (31). Among TDRDs, Tud has the largest number of
eTUD domains that interact with sDMAs of Aub (33, 49). Along with
Aub–piRNA binding of mRNAs (35), these multivalent interactions are
critical for germ granule mRNP assembly. Our findings indicate that
methylation of Aub–NTRs functions primarily to build germline mRNPs
and may represent an evolutionary conserved pathway of germline
mRNP formation. Notably, mammalian homologs of Aub and Tud, such
as mouse Miwi (Piwil1) and mouse Tdrd6, are essential components of
chromatoid bodies, which assemble in pachytene spermatocytes
and round spermatids and are enriched inmRNAs (50). Miwi interaction
with Tdrd6 is dependent on sDMAs of Miwi-NTR (9). It will be interesting
to further explore the biological significance of such interaction in
germline mRNP assembly in mammals.

Materials and Methods

Plasmid construction

WT and RK versions of aub were amplified with PfuUltra (Agilent) using
previously published laboratory constructs as template (9) and the
following primers CACCAATTTACCACCAAACCCTGTAAT andTTACAAAAA
GTACAATTGATTCTGC. Amplicons were directionally cloned into
pENTR/D-TOPO (Thermo Fisher Scientific) and recombined into
Gateway vector pPHW (Drosophila Genomics Research Center).
P-element–based Drosophila transgenesis followed (Genetic Ser-
vices, Inc.).

Figure 4. Germplasm does not form when Aub lacks
sDMAs or when arginines are replaced with lysines,
resulting in sterile offspring.
(A) Confocal images depicting Aub and Tud localization
pattern (green) at the posterior pole of stage 10 egg
chambers from indicated genotypes. Nuclei are
stained with DAPI (blue). y w = y1 w1, aub = aubQC42/HN2,
aubWT,RK = aubQC42/HN2; nos > 3xHA-aubWT,RK, csuli1 =
MTD > csulTRiP1, tud = tud1/Df(2R)PurP133. Scale bar = 10
μm. (B) Ovaries dissected from female adult offspring of
indicated maternal genotypes. csuli2 = MTD >
csulTRiP2. Scale bar = 100 μm.
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Fly husbandry

Flies were grown on standard cornmeal molasses at 25°C, with 70%
relative humidity under a 12-h light–dark cycle. Virgin female flies
weremated with y wmales inside vials supplied with dry yeast for at
least 2 d before downstream processing. A full list of lines used in
this work is detailed in Table S3.

Ovary immunofluorescence and confocal microscopy

Ovaries were dissected from 2- to 5-d-old flies inside cold Ringer’s
solution (10 mM HEPES pH 6.9 with KOH, 130 mMNaCl, 4.7 mM KCl, 1.9
mM CaCl2). All wash and incubation steps required constant
shacking in vertically placed tubes and were executed at room
temperature, unless otherwise stated.

Grk, Tud, and Osk staining was based on reference 51 with minor
modifications. Briefly, ovarioles were separated with fine forceps and
fixed for 10 min. The fixative solution contained five volumes of
n-heptane with 1 volume of devitalizing buffer (6.16% paraformalde-
hyde, 16.7 mM KH2PO4/K2HPO4 pH 6.8, 75 mM KCl, 25 mM NaCl, 3.3 mM
MgCl2). After three rinses in PBS (10mMNa2HPO4, 1.8 mM KH2PO4 pH 7.4
withHCl, 137mMNaCl2, 2.7mMKCl) and twomore in PT3 (0.3% Triton X in
PBS), thematerial was blocked in PBT3 (1%bovine serumalbumin, 0.3%
Triton X in PBS) for 2 h. Ovaries were incubated overnight at 4°C with
appropriately diluted primary antibodies in PBT3 (Table S4). The next
day, after three washes in PT3 for 30 min each, Alexa Fluor secondary
antibody incubation followed for 2 h. Ovaries were subsequently
washed three times in PT3 for 30 min, rinsed twice in PBS, and in-
cubated with DAPI staining solution (1 μMDAPI in PBS) for 10min. After
two PBS washes for 10 min each, the material was mounted with
ProLong Gold (Thermo Fisher Scientific) and stored in the dark.

Aub, HA, Krimp, Ago3, Qin, Vas, and Piwi staining was adopted from
reference 52 with minor modifications. Whole mount ovaries were fixed
strictly for 5 min. Fixative solution is detailed in the previous paragraph.
Ovaries were rinsed three times in PBS followed by three rinses in PT
(0.1% Triton X in PBS) and 1-h incubation in the same buffer. Next,
ovarioles were separated with fine forceps and further incubated for 1 h
in PT. Thematerial was blocked in PBT (1% BSA, 0.1% Triton X in PBS) for 2
h and then incubated overnight at 4°Cwith primary antibodies diluted in
PBT (Table S4). The next day, after eight washes in PBT for 15 min each,
Alexa Fluor secondary antibody incubation proceeded overnight at 4°C.
The third day, ovaries were washed eight times in PT for 15 min each,
rinsed twice in PBS, and further processed with DAPI staining and
mounted exactly as described in the paragraph above.

Preparations were imaged on the Leica TCS and illustrated as
single Z-stacks. Each protein was studied under identical microscope
settings to permit comparison of signal intensity between genotypes.

Lysate preparation, Western blot, and antibodies

Ovaries from 2- to 5-d-old yeast fed flies were dissected in cold PBS and
pooled in batches of 50. The dissectedmaterial was flash-frozen in liquid
nitrogen and stored at −80°C. For lysate preparation and WBs, ovaries
were processed, as previously described (46), with the addition of TCEP to
0.5 mM in RSB-200 buffer. Ago3-380 antibody was produced by im-
munizing rabbits with synthetic peptide IKKSRGIPAERENL con-
jugated to KLH via an amino-terminal cysteine, followed by affinity

purification of sera over columns containing the immobilized
peptide (Genscript). Ago3-380 successfully detected and immu-
noprecipitated Ago3 protein in ovary lysates (Fig S4B). Antibodies
used for WBs are listed in Table S5.

Immunoprecipitation and RNA isolation

100 ovaries per sample were used in Aub and Piwi IP experiments
and processed, as previously described (46). For Ago3 IP experi-
ments, we used 150 ovaries per sample with a slight modification in
the protocol. Ovary lysates were first incubated with 4 μg Ago3-380
antibody for 2 h at 4°C and then mixed with buffer-equilibrated
Protein G Dynabeads (Thermo Fisher Scientific) for 90 min at 4°C.
The RNAs associated with immunopurified PIWI proteins were
extracted with TRIzol reagent (Ambion) and dephosphorylated with
Quick CIP (NEB) in CutSmart buffer for 10 min at 37°C. After enzyme
inactivation for 2 min at 80°C, a T4 PNK (NEB) labeling reaction was
set in 1× CutSmart buffer with the addition of DTT to 5 mM in the
presence of γ32PATP. Reactions were run with 8 M urea 15% PAGE.

Small RNA library construction

Aub, Ago3, and Piwi piRNA libraries from y w, aubWT, and aubRK were
constructed, as described in reference 46. Sequence information from
a previously published y w ovarian Aub-IP library was retrieved from
reference 35. Aub and Ago3 piRNAs from w1118 and csulRM50 were
isolated and processed into libraries, as detailed in reference 5. A
complete list of the librariesproduced for thiswork isdetailed in TableS6.

Read processing, alignment, and computational analyses

The 39 end adaptor sequence was trimmed from all reads using
Cutadapt with parameters -m 15 -e 0.25. For libraries with 8-nt random
barcode at the 39 end, an additional sequence collapsing step was
performed to discard PCR duplicates. In that step, identical reads were
collapsed, and only onewas retainedusing CLIPSeqTools (53). Afterward,
the 8-nt barcode was removed. Reads were aligned to the Drosophila
melanogaster genome (dm3) using STAR v2.4.2 using the fol-
lowing parameters: outFilterMultimapScoreRange 0, alignIntronMax
50000, outFilterIntronMotifs, RemoveNoncanonicalUnannotated, out-
FilterMatchNmin 15, outFilterMatch, NminOverLread 0.9, and sjdbO-
verhang 50. The reference gene model annotation file was
downloaded from theUniversity of California SantaCruz (UCSC) genome
browser database. Aligned reads were loaded into an SQLite3 data-
base for further processing with CLIPSeqTools and were an-
notated based on whether they were contained in elements from
RepeatMasker (downloaded from UCSC), ribosomal RNAs (extracted
from UCSC gene model annotation), transfer RNAs (downloaded
from FlyBase r5.57), piRNA clusters, and genes (from UCSC gene
model annotation file). Reads were also aligned to consensus
transposon sequences using STAR with the following parameters:
outFilterMultimapScoreRange 0, alignIntronMax 1, alignEnd-
sType EndToEnd, seedSearchStartLmax 20, outFilterMatchNmin 15,
and outFilterMatchNminOverLread 0.95. The consensus sequences
for transposable elements (v9.42) were downloaded from FlyBase.
For ping-pong analysis, the relative position distribution for Aub–
Ago3 transposon aligning piRNA pairs was calculated. Density values
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for all positions were converted to standard scores (z-scores). Heat
maps demonstrate the z-score for the 10-nt overlap. piRNA trans-
posons were ranked by mean total piRNA abundance.

Data Availability

Sequencing data have been deposited into the Sequence Read
Archive, project ID: GSE155874.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000912.
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