Structural Brain Plasticity in Epilepsy Patients Selected for Laser Interstitial Thermal Therapy: A Study of Diffusion Tensor Imaging Based Assessment of Tract Alterations

Umma Fatema
Thomas Jefferson University, umma.fatema@jefferson.edu

Mahdi Alizadeh
Thomas Jefferson University, mahdi.alizadeh2@jefferson.edu

Follow this and additional works at: https://jdc.jefferson.edu/si_ctr_2022_phase1

Part of the Neurology Commons, Surgery Commons, and the Translational Medical Research Commons

Recommended Citation
https://jdc.jefferson.edu/si_ctr_2022_phase1/72

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Phase 1 by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Structural Brain Plasticity in Epilepsy Patients Selected for Laser Interstitial Thermal Therapy: A Study of Diffusion Tensor Imaging Based Assessment of Tract Alterations

Umma Fatema, Mahdi Alizadeh*

Introduction: The standard of care for drug resistant temporal lobe epilepsy (TLE) involves surgical approaches including anterior temporal lobectomy (ATL) and laser interstitial thermal therapy (LiTT). White matter alterations following ATL are often studied using diffusion tensor imaging (DTI) which utilizes properties of water diffusion to obtain parameters (such as fractional anisotropy or FA) that can be used to detect neural plasticity. Despite being a common procedure, there are very few studies that explore post-surgical neural changes after LiTT. The objective of this study is to evaluate and explore the DTI parameter changes in patients who underwent LiTT.

Methods: DTI scans were obtained from 9 patients with focal TLE before surgery and 6 months after surgery. Images were analyzed using Tract-Based Spatial Statistics (TBSS).

Results: FA value was observed to have decreased in contralateral cerebellum and ipsilateral superior temporal gyrus. On the other hand, FA value increased in ipsilateral fusiform, inferior temporal gyrus, brainstem and contralateral posterior cingulum, precuneus and paracentral lobule.

Discussion: Although epilepsy often has a central focus (part of which is surgically removed for treatment purposes) studies have shown that this disease involves multiple seemingly unrelated regions of the brain. Based on the results, post-LiTT patients have been observed to have a reduction of the integrity of white matter tracts in crucial regions of the limbic, frontal and temporal lobes. Since these regions are involved in important processes such as memory and...
language, findings from this study can help predict post-surgical outcomes for patients who undergo LiTT.