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Long‑term exposure of human 
endothelial cells to metformin 
modulates miRNAs and isomiRs
Angelica Giuliani1,6, Eric Londin2,6, Manuela Ferracin3, Emanuela Mens�1, 
Francesco Prattichizzo4, Deborah Ramini1, Fiorella Marcheselli5, Rina Recchioni5, 
Maria Rita Rippo1, Massimiliano Bonafè3, Isidore Rigoutsos2, Fabiola Olivieri1,5* & 
Jacopo Sabbatinelli1

Increasing evidence suggest that the glucose‑lowering drug metformin exerts a valuable anti‑
senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) 
was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, 
harboring addition or deletion of one or more nucleotides at the 5′ and/or 3′ ends of the canonical 
miRNA sequence. We performed a comprehensive analysis of miRNA and isomiR profile in human 
endothelial cells undergoing replicative senescence in presence of metformin. Metformin treatment 
was associated with the differential expression of 27 miRNAs (including miR‑100‑5p, ‑125b‑5p, ‑654‑
3p, ‑217 and ‑216a‑3p/5p). IsomiR analysis revealed that almost 40% of the total miRNA pool was 
composed by non‑canonical sequences. Metformin significantly affects the relative abundance of 133 
isomiRs, including the non‑canonical forms of the aforementioned miRNAs. Pathway enrichment 
analysis suggested that pathways associated with proliferation and nutrient sensing are modulated 
by metformin‑regulated miRNAs and that some of the regulated isomiRs (e.g. the 5′ miR‑217 isomiR) 
are endowed with alternative seed sequences and share less than half of the predicted targets with the 
canonical form. Our results show that metformin reshapes the senescence‑associated miRNA/isomiR 
patterns of endothelial cells, thus expanding our insight into the cell senescence molecular machinery.

Metformin is a hypoglycemic drug used as a first-line treatment for newly diagnosed type 2 diabetes  patients1. 
Over the years, metformin has been shown to exert a geroprotective action, beyond its primary glucose-lowering 
 effect2. In particular, recent metanalyses showed a significantly lower rate of all-cause mortality and age-related 
disease (ARD) incidence associated with metformin treatment, thus suggesting that this drug may extend lifespan 
and disease-free survival in diabetic subjects even compared with non-diabetic  people3,4.

These evidence prompted the launching of the controlled clinical trial Targeting Aging with Metformin 
(TAME), in order to test whether metformin can delay the onset of ARDs in healthy (non-diabetic) aged 
 subjects5. However, although the clinical outcomes of metformin as a pharmacological intervention to achieve 
healthy longevity are currently being investigated, the exact mechanisms of action remain  elusive6. At the cellular 
level, metformin acts on several pathways which are recognized as molecular pillars of cell senescence, including 
inflammation, autophagy, proteostasis and cellular  survival2,7,8. While metformin has been shown to influence 
the cellular epigenetic machinery by modulating Sirtuin-1 (SIRT1)9, i.e. the pro-longevity histone  deacetylase10, 
few studies have attempted to identify changes in expression profiles of microRNAs (miRNAs, miRs) induced by 
metformin treatment in the framework of cellular senescence, mainly showing a general increased abundance of 
multiple miRNAs after a short-term, high-dose  treatment11,12. Due to their capability of preventing translation of 
specific messenger RNAs (mRNA), miRNAs, can impact many cellular processes, including cellular  senescence13. 
The knowledge of miRNAs has significantly improved with the advent of next-generation sequencing (NGS) 
technologies. Indeed, small RNA sequencing (small RNA-seq) of miRNAs enables the analysis of the expression 
of thousands of miRNAs, the concurrent discovery of new miRNAs, and confirmation of known  miRNAs14. 
Moreover, bioinformatic analyses of small RNA-seq data have shown that multiple miRNA isoforms, commonly 
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named isomiRs, can be generated from the processing of each precursor  miRNA15. IsomiRs present with the 
addition or deletion of one or more nucleotides at the 5′ and/or 3′ ends of the canonical miRNA sequence and are 
thought to be produced as distinct products rather than being transcription  errors16,17. Beyond these genetically 
encoded variants, miRNAs can undergo post-transcriptional sequence modifications resulting in non-template 
uridylation at the 3′  end18. Growing evidence showed that these modifications can affect the stability of the RNA 
sequence, confer different targets compared the canonical mature  form19, or affect the subcellular compartmen-
talization of the  miRNA20. However, their biological significance is still under discussion.

Based on the evidence that treatment with metformin can modulate in vitro cellular senescence, as well 
as the biogenesis of  miRNAs12, we performed for the first time a miR-seq analysis of human umbilical vein 
endothelial cells (HUVECs) undergoing replicative senescence in the presence of pharmacologically pertinent 
doses of metformin in order to identify senescence-associated (SA) miRNA and isomiR signatures affected by 
metformin treatment.

Results
Modulation of miRNA patterns induced by metformin treatment in senescent endothelial 
cells. To identify the pool of SA miRNAs modulated by metformin, we used a well-established model of 
human umbilical vein endothelial cells (HUVECs) undergoing replicative  senescence21,22. When the proportion 
of SA β-gal positivity exceeded 10% in replicating cells (cPD = 9.83; Fig. 1a), 20 μM metformin was added at each 
medium replacement, and cells were cultured until complete growth arrest (SA β-gal positive cells > 80%). We 
selected this concentration since it falls within the range observed in plasma of patients treated with the lowest 
doses of  metformin6. At passage 16, after approximately 60 days, senescent cells (SEN) and senescent cells treated 
with metformin (SEN + M) were harvested to perform small RNA-seq (Fig. 1a). Interestingly, SEN + M showed 
an increased population doubling rate (Fig. 1a), a reduced SA β-gal activity (Fig. 1b), and a decreased CDKN2A 
mRNA expression (Fig. 1c) compared to SEN.

Pair-wise correlation among normalized reads generated by three biological replicates for each condition gave 
Pearson correlation coefficients > 0.90 (Supplementary Fig. S1), indicating high correlation among replicates. 
Normalized miRNA expression data were compared via principal component analysis (PCA). A PCA plot based 
on principal components 1 and 2, explaining 27.2% and 22.4% of the total variance respectively, showed a clear 
separation between SEN and SEN + M (Fig. 2a). MiRNAs with a significant moderated t test (FDR < 0.05) and an 
absolute fold change ≥ 1.5 were considered as differentially regulated. The Volcano plot showed log2 fold change 
and − log10 p-values of all the detected miRNAs (Fig. 2b), while the normalized expressions of differentially 
expressed miRNAs were displayed in a heatmap (Fig. 2c). Of 1706 miRNAs detected in at least one sample, we 
identified 27 miRNAs whose expression was altered by metformin. In particular, 15 miRNAs were upregulated 
and 12 were downregulated in SEN + M (Fig. 2c).

Changes in the isomiR pattern associated with metformin treatment. Since studying miRNAs 
at the isomiR level could lend new insights into miRNA biology and function, we analysed isomiR modulation 
associated with metformin treatment of HUVECs during replicative senescence. IsomiRs result from a shift of 
the cutting site of Drosha/Dicer enzymatic activities during miRNA  biogenesis23,24 and can be classified into six 
categories according to the types of sequence modifications: (1) canonical miRNAs, (2) 3′ deletion isomiRs, (3) 
3′ addition isomiRs, (4) 5′ deletion isomiRs, (5) 5′ addition isomiRs, and (6) mixed isomiRs, which represent a 
combination of the prior  categories25. We also analysed the post-transcriptional addition of one or more uridines 
at the 3′ end of isomiRs and canonical miRNAs, namely uridylation. It has to be noted that the entire spectrum 
of isomiRs is covered by the standard miR-seq analysis.

Figure 3a shows the contribution of different sequence isoforms to the total miRNA pool in SEN + M. On a 
total of 3,632,423 reads, the 43.1% was mapped to non-canonical isoforms. No statistically significant difference 
in the proportion of isomiR variations between SEN and SEN + M was observed (p = 0.103).

The heatmap showed that 133 isomiRs, which are variants of a total of 73 individual miRNAs, were signifi-
cantly deregulated in SEN + M vs SEN (Fig. 3b). Specifically, 43 isomiRs were isoforms of 14 miRNAs significantly 
deregulated by metformin treatment (miR-17-3p, -100-5p, -216a-3p, -216a-5p, -217-5p, -125b-5p, -143-3p, 
-493-3p, -493-5p, -92a-1-5p, -125b-1-3p, -424-3p, -654-3p, -98-3p) (Fig. 3b, red and blue highlights refer to up-/
down-regulated miRNAs, respectively).

Among the remaining 90 deregulated isomiRs (related to a total of 59 miRNAs not significantly modulated 
by metformin), 48 were up-regulated and 42 were down-regulated in SEN + M cells (Fig. 3b, in black). These 59 
miRNAs, though not modulated by the treatment as a whole group, encompass at least one isomiR that is dif-
ferentially regulated by metformin. Notably, 3 miRNAs which were not differentially regulated between SEN + M 
and SEN, i.e. miR-92b-3p, -149-5p and -125b-2-3p, included isomiRs showing opposite regulations across the 
two different conditions. In addition, metformin induced the downregulation of isomiRs from 3 members of the 
miR-17/92 cluster, i.e. miR-17-3p, miR-18a-5p, and miR-92a-3p (Fig. 3b, right panel).

Of note, 39 of 133 metformin-modulated isomiRs showed a modification at the 5′ end (Fig. 3c), which leads to 
a shift of the seed sequence resulting in a change of the miRNA-target binding  site26. Moreover, in some instances 
the seed sequence of the 5′ isomiR is identical to the seed sequence of another canonical microRNA. Indeed, 
miR-27b-3p|+ 3|0, miR-29a-3p|-1|-2, miR-34a-5p|+ 1|+ 1 and miR-423-5p|+ 2|0 share the same seed sequence of 
miR-5693, miR-5682, miR-6499-3p and miR-486-3p, respectively. Among the differentially regulated isomiRs, the 
most frequent modification was the 3′ deletion. Furthermore, 3′uridylation was extensively represented among 
all isomiR types, except those presenting a 5′ nucleotide addition (Fig. 3c). Interestingly, metformin affected the 
expression of 24 3′-uridylated miRNAs (Fig. 3b,c).
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Figure 4a shows the expression of the different isomiR variants of the 73 miRNAs including at least one isomiR 
differentially regulated by metformin. Notably, we observed a high variability in the proportion of isomiR variants 
among the evaluated miRNAs. Indeed, the canonical form, i.e. the one reported in the miRBase database, is not 
always prevalent (e.g. in the miR-30 family) and some miRNAs included non-canonical variants.

Moreover, metformin induced a significant redistribution of the isomiR variant proportions within 6 out of 
the 27 differentially regulated miRNAs (Fig. 4b). Only one isoform was detected for 3 miRNAs (miR-17-3p, miR-
98-3p, and miR-92–1-5p), whereas no isoforms were detected for the remaining 12 miRNAs. The proportions of 
the different isomiR variation types between SEN and SEN + M are reported in Table 1.

MiRNA/isomiR expression trends in endothelial cells during replicative senescence. To gain 
insight into the biological significance of miRNA/isomiR modulation induced by metformin treatment in senes-
cent HUVECs (SEN, SEN + M) we used non-senescent HUVECs as control (Young, SA β-gal < 5%, Fig. 1b)22. 
This strategy allowed us to identify two different trends in miRNA modulation and to separate the 27 miRNAs 
according to their pattern of modulation. On one hand, 13 miRNAs were characterized by linear increasing or 
decreasing trend, when the Young/SEN/SEN + M sequence was examined (Fig. 5a, group 1). The most evident 
linear trends were observed for miR-100, -125b-5p, and -654-3p, showing the most abundant expression. Met-
formin treatment further increases the expression of these miRNAs in senescent cells. On the other hand, 14 
miRNAs were characterized by a ‘U-shaped’/ ‘inverted U-shaped’ trend of the Young/SEN/SEN + M sequence, 
suggesting that metformin induced a (partial) reversal of the miRNA expression induced by senescence (Fig. 5b, 
group 2). Among the 14 miRNAs belonging to this latter group, the ‘U-shaped’/ ‘inverted U-shaped’ trend was 
confirmed by a significant likelihood ratio test (adjusted p value < 0.05) (in bold in Fig. 5b). The most relevant 
inverted U-shaped trends were observed for miR-217-5p, -216a-3p, and -216a-5p. Overall, metformin affected 
the expression of 18 SA miRNAs (Fig. 5c) and notably was able to rescue the miR-216a and miR-217-5p overex-
pression in senescent cells previously reported by our  group22.

A similar approach was carried out on the 133 differentially regulated isomiRs. Results of the likelihood ratio 
test performed on Young, SEN, and SEN + M samples revealed significant U-shaped/inverted U-shaped trends for 
75 isomiRs and linear trends for 49 isomiRs, belonging to 52 and 20 individual miRNAs, respectively. Notably, 
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Figure 1.  Characterization of replicative senescence in HUVECs. (a) Cumulative population doubling 
(cPD) curves. Metformin treatment was started after passage 7 (cPD = 9.83) and conducted at each medium 
replacement until complete growth arrest. (b) CDKN2A mRNA relative expression in young, SEN and SEN + M. 
Data are mean ± SD. *p < 0.05; **p < 0.01. (c) Representative positivity and quantification of the SA β-Gal 
staining in young, senescent (passage 16, SEN) and SEN HUVECs treated with metformin (SEN + M). HUVECs 
human umbilical vein endothelial cells, SA senescence-associated.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21782  | https://doi.org/10.1038/s41598-020-78871-5

www.nature.com/scientificreports/

Figure 2.  MiR-seq analysis of senescent HUVECs treated with metformin. (a) PCA plot of the first two 
principal components (PC1 and PC2) using transformed normalized miR-seq data. Circles represent 95% 
confidence intervals. (b) Volcano plot of  log2 fold-changes (FC, SEN + M compared to SEN) vs. -log10 adjusted 
p-values using transformed normalized miR-seq data. MiRNAs with FC ≥ 1.5 (log2 FC ≥ 0.585) and FDR < 0.05 
(− log10 p-value < 1.30) are highlighted in red. (c) Heatmap showing clustering of samples and miRNAs 
differentially expressed in SEN + M compared to SEN. Data is shown following Z-score transformation. Red 
color indicates Z-scores > 0 (above mean), blue colors indicate Z-scores < 0 (below mean). MiRNAs are ranked 
according to the lowest  log2 FC.
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5 miRNAs, i.e. miR-92b-3p, -149-5p, -221-3p, -222-3p, 532-5p, included isomiRs following either U-shaped or 
linear trends (data not shown).

Metformin alters the miRNA and isomiR targetome of senescent endothelial cells. To explore 
target genes and pathways affected by the 11 miRNAs showing significant U-shaped or inverted U-shaped trends, 
pathway enrichment analysis was performed using the miRPath v.3/Diana tool. Figure  6a lists the involved 
KEGG pathways (p < 0.01) ranked by the significance of the enrichment. The proportion of targeted genes over 
total genes for each pathway is also reported. A considerable number of pathways related to cell proliferation, 
i.e. TGFβ, ErbB, Wnt and MAPK pathways, is significantly enriched. Notably, the PI3K-Akt-mTOR pathway is 
the one containing the greatest amount of targeted genes (72.3%), in agreement with the inhibitory effects of 
metformin on mTOR  signaling27.
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Among these miRNAs, we focused on the only two miRNAs showing detectable levels of at least one 5′ iso-
form, i.e. miR-217-5p and miR-216a-3p. Interestingly, the canonical/3′ and the 5′ miR-217-5p isomiRs share only 
half of the predicted targets, while the other half is exclusive to either seed sequence. Regarding miR-216a-3p, the 
deletion of one or two nucleotides at the 5′ end leads to the generation of two alternative seed sequences. The 3 
different seed sequences shared only a small pool (35) of predicted targets (Fig. 6b). The target genes of canonical 
and 5′isomiR seed sequences were evaluated also for those miRNAs including at least one 5′isomiR presenting 

Table 1.  Proportions (expressed as %) of isomiR variations among 15 miRNAs differentially regulated by 
metformin with at least one detected isomiR. M metformin, NTA non-template addition, Sen senescent 
HUVECs. P-values for z test.

microRNA Condition Canonical

Templated modifications NTA

3′ addition 3′ deletion 5′ deletion Mixed 3′ uridylation

miR-17-3p

Sen 100

Sen + M 100

p-value –

miR-100-5p

Sen 71.27 5.63 22.21 0.63 0.26 0.81

Sen + M 72.21 5.34 21.66 0.56 0.23 1.00

p-value 0.007 0.033 0.026 0.126 0.308 0.001

miR-216a-5p

Sen 37.40 62.60

Sen + M 35.33 64.67

p-value 0.180 0.180

miR-217-5p

Sen 6.80 5.33 87.87 7.16

Sen + M 5.91 5.34 88.75 8.40

p-value 0.075 0.984 0.180 0.021

miR-125b-5p

Sen 86.16 13.84

Sen + M 85.87 14.13

p-value 0.674 0.674

miR-143-3p

Sen 44.29 55.71

Sen + M 55.05 44.95

p-value < 0.001 < 0.001

miR-493-5p

Sen 74.32 25.68

Sen + M 86.96 13.04

p-value < 0.001 < 0.001

miR-493-3p

Sen 78.20 21.80 21.80

Sen + M 82.90 17.10 17.10

p-value 0.201 0.201 0.201

miR-92a-1-5p

Sen 100

Sen + M 100

p-value –

miR-125b-1-3p

Sen 42.42 54.81 2.78 40.64

Sen + M 35.38 60.08 4.54 50.11

p-value < 0.001 0.001 0.003 < 0.001

miR-193a-5p

Sen 43.38 56.62 11.79

Sen + M 40.68 59.32 10.23

p-value 0.596 0.596 0.638

miR-424-3p

Sen 28.77 27.99 43.23

Sen + M 31.70 35.53 32.77

p-value 0.180 0.001 < 0.001

miR-654-3p

Sen 91.95 8.05 5.25

Sen + M 91.29 8.71 4.45

p-value 0.242 0.242 0.064

miR-98-3p

Sen 100 100

Sen + M 100 100

p-value – –

miR-216a-3p

Sen 1.44 1.27 4.32 10.70 82.27 9.46

Sen + M 1.75 1.45 3.32 10.26 83.22 9.58

p-value 0.208 0.430 0.010 0.472 0.208 0.834
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a significant linear or U-shaped trend in Young, SEN, and SEN + M (Supplementary Figure S2). Notably, the 
canonical form and the 5′ isomiR of miR-100-5p shared no predicted target genes.

Discussion
In the present study, we investigated for the first time the miRNA landscape in endothelial cells (ECs) undergoing 
replicative senescence after a long-term treatment with metformin. Surprisingly, only 27 miRNAs on a total of 
1706 detected by the small RNA-seq analysis were differentially regulated by metformin, despite the long duration 
of the exposure to a pharmacologically pertinent dose of the drug. To gain insight into the biological significance 
of these modulations, we used young proliferating HUVECs as reference group, in order to identify specific 
trends of modulation. We focused on the group of miRNAs characterized by a U-shaped/inverted U-shaped trend 
of expression in young vs. SEN vs. SEN + M, since this peculiar trend could reflect the ability of metformin to 
modulate the trajectories of senescence associated miRNAs (Fig. 7a). Increasing evidence suggests that a number 
of biomarkers of human aging followed non-linear trends when subjects representing the extreme phenotype of 
successful aging, i.e. the centenarians, are included in the  analysis28–32. We therefore employed an in vitro cellular 
senescence model mimicking the gradual deterioration of endothelial function that accompanies human  aging33, 
to unravel the ability of metformin to affect the senescence-associated miRNA/isomiR modulation.
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This approach allowed us to show that metformin can revert the SA trend of a number of miRNAs that were 
extensively studied in the context of cellular aging, including miR-216-3p, -216-5p, and -217-5p, which we pre-
viously identified among the most upregulated miRNAs in senescent  HUVECs22. MiR-217-5p was proved to be 
involved in EC and human fibroblast senescence by targeting SIRT1 and DNMT1,  respectively34,35. Furthermore, 
we recently demonstrated that the same pro-senescence effects of miR-217 can be spread through the exchange 
of small extracellular  vesicles22. Similarly, miR-216a was shown to be involved in EC aging, in atherosclerosis-
related endothelial dysfunction by impairing the autophagy response to the accumulation of oxidized low-density 
 lipoproteins36, and in macrophage pro-inflammatory M1 polarization by boosting the NF-κB  pathway37,38. Among 
miRNAs showing a linear trend in Young vs. SEN vs. SEN + M, miR-100-5p was previously shown to be upregu-
lated in senescent  HUVECs22,39, while the metformin-mediated induction of miR-125-5p was consistent with 
previous reports on  macrophages40 and senescent  ECs12.

Regarding the analysis of isomiRs, this is the first deep sequencing assessment of isomiRs in senescent 
HUVECs. One miRNA gene can potentially produce multiple distinct isomiRs, differing in length, sequence, or 
 both26. Our results proved that the assessment of isomiRs can unravel complex modulations of the miRNA pool 
not detectable with standard miRNA analysis. Indeed, isomiR analysis allowed us to fully uncover the downregu-
lating effects of metformin on the miR-17/92 cluster, which has been previously shown to be over-represented 
in a wide range of cancers and cardiovascular diseases and downregulated in physiological  aging41. Therefore, 
further developments of isomiR analysis are warranted to increase our knowledge on miRNA modulation in a 
number of physiological and pathological processes.
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In agreement with previous  reports25,42, we observed a considerable presence of 3′ isomiRs, while more than 
half of the total reads was mapped to canonical miRNAs. It has to be noted, however, that the term ‘canonical’ 
refers to the sequence annotated in miRBase and do not necessarily indicate the most abundant miRNA isoform 
in a specific cell type or tissue or the primary product of pre-miRNA  cleavage43.

On the other hand, only a small number of reads (about 3%) mapped to 5′ isomiRs, which are associated 
to a shifting of the seed sequence (Fig. 7b). For this reason, we evaluated the number of targets shared by the 
isoforms of miR-216a-3p and miR-217-5p, which were both modulated by metformin treatment and expressed 
5′ isoforms. The inclusion of these additional seed sequences into the targetome analysis yielded a considerably 
greater number of target genes, most of which were not shared with the canonical miRNAs. As expected, the 
coexistence of more than one 5′ isomiR, as in the case of miR-216-3p, proportionally increased the amount of 
target genes. The ability of isomiRs of being loaded onto the RISC complex support their possible biological 
 role19,44. Indeed, a previous report showed that the ratio between miR-411 and its 5′ isomiR in ECs is affected 
by acute ischemia and that only the 5′ isoform of miR-411 is capable of impairing angiogenesis by targeting a 
different subset of  mRNAs19.

The 3′ end miRNA modifications are mostly related to post transcriptional deletion of nucleotides, i.e. trim-
ming, or the addition of one or more nucleotides, i.e.  tailing45. It has to be noted, however, that is quite challenging 
to distinguish templated nucleotides added during miRNA maturation from those added post-transcriptionally 
to the mature miRNA. In our study, we assessed isomiRs resulting from the untemplated nucleotide addition 
to the 3′ end of pre-miRNA or mature  miRNA46. While these modifications are not associated with a shift-
ing of the seed sequence, it has been demonstrated that 3′ uridylation enhances base-pairing between tailed 
miRNA and targets, a phenomenon named as tail-U-mediated repression (TUMR). Therefore, TUMR expands 
the miRNA target repertoires by producing novel miRNA-target binding sites in the presence of an incomplete 
seed-pairing18. Moreover, 3′ post-transcriptional modifications were shown to affect miRNA  stability47, intracel-
lular levels, and compartmentalization into extracellular  vesicles20. Notably, miRNAs are not the sole substrates 
of the 3′ uridylation mediated by terminal uridyltransferases (TUTs). Indeed, 3ʹ-terminal uridylation of viral 
RNAs in mammalian cells has been recently identified as a conserved antiviral defense  mechanism48. Interest-
ingly, metformin affected the expression of 22 3′-uridylated miRNAs; therefore, it is straightforward to conceive 
a framework in which metformin could impact cellular senescence through the modulation of miRNA function, 
stability, and localization.

Our in vitro results support the role of isomiR assessment in biological samples as a useful tool to improve 
our knowledge on the aging process or discover new biomarkers of biological aging.

Nevertheless, several limitations need to be acknowledged. The study design does not allow to draw any 
mechanistical conclusion on the role of metformin on ECs or cellular senescence. In addition, some of the 
mechanisms of isomiR biogenesis are still unclear, implying the intrinsic difficulty to assess whether 3′ nucleotide 
addition occurs during or after miRNA transcription. Finally, qPCR validation of NGS assessment of isomiRs 
is still hampered by analytical challenges, such as the absence of dedicated protocols and reagents, e.g. probes 

Figure 7.  (a) Summary of the effects of metformin treatment on the miRNA/isomiR pool of HUVECs 
undergoing replicative senescence. Metformin differentially regulates the expression of 27 miRNAs. Two 
different trends in miRNA modulation were observed with reference to the Young/SEN/SEN + M sequence, i.e. a 
linear increasing/decreasing trend and a ‘U-shaped’/‘inverted U-shaped’ trend. Moreover, metformin treatment 
altered the expression of 133 isomiRs, related to 14 differentially expressed miRNAs and 59 non differentially 
expressed miRNAs. (b) Metformin treatment induced a partial reversal of the senescence-associated expression 
of miR-217-5p, including its 5′ isomiRs, which are associated to a shifting of the seed sequence. The inclusion 
of these additional seed sequences into the targetome analysis yielded a considerably greater number of target 
genes, most of which were not shared with the canonical miRNAs.
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and primers, and the relative inefficiency of the currently available techniques in differentiating highly similar 
 sequences49,50.

NGS studies on isomiRs paved the way to the exploration of novel non-canonical targets and allowed the 
identification of new regulatory mechanisms of miRNA expression and intracellular localization, adding an 
additional layer of complexity to the study of the epigenetic variations accompanying cell senescence, although 
further investigations are required to better understand the biological functions of the cellular isomiR pool.

Overall, we showed that long-term treatment with metformin is able to partly attenuate the complex miRNA/
isomiR remodeling observed during cellular senescence in ECs, supporting further exploration of the impact 
of metformin on the cellular epigenetic landscape as a possible mediator of the putative beneficial effect of this 
drug on the aging process.

Materials and methods
Cell culture and treatment. An in vitro model of endothelial replicative cell senescence was established 
using long-term cultured HUVECs. Cryopreserved HUVECs obtained from pool of donors were purchased 
from Clonetics (Lonza, Switzerland) and cultured in EGM-2 (CC-3162, Lonza) at 37 °C in a humidified atmos-
phere containing 5%  CO2. Cells were seeded at a density of 5000/cm2 and sub-cultured when they reached 
70–80% confluence. All cells tested negative for mycoplasma infection. Before replating, harvested cells were 
counted using a hemocytometer. Population doublings (PDs) were calculated by the formula:  (log10F –  log10I)/
log102, where F is the number of cells at the end of the passage and I is the number of seeded cells. Cumulative 
population doubling (cPD) was calculated as the sum of PD changes. Cells were cultured until the arrest of 
replication and classified based on SA β-galactosidase (β-gal) activity into young (SA β-gal < 5%) and senescent 
(SEN, SA β-gal > 80%) cells using Senescence Detection Kit (cat. no. K320, BioVision Inc., USA) as described 
 previously21. Cells were treated with 20  μM metformin (cat. D150959, Sigma Aldrich, Italy) added at each 
medium replacement.

RNA extraction. Total RNA, including small (< 200 nucleotides) RNAs, was extracted from HUVEC pellets 
using Norgen total RNA Purification Kit (cat. no. 37500, Norgen Biotek Corporation, Canada) according to the 
manufacturer’s protocol. Purified RNA was stored at − 80 °C until analysis.

mRNA expression level. CDKN2A mRNA expression was assessed as previously  described22. Primer 
sequences (written 5′-3′) were as follows: p16, Fw: CAT AGA TGC CGC GGA AGG T, Rv: CTA AGT TTC CCG 
AGG TTT CTC AGA; β-actin, Fw:TGC TAT CCC TGT ACG CCT CT, Rv: GTG GTG GTG AAG CTG TAG CC. 
Primer concentration was 200 nM. Delta delta Ct method was performed to analyze the results and Young cells 
were used as reference group.

Small RNA sequencing analysis. Small RNA sequencing was performed in triplicate on Young and 
SEN cells, and SEN cells treated with metformin. TruSeq Small RNA Library PrepKit v2 (Illumina; RS-200-
0012/24/36/48) was used for library preparation according to the manufacturer’s indications. Briefly, 35 ng puri-
fied RNA was linked to RNA 3′ and 5′ adapters, converted to cDNA, and amplified using Illumina primers 
containing unique indexes for each sample. Each library was quantified using Agilent Bioanalyzer and High 
Sensitivity DNA Kit (cat. no. 5067-4626, Agilent Technologies, USA) and equal amounts of libraries were pooled 
together. Size selection allowed keeping 130–160 bp fragments. After ethanol precipitation, the library pool was 
quantified with Agilent High Sensitivity DNA Kit, diluted to 1.8 pM, and sequenced using NextSeq 500/550 
High Output Kit v2 (75 cycles) (Illumina; FC-404-2005) on the Illumina NextSeq500 platform.

Raw base-call data generated by the Illumina NextSeq 500 system were demultiplexed using Illumina Bas-
eSpace Sequence Hub (https ://bases pace.illum ina.com/home/index ) and converted to FASTQ format. After a 
quality check with FastQC (https ://www.bioin forma tics.babra ham.ac.uk/proje cts/fastq c/), sequence reads were 
quality trimmed using the cutadapt  tool51. Sequence reads were aligned to the miRBase version 21.0  database52 
using the STAR  algorithm53. Standard miRNA quantification (including the canonical form and all isoforms) 
was obtained as previously  detailed22.

Quantification of miRNA isoforms. Sequence reads were quality trimmed using the cutadapt tool, 
and mapped unambiguously using  SHRIMP254 to the human genome assembly GRCh38. During the map-
ping, no insertions or deletions, and at most one mismatch was permitted. IsomiRs were identified as done 
 previously16,17,55–57. The isomiR nomenclature used is based upon the one used previously in Loher et al.17. For 
example, the isomiR whose 5′ terminus begins one position to the right (+ 1) of the archetype’s 5′ terminus and 
whose 3′ terminus ends two positions to the left (− 2) of the archetype’s 3′ terminus is labeled “ + 1|− 2”. The 
archetype isomiR, the sequence found in public databases, is labeled as “0|0”.

IsomiR abundances were quantified in reads per million (RPM). Only reads that passed quality trimming 
and filtering and could be aligned exactly to miRNA arms were used in the denominator of this calculation. The 
abundance of a miRNA arm is calculated as the sum of normalized abundances of all isomiRs from the arm.

Raw and processed datasets have been deposited in NCBI’s Gene Expression Omnibus (GEO) (https ://www.
ncbi.nlm.nih.gov/geo) with accession reference GSE149771.

Statistical analysis of small RNA‑seq data. Data analysis was carried out using the DESeq2 1.26.058 
Bioconductor package within the R version 3.6.1 environment. MiRNAs/isomiRs showing a differential expres-
sion between SEN and SEN + M were identified using a fold change ≥ 1.5 filter and an FDR < 5% cut-off at two-

https://basespace.illumina.com/home/index
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo


12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:21782  | https://doi.org/10.1038/s41598-020-78871-5

www.nature.com/scientificreports/

tailed moderated t-test with Benjamini–Hochberg correction. A two-tailed likelihood ratio test (LRT) was used 
to compare miRNA/isomiR expression among Young, SEN, and SEN + M samples, with a Benjamini–Hochberg 
FDR < 5%. The significance of the differences between isomiR proportions within each miRNA was tested using 
z-test. The PCA plot and correlation matrix showing Pearson’s correlations among samples were created using 
the pcaExplorer version 2.12.0 R/Bioconductor  package59. Heatmaps were produced using the heatmap2 func-
tion from the R package gplots version 3.0.3 (https ://cran.r-proje ct.org/web/packa ges/gplot s/) with row scaling 
and hierarchical clustering of the rLog transformed expression values.

MiRNA target prediction. Putative miRNA targets were individuated using the Diana mirPath v.3 platform 
and the tools TarBase v7.0 and microT-CDS v5.0, which allow the analysis of KEGG pathways  enrichment60,61 
for experimentally validated and predicted target genes,  respectively62. The analysis was carried out using the 
‘pathways union’ option. P-values were calculated by the Fisher’s exact test and the false discovery rate (FDR) 
was estimated using the Benjamini and Hochberg method. A p-value threshold of 0.01 was applied. Differential 
target genes of the canonical/3′ isomiRs and 5′ isomiRs were predicted using the TargetScan Custom tool v. 
5.2 (http://www.targe tscan .org/vert_50/seedm atch.html), which searches for a complementary 3′ UTR against 
a provided seed sequence.

Data availability
Raw and processed datasets have been deposited in NCBI’s Gene Expression Omnibus (GEO) (https ://www.
ncbi.nlm.nih.gov/geo) with accession reference GSE149771.
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