IGRT After Prostatectomy: Evaluation of Corrective Shifts and Toxicity Using Online Cone Beam CT vs. Weekly Port Films for Target Localization

H. B. Eldredge
Thomas Jefferson University and Hospitals

M. Studenski
Thomas Jefferson University and Hospitals

S. Keith
Thomas Jefferson University and Hospitals

E. J. Trabulsi
Thomas Jefferson University and Hospitals

Follow this and additional works at: https://jdc.jefferson.edu/bodinejournal

Part of the [Oncology Commons](https://jdc.jefferson.edu/bodinejournal)

Let us know how access to this document benefits you

DOI: https://doi.org/10.29046/TBJ.003.1.028

Available at: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/29

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's [Center for Teaching and Learning (CTL)](https://ctl.jefferson.edu). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Bodine Journal by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
IGRT After Prostatectomy: Evaluation of Corrective Shifts and Toxicity Using Online Cone Beam CT vs. Weekly Port Films for Target Localization

Authors

This accepted abstract is available in Bodine Journal: https://jdc.jefferson.edu/bodinejournal/vol3/iss1/29
IGRT After Prostatectomy: Evaluation of Corrective Shifts and Toxicity Using Online Cone Beam CT vs. Weekly Port Films for Target Localization

Eldredge, H.B.,1 Studenski, M.,1 Keith, S.,2 Trabulsi, E.J.,3 Harvey, A.,4 Lallas, C.,5 Gomella, L.,5 Dicker, A.P.,1 Showalter, T.N.1

1Department of Radiation Oncology, 2Department of Pharmacology and Experimental Therapeutics, Division of Biostatistics, 3Department of Urology, Thomas Jefferson University and Hospitals, Philadelphia, PA

Purpose/Objective(s)
Image guidance (IG) may permit higher radiotherapy (RT) doses (>65 Gy) after radical prostatectomy (RP) without increased toxicity, with improved accuracy and smaller margins. Conebeam (CBCT) allows IGRT with volumetric images. This study evaluated CBCT shifts and toxicity after conformal IGRT, compared to RT with port films.

Materials/Methods
After IRB approval, 68 consecutive patients who received post-RP RT (2005-2009) with CBCT were identified. Median dose was 68.4 Gy (R 66.6-70.2) delivered with 4-field, conformal IGRT. Online CBCT images were acquired 3-5 times weekly and were automatically co-registered to reference CT based on pelvic anatomy. Corrective shifts were made for deviations ≥5 mm. A comparative group was comprised of 150 patients who received post-RP RT (1990-2004) to a median of 64.8 Gy (R 59.4-68.4) with weekly port films. Genitourinary (GU) and gastrointestinal (GI) toxicity (RTOG grade (G) ≥ 2) was compared using Fisher’s exact test and odds ratio (OR) computed by logistic regression adjusted for dose. Two-way interactions were also investigated.

Results
CBCT mean shifts (SD) for 1053 fractions were 2.8 mm (2.8), 2.0 mm (2.4) & 3.1 mm (2.9) in the left-right (LR), anterior-posterior (AP) & superior-inferior (SI) axes, respectively. Shifts ≥ 5 mm were required for 15%, 6% & 19% of fractions in the LR, AP & SI axes, respectively. Late toxicity was evaluable in 43 patients (median follow-up 15 mo., R 3-46) in the CBCT group and 135 (median 74 mo., R 3-168) in the control group. GU and GI toxicity was largely G0-1. No Grade 4 toxicity was reported. G2 & G3 acute GU toxicity was experienced by 13% (n=9) & 2% (n=1) of patients in the CBCT group, respectively, while 13% (n=19) had G2 toxicity in the control group. Acute GU (Fisher p=0.67) and GI (p=0.84) toxicity was not significantly different between the two groups. There was no association between acute GI toxicity and CBCT (p=0.74). Increased odds of acute GU toxicity were observed for doses > 68.4 Gy (interaction p=0.02), which were only delivered in the IGRT group.

Conclusion
Rates of acute toxicity with CBCT-guided post-RP RT to 68.4 Gy were similar to treatment to 64.8 Gy without IGRT. The higher rate of acute GU toxicity with doses > 68.4 Gy suggests a potential role for IMRT. IGRT with CBCT is associated with mostly G0-1 toxicity and minimal grade ≥ 2, suggesting that CBCT is a safe IG strategy. Longer follow-up is desired to compare late toxicity.