A Systematic Review: Evaluating the Effectiveness of Cognitive Standardized Assessments Following Stroke in Acute Care
Gina Benedetto, Jordan Bernhard, & Lauren Henriques
Teal Benevides, PhD, MS, OTR/L; E. Adel Herge, OTD, OTR/L, FAOTA; Gary Kaplan- Senior Information Services Librarian; Paul Hunter- Clinical Informatics Librarian

Presented in Partial Fulfillment of the Master of Science in Occupational Therapy at Thomas Jefferson University

Objectives of Presentation: Upon conclusion of this presentation, participants will be able to:
- Identify valid, reliable, and sensitive standardized cognitive assessments found within our systematic review that can be utilized within the acute care setting with adults following stroke.
- Describe how the current literature presented from this systematic search of standardized cognitive assessments influences safe discharge planning in acute care.
- Discuss the feasibility of implementing standardized assessments into daily practice.

Clinical Question: What is the evidence supporting the use of standardized cognitive assessments in acute care for patients who have experienced a stroke?

Methods:
- Databases: CINAHL and PubMed; Searched completed with population and outcome terms (i.e. cognitive, stroke, CVA)
- The PRISMA diagram was used and 9 out of the 153 articles were used for our systematic review based off of our inclusion/exclusion criteria
- Appraisal of articles: Quality Appraisal for Clinical Measurement Research Evaluation
- Appraisal of assessments: Adapted Outcome Measure Rating

Psychometrics Properties Defined:
- Reliability: the overall consistency of a measure
- Inter-rater reliability: assesses the degree of agreement between two or more raters in their appraisals
- Internal consistency reliability: assesses the consistency of results across items within a test
- Test-retest: is a measure of how consistent the results of a test are over time
- Validity: refers to the extent to which a study actually captures or measures what it claims to examine
- Sensitivity: refers to the ability of a tool to detect a disease or condition when it is actually present
- Specificity: refers to the ability of a tool to exclude a condition when it is not present

Results:

Theme #1- Psychometric Properties: Sensitivity, Specificity, Validity & Reliability	MoCA & TCT have large sensitivity and small specificity	MoCA is more sensitive than MMSE with published norms, MoCA and MMSE similar sensitivity with educationally adjusted cut off scores	MoCA valid for detection of cognitive impairment, MMSE has adequate construct validity	MoCA has high internal consistency & excellent test-retest, MMSE has excellent inter-rater reliability
Theme #2- Client Factors Measured by Assessments	MoCA measures the most client factors. Executive function is unique to the MoCA	The Clock test main focus is on visuospatial planning skills	*The chart below provides client factors measured through respected assessments, as identified per the literature.	
Theme #3- Feasibility	MoCA: Free, ~ 8 mins, address most client factors	MMSE: Costs $155, addresses variety of client factors	The Clock Test: Free, ~ 5 mins, looks at only one client factors (visuospatial)	
Theme #4- Identify and Predict Outcomes	MoCA: effective measure of cognitive outcome for examining impact of safe discharge after stroke	FIB: identified standardized cognitive assessments are effective in detecting cognitive impairments when compared to skilled observations	TCT: effective screening tool before making treatment recommendations and identifies if patient needs comprehensive evaluation	

<table>
<thead>
<tr>
<th>Cognitive Client Factors</th>
<th>Montreal Cognitive Assessment (MoCA)</th>
<th>Mini Mental State Examination (MMSE)</th>
<th>Three Cities Test (TCT)</th>
<th>Clock Test</th>
<th>Functional Impairment Battery (FIB)</th>
<th>Lownestein’s Occupational Therapy Cognitive Assessment (LOTCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visuospatial</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Executive function</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delayed recall</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-term memory</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References