
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Farber Institute for Neuroscience Faculty 
Papers Farber Institute for Neuroscience 

10-13-2016 

Fumarate modulates the immune/inflammatory response and Fumarate modulates the immune/inflammatory response and 

rescues nerve cells and neurological function after stroke in rats. rescues nerve cells and neurological function after stroke in rats. 

Ruihe Lin 
Thomas Jefferson University, The Joseph and Marie Field Cerebrovascular Research Laboratory, 
Jefferson, Vickie and Jack Farber Institute for Neurosciences, Department of Neuroscience, Sidney 
Kimmel Medical College 

Jingli Cai 
Thomas Jefferson University, The Joseph and Marie Field Cerebrovascular Research Laboratory, 
Jefferson, Vickie and Jack Farber Institute for Neurosciences, Department of Neuroscience, Sidney 
Kimmel Medical College 

Eric W Kostuk 
Thomas Jefferson University, The Joseph and Marie Field Cerebrovascular Research Laboratory, 
Jefferson, Vickie and Jack Farber Institute for Neurosciences, Department of Neuroscience, Sidney 
Kimmel Medical College 

Robert H. Rosenwasswer MD 
Thomas Jefferson University, The Joseph and Marie Field Cerebrovascular Research Laboratory, 
Jefferson, Vickie and Jack Farber Institute for Neuroscience, Department of Neurological Surgery, Sidney 
Kimmel Medical College 

Lorraine Iacovitti 
Thomas Jefferson University, The Joseph and Marie Field Cerebrovascular Research Laboratory, 
Jefferson, Vickie and Jack Farber Institute for Neurosciences, Department of Neuroscience, Sidney 
Kimmel Medical College 

Follow this and additional works at: https://jdc.jefferson.edu/farberneursofp 

 Part of the Neurosciences Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 
Lin, Ruihe; Cai, Jingli; Kostuk, Eric W; Rosenwasswer MD, Robert H.; and Iacovitti, Lorraine, "Fumarate 
modulates the immune/inflammatory response and rescues nerve cells and neurological function after 
stroke in rats." (2016). Farber Institute for Neuroscience Faculty Papers. Paper 28. 
https://jdc.jefferson.edu/farberneursofp/28 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Farber Institute for Neuroscience Faculty Papers by an authorized administrator of the 
Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/farberneursofp
https://jdc.jefferson.edu/farberneursofp
https://jdc.jefferson.edu/farberneurso
https://jdc.jefferson.edu/farberneursofp?utm_source=jdc.jefferson.edu%2Ffarberneursofp%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1010?utm_source=jdc.jefferson.edu%2Ffarberneursofp%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


RESEARCH Open Access

Fumarate modulates the immune/
inflammatory response and rescues nerve
cells and neurological function after stroke
in rats
Ruihe Lin1, Jingli Cai1, Eric W. Kostuk1, Robert Rosenwasser2 and Lorraine Iacovitti1*

Abstract

Background: Dimethyl fumarate (DMF), working via its metabolite monomethylfumarate (MMF), acts as a potent
antioxidant and immunomodulator in animal models of neurologic disease and in patients with multiple sclerosis.
These properties and their translational potential led us to investigate whether DMF/MMF could also protect at-risk
and/or dying neurons in models of ischemic stroke in vitro and in vivo. Although the antioxidant effects have been
partially addressed, the benefits of DMF immunomodulation after ischemic stroke still need to be explored.

Methods: In vitro neuronal culture with oxygen-glucose deprivation and rats with middle cerebral artery occlusion
were subjected to DMF/MMF treatment. Live/dead cell counting and LDH assay, as well as behavioral deficits,
plasma cytokine assay, western blots, real-time PCR (Q-PCR) and immunofluorescence staining, were used to
evaluate the mechanisms and neurological outcomes.

Results: We found that MMF significantly rescued cortical neurons from oxygen-glucose deprivation (OGD) in
culture and suppressed pro-inflammatory cytokines produced by primary mixed neuron/glia cultures subjected to
OGD. In rats, DMF treatment significantly decreased infarction volume by nearly 40 % and significantly improved
neurobehavioral deficits after middle cerebral artery occlusion (MCAO). In the acute early phase (72 h after MCAO),
DMF induced the expression of transcription factor Nrf2 and its downstream mediator HO-1, important for the
protection of infarcted cells against oxidative stress. In addition to its antioxidant role, DMF also acted as a potent
immunomodulator, reducing the infiltration of neutrophils and T cells and the number of activated microglia/
macrophages in the infarct region by more than 50 % by 7–14 days after MCAO. Concomitantly, the levels of
potentially harmful pro-inflammatory cytokines were greatly reduced in the plasma and brain and in OGD neuron/
glia cultures.

Conclusions: We conclude that DMF is neuroprotective in experimental stroke because of its potent
immunomodulatory and antioxidant effects and thus may be useful as a novel therapeutic agent to treat stroke
in patients.
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Background
In ischemic stroke, which is the leading cause of disabil-
ity and the second leading cause of death worldwide [1],
neuronal destruction is caused both by oxygen deprivation
[2, 3] and by persistent activation of the host immune
system [4–32]. After vessel occlusion, the loss of neurons
occurs chiefly from the lack of oxygen supply and con-
comitant oxidative stress in the ischemic core. However,
neuronal death in the surrounding penumbra area subse-
quently develops in large part from inflammation due to
the infiltration of immune cells and the release of destruc-
tive cytokines. Thus, a novel regimen which enhances
both cellular resistance to oxidative stress and modulation
of the immune response could provide greater neuropro-
tection after ischemic stroke.
Intriguingly, the methyl ester of fumaric acid, dimethyl

fumarate (DMF), working via its metabolite mono-
methylfumarate (MMF), acts as both a potent immu-
nomodulator and antioxidant in laboratory models of
disease [33–41] and in patients with neurological disease
like multiple sclerosis (MS) [42, 43]. Moreover, several
recent reports showed that DMF can also reduce brain
edema and improve blood-brain barrier (BBB) integrity
and improve neurological outcomes in a short-term rat
model of hemorrhagic stroke [40, 44] and ischemic stroke
[45, 46]. In all of these cases, DMF/MMF is thought to act
via activation of the antioxidant transcription factor
(erythroid-derived 2)-like 2 (Nrf2) which up-regulates pro-
teins like heme oxygenase-1 (HO-1) [33, 36–38, 40, 41,
44, 47], thereby protecting cells against damage triggered
by oxidant insult. Additionally, DMF is a potent modula-
tor of inflammatory cytokines which are now known as
important in stroke [11, 15, 20–22, 26, 27, 48, 49], in par-
ticular Th1-type pro-inflammatory cytokines that can lead
to tissue damage [37, 38, 40, 50, 51].
Because of its acute antioxidant and prolonged immu-

nomodulatory mechanisms of action and its translational
potential in humans, we wondered whether DMF/MMF
could protect both dying neurons in the ischemic core as
well as neurons at-risk of dying at later times after stroke.
We show here that MMF is neuroprotective to cortical
neurons after oxygen-glucose deprivation (OGD) in a
model of stroke in culture. In addition, in a rat model of
experimental stroke, DMF significantly decreased infarc-
tion volume and improved neurobehavioral deficits 14 days
after middle cerebral artery occlusion (MCAO), concomi-
tant with the induction of Nrf2 and HO-1 and the reduc-
tion in immune cell infiltration and harmful inflammatory
cytokines in the plasma and brain.

Methods
Animals
All procedures in this study were carried out in accord-
ance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National
Institutes of Health. The protocol was approved by the
IACUC Committee of Thomas Jefferson University.

Antibodies and reagents
Dimethyl fumarate (DMF) and mono-methyl fumarate
(MMF) were purchased from Sigma-Aldrich. Poly-D-ly-
sine, DMSO and Glutamax were purchased from Sigma.
HBSS, DMEM, fetal calf serum, Neurobasal medium, B-
27 supplement were purchased from Invitrogen. LIVE/
DEAD viability/cytotoxicity kit was purchased from
Molecular Probes. The cytotoxicity detection kit plus
(lactate dehydrogenase (LDH)) was purchased from Roche.
The following primary antibodies were used in these exper-
iments: rabbit anti-Nrf2 (1:200, Santa Cruz Biotechnology),
rabbit anti-HO-1 (1:4000, Enzo Life Sciences), rabbit
anti-β-tubulin (1:1000, Cell Signaling Technology),
mouse anti-rat CD-3 (1:25, BD Biosciences), rabbit
anti-myeloperoxidase (MPO) (1:300, DAKO), mouse
anti-CD-68 (1:100, Abcam), and rabbit anti-iNOS
(1:80, Abcam).

Primary cortical cultures
Primary cultures of rat forebrain neurons were used for
LIVE/DEAD assay and LDH releasing assay. The cul-
tures were prepared from embryos of Sprague-Dawley
rats at day 15 of gestation. The cells were dissociated in
dissociation buffer with Papain and DNase I. The cell
suspension was passed through a cell strainer and then
centrifuged. The pellet was re-suspended in high-glucose
DMEM containing 10 % fetal calf serum and plated onto
glass coverslips pre-coated with poly-D-lysine in 12-well
plates at a final concentration of 2.5 × 105 cells/ml. At
24 h after seeding, the medium was changed to Neu-
robasal medium supplemented with B-27 and Gluta-
max. The cells were cultured at 37 °C in a humidified
atmosphere of 95 % air and 5 % CO2. Half of the cul-
ture medium was replaced with fresh Neurobasal/B-
27 medium twice a week. The cells were tested after
5–7 days in vitro when most exhibited a neuronal
morphology.
Primary mixed neuron/glia cultures of rat cortex were

used for real-time PCR (Q-PCR) analysis. The cultures
were prepared from embryos of Sprague-Dawley rats
at day E15-E17.5 of gestation as described previously
[2, 52]. The cells were plated onto glass coverslips
and cultured in DMEM/F12 supplemented with 5 %
FBS, 5 % HS and 1 % P/S (v/v) after dissociation (Papain
and DNase I) and re-suspension as above. The cells were
cultured at 37 °C in a humidified atmosphere of 95 % air
and 5 % CO2. The culture medium was replaced
twice per week, and the cells were analyzed by Q-PCR
after 7–10 days in vitro.
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Oxygen-glucose deprivation
MMF was dissolved in DMSO as a 50-mM stock
solution and stored in aliquots at −20 °C. In pretreated
groups, the stock solution of MMF was serially diluted
in the respective culture medium and cultures were pre-
treated for 12 h before OGD. Cell cultures were then
washed twice with HBSS and OGD media (glucose and
phenol red-free DMEM was deoxygenated by gassing
with 95 % nitrogen and 5 % CO2 for 15 min) containing
either 25, 50, or 100 μM MMF. Untreated control cells
received DMSO vehicle only. Cultures were then put in
a sealed chamber (Billups-Rothenberg, Inc., Del Mar,
CA, USA), flushed with 95 % nitrogen and 5 % CO2 for
6 min at a flow rate of 20 L/min and incubated for 1 h
(primary cortical cultures for LIVE/DEAD assay) and
2 h (mixed neuron/glia cultures for Q-PCR) at 37 °C.
The time points were selected based on our empirical
data, the literature [2], and MCAO procedure. OGD was
terminated by removing the cell culture plates from the
chamber, washing, and replacing the glucose-free
medium with the respective culture medium with MMF
at corresponding concentrations. The cells were then
returned to a regular 5 % CO2 incubator. In posttreat-
ment groups, the stock solution of MMF was diluted in
the respective culture media and cultures were incu-
bated with MMF after OGD. At 24 and 48 h after OGD,
the media from neuronal culture was collected for LDH
assay and cells were processed using the LIVE/DEAD
assay to determine cellular viability. At 24 h after OGD,
RNA from mixed cortical culture was extracted for real-
time PCR analysis.

LIVE/DEAD assay
Neuronal viability was quantified using a LIVE/DEAD
viability/cytotoxicity kit (Molecular Probes). According
to the manufacturer’s protocol, coverslips were stained
with calcein AM and ethidium homodimer-1, which la-
beled live cells and dead cells, respectively. Coverslips
were then quickly examined under a fluorescence micro-
scope (Olympus IX2-UCB), and pictures were taken.
Neuronal death was determined by counting from six
random fields per coverslip then averaged and expressed
as percentage of cell death (i.e., dead cells/total cells ×
100 %). All assays were repeated in triplicate in three
independent experiments.

LDH releasing assay
Cell injury was quantitatively assessed by measuring
lactate dehydrogenase (LDH) in the media, as previously
reported [53]. Briefly, cell-free culture medium was col-
lected, and the amount of LDH released into the media
was measured by using the Cytotoxicity Detection Kit
Plus (Roche) at 24 h after OGD according to the manu-
facturer’s protocol. Results were read on a Bio-Rad plate

reader. Percent cell injury was determined as experimental
LDH release/total LDH release after lysis buffer-induced
death × 100 after correcting for baseline absorbance. All
assays were repeated in triplicate in three independent
experiments.

Focal ischemic stroke: MCAO
Adult male Sprague-Dawley rats weighing 275–300 g
were anesthetized, and MCAO was performed as previ-
ously reported [54, 55]. For details, adult male Sprague-
Dawley rats weighing 275–300 g were anesthetized using
SQ ketamine hydrochloride, xylazine, and acepromazine
maleate (60, 10, and 5 mg/kg, respectively). Body tem-
perature was monitored with a rectal temperature probe
and maintained with a heating pad and/or a small fan to
within 0.5 °C. Briefly, the right common carotid (CCA)
and external and internal carotid arteries (ECA, ICA)
were exposed, and the right ECA was ligated. The right
CCA was ligated at the proximal end, and the right ICA
blood flow was then blocked by clamping using a micro-
clip at its origin. A silicone rubber-coated nylon filament
(Doccol) was then inserted into the lumen of the CCA
through a small opening. The clamp on the right ICA
was then removed, and the nylon filament was carefully
advanced into the ICA until it obstructed the middle
cerebral artery (MCA). Two hours later, the nylon fila-
ment was removed and CCA was ligated to stop bleed-
ing and allow reperfusion of the brain. Mortality rates
and poststroke body weight were recorded for all experi-
mental groups. In order to examine the efficiency and
tolerance of the DMF in the stroke models and evaluate
its effects without bias, no animal was excluded from
endpoint analysis unless due to death (<2 %).

Animal treatment protocol
Adult male Sprague-Dawley rats weighing 275–300 g
were used in these experiments. For behavioral tests, rats
were divided into four various control and DMF treat-
ment groups. Treatments were administered by twice
daily oral gavage. Group 1 served as normal (Nor) con-
trol without MCAO procedure. Group 2 rats were sub-
jected to MCAO and served as control (Veh) for MCAO
DMF treatment. Group 3 (dosage = 25 mg/kg) and group
4 (dosage = 50 mg/kg) served as DMF treatment groups
with oral gavage beginning 2–3 h after MCAO surgery.
In groups 3 and 4, rats received either 25 or 50 mg/kg of
DMF in 0.08 % methocel solution (DMF-treated group)
and in group 2, the same amount of methocel solution
was used as control. At postoperative 24 h, 72–84 h, day
7, and day 14, four rats from each group were first eval-
uated by behavioral tests and then deeply anesthetized.
The plasma and brains were collected from some animals
in groups 1, 2, and 4 rats for RT-qPCR and Western blot
analysis while other animals were transcardially perfused
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with cold 4 % paraformaldehyde for immunocytochemical
analysis.

Behavioral tests
To evaluate neurological function, all rats were subjected
to a battery of tests at postoperative 24 h, 72–84 h, day
7, and day 14 after MCAO (groups 1–4 above). Motor
and sensory deficits were evaluated using a modified
neurological severity score (mNSS). Using this scale, one
point was given for the inability to perform a test. Con-
sequently, the higher the score, the more severe is the
deficit (maximum score = 18). Behavior was assessed at
regular intervals by an observer blinded to treatment
status.

Evaluation of infarction volume
Brains were harvested 72 h after MCAO from control
and DMF-treated groups (dosage = 25 or 50 mg/kg).
Each brain was sliced into five coronal sections (thick-
ness = 2 mm) and then processed for staining with 2 %
2,3,5-triphenyltetrazolium chloride (TTC; Sigma, St.
Louis, MO, USA) in saline as described previously. After
incubation in 2 % TTC for 20 min at 37 °C, the brain
slices were then fixed in 10 % formalin for 24 h at room
temperature. Infarct volume was measured and calcu-
lated by using digital imaging and NIH Image program
(ImageJ software). To control for edema, infarct volume
was determined by subtraction of the ipsilateral viable
(TTC+) regional volume from the corresponding contra-
lateral viable (TTC+) counterpart. This value was then
divided by the contralateral value and then multiplied by
100 and expressed as a percent of the contralateral vi-
able volume.

Multiplex cytokine assays
Plasma was obtained from anticoagulated cardiac blood
samples from group 1, 2, and 4 rats. The assay was
performed using the instructions provided by DartLab
(Immunoassay and Flow Cytometry Shared Resource at
the Geisel School of Medicine at Dartmouth) as follows.
Briefly, cytokines were measured using Millipore rat
cytokine multiplex kits (EMD Millipore Corporation,
Billerica, MA). Calibration curves from recombinant
cytokine standards were prepared with threefold dilution
steps in the same matrix as the samples. High and low
spikes were included to determine cytokine recovery.
Standards and spikes were measured in triplicate, sam-
ples were measured in duplicate, and blank values were
subtracted from all readings. All assays were carried out
directly in a 96-well filtration plate (Millipore, Billerica,
MA) at room temperature and protected from light.
Briefly, wells were pre-wet with 100 μl PBS containing
1 % BSA, and then beads together with a standard,
sample, spikes, or blank were added in a final volume of

100 μl, and incubated at room temperature for 30 min
with continuous shaking. Beads were then washed three
times with 100 μl PBS containing 1 % BSA and 0.05 %
Tween 20. A cocktail of biotinylated antibodies (50 μl/
well) was added to beads for a further 30-min incubation
with continuous shaking. Beads were washed three
times, and then streptavidin-PE was added for 10 min.
Beads were again washed three times and re-suspended
in 125 μl of PBS containing 1 % BSA and 0.05 % Tween
20. The fluorescence intensity of the beads was mea-
sured using the Bio-Plex array reader. Bio-Plex Manager
software with five-parametric-curve fitting was used for
data analysis.

Western blot analysis
Rats from groups 1, 2 and 4 were briefly perfused trans-
cardially with 0.9 % saline, and the right (ipsilateral) cere-
bral cortex and striatum (from Bregma 2.5 to −7.5 mm)
were dissected and homogenized in lysis buffer containing
protease inhibitors. After centrifugation (17,000 g for
30 min), supernatants were collected and protein concen-
tration was determined. Equal amounts of protein (20 μg)
were separated by SDS/PAGE (NuPAGE precast poly-
acrylamide gel) and transferred onto nitrocellulose mem-
brane (Millipore). Membranes were blocked for 1 h in
Tris-buffered saline (TBST), with 0.1 % Tween-20 and
5 % non-fat dry milk, followed by an overnight incubation
with primary antibody diluted in the same buffer. Blots
were incubated with the appropriate primary anti-
bodies: anti-Nrf2 (1:200), anti-HO-1 (1:4000), or anti-
β-III tubulin (1:1000). After washing with TBST, the
membrane was incubated with peroxidase-conjugated
secondary antibody for 1 h and then washed and de-
veloped using the ECL chemiluminescent detection
system. Densitometric analyses were performed using
the NIH Image program (ImageJ software), and the ratio
between the protein and the corresponding loading con-
trol was calculated.

RNA isolation and cDNA synthesis
In OGD experiments performed in culture, total RNA
was isolated directly from primary cortical mixed
neuron/glia cultures with TRIzol (invitrogen). Rats from
groups 1, 2, and 4 were briefly perfused transcardially
with 0.9 % saline, and total RNA was isolated directly
from the right (ipsilateral) hemisphere including cerebral
cortex and striatum (from Bregma 2.5 to −7.5 mm) with
TRIzol. Complementary DNA (cDNA) was synthesized
by using 1 μg total RNA in a 20 μl reaction with Super-
script III (invitrogen) and oligo (dT) 18 (invitrogen). One
microliter of RNase H (invitrogen) was added to each
reaction tube, and the tubes were incubated for 20 min at
37 °C before proceeding to PCR.
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Real-time PCR analysis
Real-time PCR was carried out by 7500 Real-Time PCR
System using SYBR green PCR master mix (both from
Applied Biosystems). CYPA was used as an internal con-
trol. All PCR products were checked by running an agar-
ose gel for the first time and by doing dissociation assay
every time to exclude the possibility of multiple prod-
ucts. PCR analyses were conducted in triplicate for each
sample. Primers for real-time PCR were designed by
using the Primer-BLAST and are listed as Table 1.

Immunostaining/cell quantification
Animals were perfused with cold (4 °C) paraformaldehyde
(4 %). Brains were postfixed in 4 % paraformaldehyde at
4 °C for 24–36 h, immersed in 30 % sucrose solution
at 4 °C, and then embedded in OCT (Tissue-Tek,
Sakura, Japan) before cutting with a cryostat (Microm
HM505E). Coronal sections were cut at 20 μm on a
cryostat and collected onto slides. After antigen re-
trieval, sections were incubated with primary anti-
bodies in blocking buffer containing 0.1 % Triton ×
100 and 5 % normal donkey serum (NDS) in 0.01 M
phosphate-buffered saline (pH 7.4). Sections were in-
cubated with primary antibodies (anti-MPO, anti-CD3,
anti-CD68, and anti-iNOS) for 48 h at 4 °C, washed, and
incubated with secondary antibodies for 2 h at room
temperature in blocking buffer. The nuclear dye DAPI
was added after the secondary antibody incubation. Sec-
tions were then cover-slipped and examined, and images
were acquired using an Olympus IX81 Image Analysis
System or laser confocal microscopy (Olympus Fluoview).
Sections from similar ischemic brain regions from groups
2 and 4 (n = 6, 5 sections from each brain) were used for
cell quantification. Images of three microscopic fields in
the penumbra region of each section were randomly ac-
quired under ×100 magnification and immunopositive
cells were counted and expressed as cell number/field.

Statistical analysis
All data are presented as the mean ± SEM. The statistical
significance of the mean was calculated by the Mann-
Whitney U test or Student’s t test. A value of p < 0.05
was considered significant.

Results
MMF rescues forebrain neurons from OGD-induced cell
death in culture
In a model simulating ischemia in culture, forebrain
neurons were isolated from E15 rat embryos and main-
tained in culture for 7 days before depriving them of
oxygen and glucose (OGD) for 1 h. To test the neuro-
protective effects of MMF, cultures were treated varying
concentrations of MMF (25–100 μM), beginning 12 h
prior to OGD and continuing throughout the duration

of the experiment, and compared to DMSO controls. In
posttreatment groups, cultures were incubated with
MMF (25 μM) or DMSO after 1 h of OGD. Neuronal
survival was then assessed by the LIVE/DEAD assay or
by assessing LDH activity in the culture media 24–48 h
later. In posttreatment groups, we found fewer dead

Table 1 Primer sequences

Gene Sequence

IL-12A(p35) forward 5′-TGTCAATCACGCTACCTCCTC-3′

reverse 5′-AAGACACTTGGCAGGTCCAG-3′

IL-12B(p40) forward 5′-TGGGAGTACCCTGACTCCTG-3′

reverse 5′-AGGAACGCACCTTTCTGGTT-3′

IP-10 (CXCL10) forward 5′-CCGCATGTTGAGATCATTGCC-3′

reverse 5′-TCTTTGGCTCACCGCTTTCA-3′

IFN-γ forward 5′-GCAAAAGGACGGTAACACGA-3′

reverse 5′-TTGCTGATGGCCTGGTTGTC-3′

IL-23A(p19) forward 5′-GACTAAAAGTGACGTGCCCC-3′

reverse 5′-AAACAGAACTGGCTGTTGTCC-3′

IL-18 forward 5′-ACCGCAGTAATACGGAGCAT-3′

reverse 5′-TCTGGGATTCGTTGGCTGTT-3′

IL-1β forward 5′-GGCTTCCTTGTGCAAGTGTC-3′

reverse 5′-AGTCAAGGGCTTGGAAGCAA-3′

TNF-α forward 5′-ATGGGCTCCCTCTCATCAGT-3′

reverse 5′-GCTTGGTGGTTTGCTACGAC-3′

MIP-2 forward 5′-CTGAACAAAGGCAAGGCTAACT-3′

reverse 5′-TTGATTCTGCCCGTTGAGGT-3′

EOTAXIN forward 5′-TTCTATTCCTGCTGCTCACGG-3′

reverse 5′-GTTGGGATGGAACCTGGGTG-3′

RANTES (CCL5) forward 5′-GTGCCCACGTGAAGGAGTAT-3′

reverse 5′-TCGAGTGACAAAGACGACTGC-3′

IL-17 forward 5′-ATCCATGTGCCTGATGCTGTT-3′

reverse 5′-AAGTTATTGGCCTCGGCGTT-3′

IL-5 forward 5′-TGTTGACGAGCAATGAGACGA-3′

reverse 5′-CCCCCTCGGACAGTTTGATT-3′

IL-10 forward 5′-TGCGACGCTGTCATCGATTT-3′

reverse 5′-TGGCCTTGTAGACACCTTTGT-3′

GM-CSF forward 5′-ATACAAGCAGGGTCTACGGG-3′

reverse 5′-GTCAGTTTCCGGGGTTGGA-3′

VEGF-A7 forward 5′-CACCATGCCAAGTGGTGAAG-3′

reverse 5′-AGATGTCCACCAGGGTCTCA-3′

MCP-1 (CCL2) forward 5′-TGTCTCAGCCAGATGCAGTTAAT-3′

reverse 5′-TCCAGCCGACTCATTGGGAT-3′

CYPA forward 5′-TATCTGCACTGCCAAGACTGAGTG-3′

reverse 5′-CTTCTTGCTGGTCTTGCCATTCC-3′

GAPDH forward 5′-CAACTCCCTCAAGATTGTCAGCAA-3′

reverse 5′-GGCATGGACTGTGGTCATGA-3′
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(red) cells at 24 h in cultures treated with 25 μM
MMF (28.5 % in controls vs 21.1 % in MMF treated)
(Additional file 1: Figure S1A-C), but there was no
significant difference between the two groups when
assessed by LDH assay (Additional file 1: Figure S1D).
In pretreatment groups, we found significantly fewer
dead (red) cells at 24 h in cultures treated with 25,
50, or 100 μM MMF (27.4 % in controls vs 13.6 % in
100 μM MMF treated) (Fig. 1a–d, i). Similarly, the
amount of LDH released into the media by presump-
tive dead or dying cells was significantly lower in
MMF-treated cultures (21.2 % in controls vs 10.8 %
in 100 μM MMF treated) (Fig. 1j). Importantly, with
continual treatment, MMF-enhanced neuronal rescue
was sustained even at later times (48 h post-OGD) (29.5 %
in controls vs 14.0 % in 100 μM MMF treated) (Fig. 1e–h,
k). Thus, in culture, pretreatment of cells with MMF
before OGD was significantly more effective at rescuing
dying cells than treatment after OGD.

DMF reduces infarction size and reduces neurobehavioral
deficits after MCAO
To test DMF effects in vivo, rats were administered
saline or DMF (25 or 50 mg/kg) twice daily via oral
gavage, beginning 2–3 h after MCAO and continuing
until the completion of the experiment. The average
weight loss was 30–35 g in the control group and 40–50 g

in the DMF-treated group at the 14-day time point. Ani-
mals were also subjected to neurobehavioral function tests
before and 24 h, 72–84 h, and 7 and 14 days after MCAO
using a modified neurological severity score (mNSS).
Upon sacrifice, the brain was stained with TTC, and in-
farction volumes were calculated 3 days after MCAO. We
found that DMF significantly reduced the size of infarc-
tion in TTC-stained sections from 52.2 % in untreated
controls at 72 h after MCAO to 41.8 % (25 mg/kg) and
29.9 % (50 mg/kg) in DMF-treated rats (Fig. 2a, b).
Correlated with smaller infarction volumes, we ob-
served a significant improvement in neurobehavioral
scores (mNSS) in animals administered DMF com-
pared to controls (vehicle treatment) (Fig. 2c). Inter-
estingly, although mNSS scores were nearly identical
at the start, by 72 h after the initiation of either 25
or 50 mg/kg DMF treatment, scores declined in a
dose- and time-dependent manner. Although the
greatest behavioral improvement was seen in the first
72 h after DMF, mNSS scores continued to gradually
decline with longer treatment times (up to 14 days,
the latest time point examined). These results demon-
strate that 25 mg/kg DMF is less effective than 50 mg/kg
in the MCAO model when neurological behavior test and
infarct size (i.e., TTC staining) are assessed. Based on
these findings, we used 50 mg/kg DMF in our subsequent
vivo studies.

Fig. 1 MMF rescues forebrain neurons from OGD-induced cell death in culture. Cultures of E15 rat forebrain were treated with MMF (25, 50, or
100 μM) beginning 12 h prior to OGD deprivation and throughout the remaining culture period. Cultures treated with MMF contained significantly
fewer dead/dying cells at 24 h (a–d, i) and 48 h (e–h) than untreated controls as assessed by LIVE/DEAD assay (a–i, k) or assay of LDH released into
the media by dead cells (j). *p < 0.05; **p < 0.01, Student’s t test
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DMF induces Nrf-2 and its downstream effector HO-1 in
the MCAO rat
As DMF (via MMF) is believed to activate Nrf-2,
which regulates a host of downstream effector mole-
cules important in limiting oxidant damage, including
HO-1 [33, 36–38, 40, 41, 44, 47], we next examined Nrf-2
and HO-1 protein levels in control (vehicle) and DMF-
treated MCAO rats and compared levels in the hemi-
sected brain on the side of the injury to normal uninjured
hemisphere. We found MCAO itself significantly in-
creased Nrf-2 and HO-1 levels. Importantly, however,
DMF treatment markedly increased Nrf-2 levels at 72 h

compared to vehicle-treated controls and normal unin-
jured brain (Fig. 3a). Although HO-1 levels also increased
after DMF treatment, unlike Nfr-2, the rise was not
detected until 7 days after the treatment begun (Fig. 3b).
While HO-1 remained elevated compared to MCAO-
vehicle-treated controls at 14 days, levels were decreased
from their peak at 7 days (Fig. 3b).

DMF modulates in vitro and in vivo immune factors
In addition to acting as an antioxidant, DMF is also
known to be a potent immunomodulator in a variety of
diseases [33–43]. Therefore, we examined immune/

Fig. 2 Infarction size and behavioral assessment after MCAO and DMF treatment. Control (vehicle treated, n = 8) and DMF (25 or 50 mg/kg, n = 8
of each group)-treated rat brains were sectioned and stained for TTC 72 h after MCAO (a). Infarction volume was then calculated as described in
the “Methods” section using ImageJ and expressed as a percentage of total hemisphere (b). mNSS was assessed at 24 h, 72–84 h, 7 days, or
14 days after MCAO during which rats received either vehicle or 25 or 50 mg/kg DMF by oral gavage beginning 2–3 h after MCAO (n = 8 of each
group). A significant and long-lasting decline in neurobehavioral deficits was seen 72 h, 7 days, and 14 days after the initiation of DMF treatment
as compared to controls (c). *, #p < 0.05, Mann-Whitney U test
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inflammatory cytokines and growth factors in primary
mixed neuron/glia cultures and in brain tissue and
plasma in MCAO rats after MMF or DMF treatment.
We first examined immune cytokine levels in OGD

mixed neuron/glia cultures after treatment with vehicle
or MMF using RT-qPCR. IL-12B, IFN-γ, IL-17, GM-CSF,
MIP-2, IL-1β, and TNF-α were significantly induced
after OGD. In contrast, after incubation with MMF,
there was a significant reduction in IL-12B, IFN-γ, IL-17,
GM-CSF, and MIP-2 (Fig. 4a).
We then examined messenger RNA (mRNA) expres-

sion levels of immune cytokines and growth factors in
the hemisphere ipsilateral to MCAO as compared to the
same hemisphere in normal brain in vehicle-treated and
DMF-treated rats using Q-PCR. Nearly every factor
tested was induced by MCAO alone. However, after
3 days of DMF treatment, a significant decline in IL-
12p40, IP-10, IL-1β, MIP-2, eotaxin, and MCP-1 but sur-
prisingly not IFN-γ was observed (Fig. 4b). The decrease
in IL-12p40, IP-10, IL-1β, MIP-2, and MCP-1 was still
observed 14 days after MCAO. Moreover, IL-18 mRNA
level started to decrease 7 days after MCAO while IL-17
and IFN-γ were decreased by 14 days.
In addition to tissue cytokine levels, on the day of

sacrifice, blood was collected (see the “Methods” section)
and samples were sent for multiplex analysis of cyto-
kines and growth factors. We found that experimental
stroke significantly induced IFN-γ levels at 72 h post-
MCAO and that the levels remained elevated even at
7 days post-MCAO (Fig. 4c). Importantly, following
DMF treatment, IFN-γ was significantly decreased at
72 h when compared to the vehicle-treated MCAO
brains or normal brain. In addition, DMF treatment also
resulted in a decline in a number of other potentially

deleterious inflammatory cytokines, including IL-12p70,
IP10, and MCP-1, when compared to vehicle-treated
MCAO brain levels. In some cases (IP-10, MCP-1), these
early reductions were sustained with continued DMF
treatment for 7 days (Fig. 4c). Interestingly, DMF also
resulted in a reduction IL-1β, IL-17, eotaxin, RANTES,
and VEGF levels in plasma at 7 days, even though these
factors were unchanged at 72 h (Fig. 4c). Thus, DMF
treatment begun within hours of MCAO and continued
thereafter results in both early and late effects on plasma
cytokines, causing a profound down-regulation of poten-
tially deleterious inflammatory factors.

DMF reduces immune cell infiltration and microglial
activation in the infarct region
Supporting the notion of DMF-mediated immunomodu-
lation in the brain, we found that the number of MPO+
neutrophils (Fig. 5a–f, m) and CD3+ T cells (Fig. 5g–l, n),
which had infiltrated the penumbra region surrounding
the infarct, was significantly lower in DMF-treated com-
pared to vehicle-treated (control) MCAO rats.
Additionally, DMF treatment greatly reduced the

number of activated CD68+ microglia/macrophages in
the penumbra region after MCAO. Thus, in vehicle-
treated MCAO rats, the number of CD68+ microglia/
macrophages increased dramatically (Fig. 6a–c) com-
pared to normal control rats where relatively few CD68+
cells were observed (data not shown). Importantly, DMF
treatment greatly suppressed this inductive effect
(Fig. 6d–f ), decreasing more than 50 % of CD68+ cells/
microscopic field (p ≤ 0.01) at 72 h (Fig. 6g). The vast
majority of CD68+ cells also stained positive with iNOS
at 72 h (Fig. 6h, i, arrows), another marker of activated
microglia [18].

Fig. 3 Western analysis of Nrf-2 and HO-1 after MCAO and DMF treatment. Protein levels of Nrf-2 (a) and HO-1 (b) were measured by Western
analysis after vehicle (veh) or 50 mg/kg DMF treatment for 72 h, 7 days, or 14 days after MCAO (n = 4 of each group). All values were expressed
as percent change HO-1 expression over normal rat brain (100 %). Significant differences are shown for MCAO/DMF as compared to MCAO/veh.
*p < 0.05; **p < 0.01, Mann-Whitney U test
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Discussion
This study demonstrated for the first time that DMF/
MMF has a profound combined antioxidant and anti-

inflammatory effect, greatly increasing the short (72 h)-
and long (7 and 14 days)term rescue of dying and “at-
risk” brain neurons in models of ischemic stroke in vivo

Fig. 4 Cytokines and growth factors in mixed neuron/glia culture after OGD, brain and plasma after MCAO with or without MMF/DMF
pretreatment. Cultures were processed for RT-qPCR and analyzed for cytokine mRNA levels 24 h after OGD (a). The side of the brain ipsilateral to
MCAO was isolated 72 h, 7 days, and 14 days after surgery for RT-qPCR and analyzed for cytokine and growth factor mRNA levels (b, n = 4 of each
group). In animals treated as in b, blood levels of factors were measured by multiplex array (see the “Methods” section) in normal uninjured brain
or in MCAO rats after 72 h or 7 days of vehicle or 50 mg/kg DMF treatment; protein levels were expressed as pg/ml (c, n = 3–4 per group). All
values were compared to normal uninjured control brain. *p < 0.05; **p < 0.01, Mann-Whitney U test
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and in vitro. In cultures, MMF protected cortical neu-
rons from damage and death due to transient oxygen-
glucose deprivation. This was due in part to the down-
regulation of potentially deleterious cytokines, consistent
with the previous reports [40, 44–46]. In vivo, DMF
treatment initiated within several hours of experimental
stroke greatly diminished infarction volume and amelio-
rated behavioral deficits after MCAO. At the molecular
level, DMF treatment induced the transcription factor
Nrf-2 and its downstream effector HO-1 in the MCAO
brain, both of which are known to be critically important
for constraining oxidant damage acutely after stroke
[56–59]. Also important and contributing further to the
observed beneficial outcome were the long-term changes
in the immune landscape of the brain after DMF treat-
ment. Thus, DMF greatly reduced the infiltration of po-
tentially damaging blood immune cells into the infarct,

such as CD3+ T cells and MPO+ neutrophils, and
decreased the levels of harmful inflammatory cytokines
in the blood and brain. Furthermore, DMF greatly sup-
pressed the activation of microglia in the penumbra and
surrounding brain region.
DMF, which was recently approved by the FDA for the

treatment of patients with relapsing-remitting MS [60],
has been well characterized previously in animal models
of MS [61] and several other neurological disorders
[37, 39] including hemorrhagic stroke [40, 44] and
models of ischemia [45, 46]. These studies have led to
the widespread belief that the molecular basis for the
drug’s efficacy is the transcription factor Nrf-2 [33, 36, 37,
44, 46, 47] and its regulation of key target genes involved
in cellular antioxidant and defense mechanisms [62–64].
Unlike previous studies where analyses were confined to
the acute phase (i.e., up to 72 h after stroke), in the

Fig. 5 Analysis of immune cell infiltration into the infarct region 72 h, 7 days, and 14 days after MCAO (n = 6 of each group). Neutrophil cells in
the infarct region were stained for MPO in control (a–c) and DMF treated (d–f) MCAO rats and quantified (M). T cells were stained for CD3 in
control (g–i) and DMF treated (j–l) MCAO rats and quantified (N). *p < 0.05, **p < 0.01, Mann-Whitney U test
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present study, neurological behavior along with the brain
and blood was analyzed both in the short and long term
after DMF treatment.
We found major behavioral improvement in MCAO

rats as early as 72 h after the administration of DMF.
Importantly, during this early acute phase in MCAO
rats, brain levels of Nrf-2 also increased but interest-
ingly, changes in its crucial downstream mediator HO-1
did not peak until later (7 days after the initiation of
treatment), possibly indicating different mechanisms for
the early rescue by DMF of dying core cells and the later
protection of at-risk penumbra cells.
In particular, the long-term neuroprotective effects of

DMF raised the possibility that factors/pathways other
than Nrf-2/HO-1 and mechanisms other than antioxi-
dant systems might be involved. This contention was
further supported by the findings of Zamvil and col-
leagues showing that Nrf2 does not mediate all activities
of fumarates [65]. Since the prolonged harmful con-
sequences of inflammation after stroke are well known
[6, 11], we examined the immunomodulatory function of
DMF in stroke. Indeed, we found that DMF treatment
had profound effects on plasma and brain immune

cytokines in rats after MCAO as well as in OGD mixed
neuron/glia cultures. Of particular note was the dramatic
down-regulation in levels of the pro-inflammatory cyto-
kine IFN-γ in culture and in plasma.
In addition to IFN-γ, DMF also significantly reduced

the levels of IL-12 in plasma and IL-12p40 in the brain,
likely leading to a further down-regulation of IFN-γ and
its downstream mediator IP-10. Likewise, in OGD mixed
neuron/glia cultures, DMF decreased IL-12p40 levels.
IL-12, which is produced by activated microglial factors
and inhibited by astrocytic factors [49], is known to con-
tribute to inflammatory activity in ischemic stroke. Its
suppression has been shown to reduce brain infarct pro-
gression after stroke [66], as observed here after DMF
treatment.
Additionally, DMF treatment after MCAO resulted in

lower levels of many other plasma cytokines including
IL-12, IP-10, IL-1β, eotaxin, RANTES, IL-17, and MCP-1
at 72 h and/or 7 days post-infarct. Most of these cytokines/
chemokines are either Th-1 type or pro-inflammatory fac-
tors that are normally involved in the activation and subse-
quent infiltration of peripheral immune cells into the brain
and in the activation of resident brain microglial cells

Fig. 6 Analysis of activated microglia/macrophages in penumbra 72 h, 7 days, and 14 days after MCAO (n = 6 of each group). Activated
microglia/macrophages were stained for CD68 in control (a–c) and DMF treated (d–f) MCAO rats, and cell number was quantified (g). iNOS
staining was also used to demonstrate activated microglia/macrophages at 72 h (h, i, arrows). *p < 0.05, **p < 0.01, Mann-Whitney U test
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[4–7, 10–12, 15, 17, 18, 20–24, 26–28, 32, 49, 67]. Of
particular interest is IL-17A, which is produced primarily
by Th17 cells and contributes widely to inflammation and
the severity of clinical symptoms in autoimmune diseases
like MS and other inflammatory diseases [27, 68, 69]. IL-
17A promotes the production of inflammatory cytokines
and chemokines, leading to the recruitment of IL-17A
receptor-expressing immune cells such as neutrophils and
macrophages. After stroke and breakdown of the blood-
brain barrier (BBB), there is a massive infiltration of these
activated immune cells into the brain, causing secondary
brain injury and functional loss. Since DMF/MMF dra-
matically reduced the levels of IL-17 in plasma from
MCAO rats and in OGD mixed cultures, it suggests that
IL-17 may play an important role in ischemic stroke,
although Th17 cell infiltration and intervention of IL-17
pathway were not directly studied here.
Concomitant with the reduction in these detrimental

plasma and brain immune cytokines by DMF, we observed
significantly fewer neutrophils and T-lymphocytes infil-
trated into the infarct region, further lowering the levels of
harmful cytokines in the brain [8, 13–16, 19–21, 24, 25,
28, 29, 67, 70]. Moreover, we found that DMF decreased
activation of brain microglia/macrophages after ischemic
stroke, similar to recent reports of the drug’s effects in
models of hemorrhagic stroke in vitro [47] and in vivo
[40, 44]. Taken together, these findings indicate that DMF
acts as a potent immune modulator, down-regulating the
further activation of microglia and reducing the infiltra-
tion of harmful blood immune cells that could further
contribute to brain damage at later times after stroke.
These beneficial immunomodulatory effects of DMF,
which cannot be adequately explained by the activation of
Nrf-2 antioxidant pathway, have been largely underappre-
ciated in stroke. Given the potential clinical utility of the
drug, further investigation into the mechanisms involved
in DMF immunomodulation is needed.
The unique cytokine profiles in different tissues (i.e.,

plasma, brain, and nerve/glia cell cultures) elicited by
DMF administration could provide valuable information
in this regard. For instance, DMF strongly suppresses
the IL-12 pathway and down-regulates IFN-γ and IP-10
in plasma, while it suppresses IFN-γ and IL-17 mRNA
level in the mixed cell cultures, indicating a dual role in
regulating IL-12 and IL-17 pathways. These could be im-
portant for therapeutic target development in the future.
Moreover, the differences in tissue-specific cytokine pro-
files after DMF treatment underscore the importance of
linking systemic responses with local brain responses,
given the access of circulating peripheral cytokines to
the brain after stroke and breakdown of the BBB [54].
Thus, systemically administered DMF may reduce

brain inflammation via its direct effects on the periph-
eral immune system. Conversely however, DMF may also

work indirectly to lower brain inflammation. After DMF
treatment, there are fewer dying neurons in the brain,
less activation of local glia/microglia, and fewer immune
cells attracted to the region and likely a reduction in in-
flammatory cytokines leaking across the damaged BBB
to blood, resulting in lower systemic levels of immune
cytokines. Thus, DMF may reduce brain inflammation
both through direct and indirect mechanisms [45].
In our studies, we observed the early action of DMF

after experimental stroke compared to previous reports
showing a late effect in MS [71]. There may be several
reasons for these differences. In stroke but not MS, the
BBB is extensively compromised, allowing rapid efficient
access of the brain parenchyma to the drug. Interest-
ingly, DMF was recently shown to improve BBB function
after experimental stroke [45]. Also, in MS but not in
stroke, infiltrated and activated resident immune cells
exist in situ in the brain prior to DMF treatment which
could slow the drug’s efficacy.
In summary, DMF-induced changes in the immune

landscape result in the protection of brain tissue after
MCAO, consistent with the observed decrease in infarct
volume. As might be expected, the rescue of “at-risk”
brain neurons in DMF-treated MCAO rats is correlated
with fewer functional deficits and a sharp reduction in
mNSS scores early on with a more gradual improvement
in behavior over the next several weeks. Possibly, these
differences reflect the early actions of DMF on Nrf-2 in-
duction, leading to the rescue of core cells and a smaller
infarct in the acute phase. This is followed by later
downstream effects on HO-1, the slow rescue of penum-
bra cells, and a more gradual recovery of behavioral
function at later times after stroke which is correlated
with a decrease in immune cytokines in the brain and
plasma, suggesting an important role for not only local
but also the systemic immune system in ameliorating
poststroke damage.

Conclusions
This work shows that DMF, which is already safely used
in the clinic to reduce relapse rate and disease progres-
sion in MS patients [42, 43], strongly suppresses mul-
tiple pro-inflammatory cytokines in in vivo and in vitro
stroke models. The improvement of behavioral out-
comes is consistent with the observed decrease in infarct
volume after MCAO, likely due to the activation of Nrf-2
pathway and the antioxidant effects of DMF.
We conclude that DMF is neuroprotective in experi-

mental stroke because of its dual capacity as an immu-
nomodulatory and antioxidant agent and thus may be
useful as a novel therapeutic reagent to treat stroke in
patients. As we explore ways to translate this work from
bench to bedside, ongoing studies will examine the
therapeutic window for DMF efficacy and how we might
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exploit its underlying mechanisms to further impede
damaging oxidant (i.e., HO-1) and/or inflammatory
signaling pathways (i.e., IL-12 and/or IL-17).

Additional file

Additional file 1: Figure S1. MMF partially rescues forebrain neurons
from OGD-induced cell death in culture. Cultures of E15 rat forebrain
were treated with MMF (25 μM) beginning after OGD deprivation and
throughout the remaining culture period. Cultures treated with MMF
contained fewer dead/dying cells at 24 h than untreated controls as
assessed by LIVE/DEAD assay (A-C). No significant difference was
observed in assay of LDH released into the media by dead cells (D).
*p < 0.05, Student’s t test. (TIF 2483 kb)
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