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Abstract
Background: Arthrofibrosis, occurring in 3%-4% of patients following total knee arthroplasty
(TKA), is a challenging condition for which there is no defined cause. The hypothesis for this study
was that disregulated production of reactive oxygen species (ROS) and nitrogen species (RNS)
mediates matrix protein and DNA modifications, which result in excessive fibroblastic
proliferation.

Results: We found increased numbers of macrophages and lymphocytes, along with elevated
amounts of myeloperoxidase (MPO) in arthrofibrotic tissues when compared to control tissues.
MPO expression, an enzyme that generates ROS/RNS, is usually limited to neutrophils and some
macrophages, but was found by immunohistochemistry to be expressed in both macrophages and
fibroblasts in arthrofibrotic tissue. As direct measurement of ROS/RNS is not feasible, products
including DNA hydroxylation (8-OHdG), and protein nitrosylation (nitrotyrosine) were measured
by immunohistochemistry. Quantification of the staining showed that 8-OHdg was significantly
increased in arthrofibrotic tissue. There was also a direct correlation between the intensity of
inflammation and ROS/RNS to the amount of heterotopic ossification (HO). In order to investigate
the aberrant expression of MPO, a real-time oxidative stress polymerase chain reaction array was
performed on fibroblasts isolated from arthrofibrotic and control tissues. The results of this array
confirmed the upregulation of MPO expression in arthrofibrotic fibroblasts and highlighted the
downregulated expression of the antioxidants, superoxide dismutase1 and microsomal glutathione
S-transferase 3, as well as the significant increase in thioredoxin reductase, a known promoter of
cell proliferation, and polynucleotide kinase 3'-phosphatase, a key enzyme in the base excision
repair pathway for oxidative DNA damage.

Conclusion: Based on our current findings, we suggest that ROS/RNS initiate and sustain the
arthrofibrotic response driving aggressive fibroblast proliferation and subsequent HO.
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Background
A number of factors are known to result in complications
after total knee arthroplasty (TKA), which include preop-
erative deformity, neuromuscular disease, patient non-
compliance with rehabilitation protocol and technical
errors such as component malpositioning [1-4]. A sepa-
rate portion of the patient population develops arthrofi-
brosis after TKA, clinically defined as abnormal scarring of
the joint in which the formation of dense fibrous tissue
and tissue metaplasia prevent normal range of motion [4-
11]. For these patients, surgical intervention and revision
arthroplasty leads to a worsening of the fibrotic condition
and eventual disability [4,9,10].

The exact pathoaetiology of arthrofibrosis following TKA
remains elusive. However, aggressive fibroblast prolifera-
tion and tissue metaplasia are a hallmark of this condition
[10,12]. Our previous studies highlighted multiple tissue
changes including the presence of pro-inflammatory fac-
tors, increased cell proliferation, survival and increased
matrix deposition [11,13]. In addition, we showed that
mast cells, hypoxia and hypoxia-associated oxidative
stress are linked to the progression of the metaplastic
changes, fibrocartilage formation and heterotopic ossifi-
cation observed in idiopathic arthrofibrosis [13].

Normally, tissue repair occurs through a sequence of coor-
dinated events that lead to the eventual restoration of tis-
sue form and function. The healing response is initiated
by the clotting cascade, which results in the migration of
inflammatory cells (neutrophils and monocytes) to the
site of injury [14]. Inflammatory cell infiltration is fol-
lowed by the recruitment of fibrocytes that undergo pro-
liferation, differentiation and the ultimate deposition of
an organized matrix [15-17]. Both the migration of
inflammatory cells into the injured tissue and the prolif-
eration of fibroblasts results in the release of cytokines,
growth factors and reactive oxygen and nitrogen species
(ROS/RNS) [18-26]. Thus, an intricate balance between
cell proliferation, matrix production and tissue remodel-
ling is in place during normal healing, and the restoration
of tissue integrity is dependent on the coordinated or 'cou-
pled' function of inflammatory cells responsible for
remodelling, and fibroblasts, the cells responsible for
resynthesis of the matrix. Once the process of healing
nears completion, the majority of the inflammatory cells
undergo apoptosis, the tissue heals and the release of
ROS/RNS and other factors, which are no longer neces-
sary, halts. Therefore, resolution of the inflammatory
response is critical to the restoration of the tissue to a func-
tional state and the prevention of fibrosis [16,17].

Disruption of the ROS/RNS equilibrium, caused by over-
production or inefficient antioxidant response, has been
implicated in the pathoaetiology of fibrotic conditions
including retroperitoneal fibrosis [27], Dupuytren's [28-

31], scleroderma [32,33] and Crohn's disease [34]. In
addition, chronic inflammation and oxidative stress con-
tribute to genomic DNA damage. In Crohn's disease, this
damage leads to the overexpression of p53, which poten-
tially contributes to the loss of cell cycle control [35].

Our hypothesis was that susceptible patients exhibit
excessive production and/or the inefficient removal of
ROS/RNS after undergoing TKA surgery, which leads to
aggressive fibrosis. Therefore, we performed a series of
interlinked molecular studies to evaluate ROS/RNS mod-
ifications, inflammation and ROS/RNS responsive gene
expression as part of the pathogenesis of arthrofibrosis
following TKA.

Results
Patient cohort information
The clinical records of patients were reviewed in detail to
extract variables including age, sex, body mass index
(BMI), years post initial surgery, pre-existent co-morbidi-
ties, functional scores (particularly the details of range of
motion) and all other relevant information (Table 1). Ten
patients undergoing uneventful primary TKA were
matched for age, sex and BMI and included as the control
cohort.

There was no correlation between most of the demo-
graphic factors, range of motion and the molecular find-
ings in this cohort of patients. The only significant
correlation observed was between range of motion
(ROM) and tissue calcification/bone volume (BV) (Table
1) [13]. As no other correlations were evident, all subse-
quent analyses were grouped based on patient tissue BV.
The control tissue BV was 0.005 ± 0.01.

Monocyte and lymphocyte infiltration
Histological analysis of the 10 control tissues showed
~1% average inflammatory cell presence (Figure 1A). This
is in contrast to the arthrofibrotic tissues, which showed a
3.0 - 4.0-fold increase in the number of macrophages and
a 3.0 - 9-fold increase in lymphocytes as compared to con-
trol (Figure 1B, C, D). The inflammatory response did not
include the infiltration of neutrophils (Figure 2). The
absence of these cells suggests that the inflammation was
not due to infection. Image analysis of the fibrotic regions
(non-calcified areas) showed increased inflammation in
patient tissues in both the low and high BV groups (Figure
1D). The increase in macrophage and lymphocyte num-
bers were significant in the both BV groups relative to con-
trol tissue (P < 0.05).

Expression of myeloperoxidase (MPO) in arthrofibrotic 
tissue
Based on the increased presence of macrophages in the
arthrofibrotic tissues, subsequent analyses to determine
the levels of MPO were performed. MPO is an enzyme
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that produces highly reactive products that mediate chlo-
rination, protein/DNA hydroxylation and protein/DNA
nitrosylation [36-41]. Low levels of MPO were detected in
control tissue macrophages by immunohistochemistry. A
representative tissue image is shown in Figure 3A. Figures
3B and 3C show the elevated expression of this enzyme in
macrophages within the arthrofibrotic tissue. Although
less intense, MPO expression was also observed in the
periarticular fibroblasts, which was not observed in con-
trol tissues (Figure 3D). Image analysis revealed a correla-
tive increase in macrophage (based on CD68 image
analysis) and fibroblast expression of MPO in arthrofi-
brotic patient tissues (Figure 3E). This increase was statis-
tically significant for the high BV group compared to the
control group (P < 0.05) and the low BV group
approached significance.

Fibrotic tissues contain byproducts of reactive oxygen and 
nitrogen species
Based on the increased MPO in the arthrofibrotic tissues,
subsequent analysis were performed in order to determine

the levels of ROS/RNS. As direct measurement of ROS/
RNS production in tissues lacks sensitivity and reproduci-
bility, we measured protein nitrosylation and DNA
hydroxylation (8-OHdG), both are end products of ROS/
RNS-mediated reactions. There was no detectable protein
nitrosylation (Figure 4A) or 8-OHdG modifications (Fig-
ure 5A) in control tissues by immunohistochemistry. Evi-
dent within the fibrotic regions of the arthrofibrotic
tissues were nitrosylated proteins (Figure 4B and 4C) and
cells containing 8-OHdG (Figure. 5B and 5C). The ROS/
RNS-mediated 8-OHdG nuclear modification was local-
ized to regions of high fibroblast density and was signifi-
cantly increased in tissues in the high BV group (Figure
5D; P < 0.05).

MPO expression and oxidative stress responses of isolated 
arthrofibrotic fibroblasts
In order to determine MPO expression specific to the
arthrofibrotic fibroblast population and to analyse oxida-
tive stress, we performed a real-time polymerase chain
reaction (PCR) microarray panel for oxidative stress

Table 1: Patient information for the arthrofibrotic cohort.

Sex Males 3

Females 7

Average age

Males 63.7 ± 12.5

Females 57.6 ± 3.7

Years post initial total knee arthroplasty

Males 3.0 ± 1.9

Females 2.9 ± 0.9

Average body mass index (kg/cm2)

Males 28.4 ± 1.6

Females 36.4 ± 1.8

Range of motion (0°-100° flexion)

Males 53.3 ± 10.8

Females 44.2 ± 6.6

Tissue calcification (bone volume, mm3 of hydroxyapatite)

Males 2.04 ± 2.34

Females 3.93 ± 2.47
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responsive genes (Table 2). In agreement with the immu-
nohistochemical finding, MPO expression levels in the
isolated arthrofibrotic fibroblasts were 2.4-fold higher
than control fibroblasts. In contrast to MPO, the expres-
sion of the major anti-oxidant enzyme superoxide dis-
mutase 1 (SOD1) was down-regulated 2.9-fold. A number
of other oxidative stress responsive genes were also disreg-
ulated, showing a significantly increased or decreased
expression by arthrofibrotic fibroblasts. Of note was a 7.6-
fold increase in polynucleotide kinase 3'-phosphatase
(PNKP), an enzyme involved in the base excision repair
pathway for nearly all ROS/RNS-induced DNA mutations,
and an 11.9-fold increase in thioredoxin reductase 1
(TrxR1) expression, an oxidoreductase enzyme that pro-
motes cell proliferation. Finally, there was 21.1-fold
decrease in the expression of another important anti-oxi-
dant, microsomal glutathione S-transferase 3 (MGST3).

SOD1 is a both a cytosolic and a secreted protein, and
MGST3 is a major intracellular antioxidant enzyme.

Discussion
This study highlights several major findings that are rele-
vant to the pathogenesis of arthrofibrosis. First, histologi-
cal findings show an increase in the number of
macrophages and lymphocytes in the periarticular tissue
of patients with arthrofibrosis. Second, by demonstrating
the atypical presence of MPO and ROS/RNS products
(oxidized DNA and nitrosylated proteins) in arthrofi-
brotic tissues, a potentially important mechanism
involved in gene disregulation has been identified.
Finally, by immunohistochemistry and microarray analy-
sis, we show aberrant expression of MPO, SOD1 and
other oxidative stress genes including; TrxR1, PNKP and
MGST3, which all show significant fold changes in
arthrofibrotic fibroblasts. Disregulated gene expression of
the cellular oxidant/anti-oxidant system in fibroblasts
implicates their involvement in the abnormal fibroblast
proliferation, survival and hypertrophic formation of scar
tissue.

No in depth studies have been performed on arthrofi-
brotic tissue after TKA in order to determine the extent of
inflammation or other molecular mechanisms involved
in this disease process [10,11,13]. However, chronic
inflammation has been associated with the development
of fibrosis in other tissues, such as Dupytren's Contracture
[28,30,31,42,43], Crohn's disease [34] and additional tis-
sues [14,44]. Studies have also linked the development of
arthrofibrosis after anterior cruciate ligament surgery to
the presence of prior inflammation [45] and to an
increased infiltration of T cells within 10 days after post
surgery [46]. Similarly, in intestinal, pulmonary and renal
fibrosis increased numbers of macrophages and mast cells
are found within the granulation tissue during the prolif-
erative stage of wound healing [20,26,27,47]. Our find-

Patients were divided into to three cohorts; control before revision, and based on the amount of tissue calcification detected by microcomputed tomography, a low bone volume (BV) group and a high BV groupFigure 1
Patients were divided into to three cohorts; control 
before revision, and based on the amount of tissue 
calcification detected by microcomputed tomogra-
phy, a low bone volume (BV) group and a high BV 
group. A - C show representative images of CD68 immuno-
histochemistry on (A) control tissue and (B) low BV and (C) 
high BV arthrofibrotic tissue. Note the large increase in the 
presence of macrophages in the fibrotic regions of the high 
BV arthrofibrotic periarticular tissue. Image analysis of lym-
phocytes (Giemsa stain) and macrophage was based on per-
centage positive per total cell number for each patient 
cohort. (D) There was a correlative increase in lymphocyte 
and macrophage numbers with tissue calcification. The fold 
increases for both BV groups were statistically significant as 
compared to control and each other (*; P < 0.05). Magnifica-
tion 100× insets, micron bar equals 100 μm.

Immunohistochemical stain for neutrophil elastase of the periarticular tissue from patients with arthrofibrosisFigure 2
Immunohistochemical stain for neutrophil elastase of 
the periarticular tissue from patients with arthrofi-
brosis. Representative immunohistochemical results are 
shown for (A) elastase in the fibrous and (B) in the vascular 
regions of the tissue. A positive control of a neutrophil rich 
bone marrow sample is shown in (C). Magnification 200× 
with 400× insets, micron bar equals 100 μm.
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ings, that macrophages and lymphocytes are present in
the arthrofibrotic tissue, supports the involvement of
chronic inflammation in the fibrotic process which devel-
ops after TKA. The persistence of this local inflammation,
regardless of the number of years post initial surgery, was
tightly linked to increased tissue calcification and
decreased ROM. This association suggests that calcifica-
tion and chronic inflammation are connected, which has
been previously observed [48-52].

ROS/RNS is a collective term for a growing number of
reactive species [37,53,54]. They are produced by a variety

of pro-oxidant enzymes including MPO, which directly
produces the highly reactive products hypochlorous acid
(HOCl) and chlorine gas (Cl2) [36,55]. These products
react with other ROS/RNS, leading to the generation of
even a greater number of ROS/RNS [36-41,53,54]. In
addition, HOCl and Cl2 have been shown to mediate
modifications of extracellular [56,57] and intracellular
components [40,41]. Specifically, collagen is oxidized by
a reaction with HOCl and Cl2, resulting in the formation
of chlorinated products. These modifications can affect
the organization of the tissue matrix, altering its mechan-
ical properties as well as preventing normal remodelling
and resolution of the injury response. Intracellular modi-
fications by MPO include ROS/RNS-mediated DNA
hydroxylation and other base pair modifications, which
affect gene expression.

In the present study, we show periarticular arthrofibrotic
tissue with macrophages and fibroblasts uncharacteristi-
cally expressing high levels of MPO. The over-expression
of MPO by macrophages and non-myeloid cells is also an
aetiology associated with cystic fibrosis and hepatic fibro-
sis [58,59]. The promiscuous expression in these fibrotic
diseases is associated with a -463G/A polymorphism
within the MPO promoter [58,59]. Individuals can be
born with this polymorphism or develop it as a result of
ROS/RNS-mediated promoter mutagenesis [36-
41,58,59]. Our findings suggest that MPO expression by
fibroblasts may have a related aetiology and that MPO
may be a driving force in the fibrotic process associated
with arthrofibrosis.

Myeloperoxidase (MPO) immunohistochemistry and image analysis showing increased expression of MPO in macro-phages and fibroblasts within the fibrotic regions of the arthrofibrotic tissueFigure 3
Myeloperoxidase (MPO) immunohistochemistry and 
image analysis showing increased expression of MPO 
in macrophages and fibroblasts within the fibrotic 
regions of the arthrofibrotic tissue. A - C show repre-
sentative images for (A) control tissue and (B) low bone vol-
ume (BV) and (C) high BV arthrofibrotic tissue. Note the 
large increase in the presence of MPO positive macrophages 
(round cells) and fibroblasts (elongated cells) in the fibrotic 
regions of the 'high' bone arthrofibrotic periarticular tissue. 
(D) A representative image of MPO expression in tissue 
from the non-arthrofibrotic stiff knee cohort, showing that 
MPO was not expressed by control tissue fibroblasts. Image 
analysis of the patient cohorts was based on the average per-
centage positive per total cell number. There was a correla-
tive increase in MPO expression with tissue calcification. The 
fold increases for the high BV group were statistically signifi-
cant as compared to control and to the low BV group (*; P < 
0.05). Magnification 100× for (A -C), micron bar equals 100 
μm.

Immunohistochemical analysis of reactive oxygen species/reactive nitrogen species byproducts in periarticular tissue from patients diagnosed with arthrofibrosisFigure 4
Immunohistochemical analysis of reactive oxygen 
species/reactive nitrogen species byproducts in peri-
articular tissue from patients diagnosed with 
arthrofibrosis. A-C show representative nitrotyrosine 
immunohistochemistry on (A) control tissue and (B) low 
bone volume (BV) and (C) high BV arthrofibrotic tissue. 
Note the large increase in the presence of nitrotyrosine in 
the fibrotic regions associated with tissues containing high 
amounts of bone. Magnification 100× for (A-C), micron bar 
equals 100 μm.
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ROS/RNS play diverse roles in wound healing - they regu-
late mast cell degranulation and the release of a number
of enzymes, cytokines and growth factors (for example,
transforming growth factor-β and connective tissue
growth factor (CTGF)) that participate in normal wound
healing and fibrosis [23]. They can also directly stimulate
CTGF expression, fibroblast proliferation and matrix pro-
duction [33,37,60]. In normal wound healing, the major-
ity of inflammatory cells undergo apoptosis, the tissue
heals and the release of ROS/RNS and other factors stop,
thereby ending the cycle of proliferation and allowing for
wound resolution [61]. In the arthrofibrotic tissue, how-
ever, we see the presence of inflammatory cells and ROS/
RNS products years after the initial TKA.

We also observed a decreased expression of SOD1, which
can exacerbate oxidative stress. An imbalanced and ineffi-

cient antioxidant response has been noted in other
chronic inflammatory conditions. If the antioxidant
response is not sufficient, as in Crohn's disease where an
overall increase in ROS/RNS results because of an exces-
sive accumulation of MPO in the tissue coupled with a
decrease in hydroxyl radical scavengers, the balance is
shifted [34]. As a result of the disturbed ROS/RNS equilib-
rium, the inflammatory and proliferative phases of
wound healing do not resolve and an aggressive fibrotic
response ensues.

Since ROS/RNS mediate downstream effects, a second
confounding factor(s) must be involved in disease pro-
gression. The other important observation in our study
was the increased hydroxylation of DNA, signifying DNA
modification. Additional supportive evidence for DNA
oxidative damage-induced modifications in arthrofibrotic
fibroblasts was the 7.6-fold upregulation of PNKP, a key
enzyme in the base excision repair pathway [62]. Specifi-
cally, PNKP is one of the primary proteins responsible for
repair of oxidatively-induced DNA lesions and single
strand breaks. In addition to the upregulation of PNKP,
the expression of the oxidative stress responsive gene
TrxR1 was increased 11.9-fold in arthrofibrotic fibrob-
lasts. TrxR1 is an oxidoreductase enzyme that promotes
cell growth, down-regulates the function of p53 induced
apoptosis, regulates DNA synthesis and protects against
oxidant damage [63]. Finally, there was 21.1-fold decrease
in the expression of MGST3, an anti-oxidant enzyme that
reduces lipid hydroperoxides and detoxifies lipid peroxi-
dation end products such as 4-hydroxynonenal [64].

Conclusion
There was an increase in inflammatory cell numbers,
MPO expression, ROS/RNS product accumulation and
disregulation of ROS/RNS responsive gene expression.
The overexpression of MPO and the presence of ROS/RNS
products indicates that ROS/RNS production by inflam-
matory cells and fibroblasts within the arthrofibrotic tis-
sue is excessive, due either to increased MPO or to the
decreased cellular antioxidant expression of SOD1 and
MGST3 or a combination of both. These observations
strongly suggest an imbalance in the oxidant/anti-oxidant
system regulating the normal resolution of the inflamma-
tory and fibroblastic proliferative phases of wound heal-
ing. Based on these findings, we believe that aggressive
periarticular fibrosis and unresolved healing in patients
with arthrofibrosis results from an excessive accumulation
of ROS/RNS, ROS/RNS-modified DNA and disregulation
of oxidative stress responsive genes.

Methods
Tissue collection and processing
This multi-centre study used a standardized tissue
retrieval protocol allowing collection and analysis of peri-

Immunohistochemical and image analysis of reactive oxygen species (ROS)/reactive nitrogen species (RNS) byproducts in periarticular tissue from patients diagnosed with arthrofibro-sisFigure 5
Immunohistochemical and image analysis of reactive 
oxygen species (ROS)/reactive nitrogen species 
(RNS) byproducts in periarticular tissue from 
patients diagnosed with arthrofibrosis. A-C show rep-
resentative images of 8-OHdG immunohistochemistry on (A) 
control tissue and (B) low bone volume (BV) and (C) high BV 
arthrofibrotic tissue. Note the large increase in the presence 
of 8-OHdG in the fibrotic regions associated with tissues 
containing high amounts of bone. Image analysis of the 
patient cohorts was based on the average percentage posi-
tive per total cell number. (D) The fold increases in ROS/
RNS product formation for the high BV group were statisti-
cally significant as compared to control and the low BV group 
(*; P < 0.05). Magnification 100× for (A-C), micron bar equals 
100 μm.
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Table 2: Oxidative stress and antioxidant defense polymerase chain reaction array

Protein Δ Expr Gene

MGST3 -21.1 Microsomal glutathione S-transferase 3 GST-III

PTGS2 -8 Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase) COX-2/COX2

TPO -8 Thyroid peroxidase MSA/TPX

GPX5 -6.06 Glutathione peroxidase 5 (epididymal androgen-related protein) GPX5

DHCR24 -5.79 24-dehydrocholesterol reductase Nbla03646/SELADIN1

GPX6 -5.28 Glutathione peroxidase 6 (olfactory) Gpx6

AOX1 -5.04 Aldehyde oxidase 1 AO/AOH1

STK25 -4.59 Serine/threonine kinase 25 (STE20 homolog, yeast) DKFZp686J1430/SOK1

NOX5 -4.59 NADPH oxidase, EF-hand calcium binding domain 5 NOX5A/NOX5B

FOXM1 -3.91 Forkhead box M1 FKHL16/FOXM1B

TXNRD2 -3.65 Thioredoxin reductase 2 SELZ/TR

CYGB -3.4 Cytoglobin HGB/STAP

OXR1 -3.32 Oxidation resistance 1 Nbla00307

SOD1 -2.89 Superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult)) ALS/ALS1

MPV17 -2.89 MpV17 mitochondrial inner membrane protein SYM1

GPR156 -2.83 G protein-coupled receptor 156 GABABL/PGR28

DUOX2 -2.52 Dual oxidase 2 LNOX2/NOXEF2

PTGS1 -2.52 Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase) COX1/COX3

PRDX2 -2.35 Peroxiredoxin 2 NKEFB/PRP

MPO 2.351 Myeloperoxidase myeloperoxidase

GPX1 2.462 Glutathione peroxidase 1 GSHPX1

NOS2A 2.764 Nitric oxide synthase 2A (inducible, hepatocytes) HEP-NOS/INOS

SIRT2 3.102 Sirtuin (silent mating type information regulation 2 homolog) 2 (S. cerevisiae) SIR2L/SIR2L2

NME5 3.403 Non-metastatic cells 5, protein expressed in (nucleoside-diphosphate kinase) NM23-H5/NM23H5

PRNP 4.387 Prion protein 
(p27-30) (Creutzfeldt-Jakob disease, Gerstmann-Strausler-Scheinker syndrome, fatal familial insomnia)

ASCR/CD230

SGK2 5.924 Serum/glucocorticoid regulated kinase 2 H-SGK2

LPO 6.277 Lactoperoxidase SPO

PNKP 7.639 Polynucleotide kinase 3'-phosphatase PNK

TXNRD1 11.85 Thioredoxin reductase 1 GRIM-12/TR

GPX3 13.3 Glutathione peroxidase 3 (plasma) GPx-P/GSHPx-3
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articular tissues from the knee of patients undergoing revi-
sion arthroplasty for arthrofibrosis. The diagnosis of
arthrofibrosis is based on clinical, radiological examina-
tion and intra-operative findings [11]. For these patients,
the distinct intra-operative findings are extensive fibrotic
tissue formation that fills the lateral, medial, and parapa-
tellar gutters, generally within 1 year after TKA. In this
study, tissue samples from 10 affected knees and 10 knees
from osteoarthritis (OA) patients undergoing primary
TKA (controls) were retrieved. Primary surgical tissues
controls were chosen for comparison with arthrofibrotic
tissues, as these tissues represent the pre-surgical status,
where normal OA associated inflammation exists but is
not associated with excessive fibrosis or metaplastic
changes [65].

Tissue samples were taken from the periarticular area,
which included the suprapatellar, medial gutter, lateral
gutter and infrapatellar regions. The tissue was wrapped in
sterile saline soaked gauze and transferred, or shipped
overnight on ice, to the laboratory for fixation and
detailed analyses. Tissue from each anatomical location
was cut into 2 × 5 mm pieces and, depending on the
amount of available tissue, four to five pieces of tissue
from one region were placed in a paraffin block. An equal
number and distribution of tissue cubes was used for
fibroblast isolation. Any remaining tissue was flash frozen
in liquid nitrogen and stored at -80°C. Tissue collection
was performed in accordance with the Institutional
Review Board guidelines of the participating institutes.

Microcomputed tomography (μCT) analysis
Each of the paraffin blocks containing tissue were sub-
jected to μCT analysis in order to determine heterotopic
ossification (Scanco μCT 40, Basserdorf, Switzerland),
with an energy of 45 kVp, a current of 88 μA and a 200-ms
integration time producing a resolution of 20 μm3 voxel
size. Each scan comprised a minimum of 500 slices
through the entire paraffin block. In order to achieve
image noise reduction, a constrained three-dimensional
Gaussian filter (sigma 1.2, support 2) was applied. A fixed,
global threshold for analysis was chosen that represented
the transition in X-ray attenuation between un-mineral-
ized tissue (< 225) and the forming bone (230 - 700).
Analysis consisted of defining the outer boundary of the
tissue for each 20 mm section in the sample. For consist-
ency, the same settings and thresholds were used for each
analysis and applied to every sample in the study. Scout,
sagittal and cross-sectional views were examined for evi-
dence of mineralization.

Histochemical stains
Tissues were fixed in 4% paraformaldehyde, dehydrated,
embedded in paraffin and sectioned (6 μm). Paraffin sec-
tions were dewaxed, rehydrated and stained with Harris

Hemotoxylin (Fisher Scientific, MI, USA; Nos 245-678)
and Eosin Y (Fisher Scientific; Nos 245-827) in order to
determine cellularity, vascularization and tissue morphol-
ogy. Sections were also stained with Wright Geimsa
(Fisher Scientific; Nos 264-985; phosphate buffer pH 6.8
Nos 262-237) in order to determine the inflammatory cell
number and toluidine blue (Sigma, MO, USA; No.
198161) to determine mast cell numbers.

Immunohistochemistry
Paraffin sections (3 μm) were mounted on Fisher Super-
frost/Plus slides which were placed in a 58°C oven for 30
min prior to immunostaining. A Ventana Benchmark XT
automated slide stainer (Ventana, AZ, USA; N750-
BMKXT-FS) was used for the following immunohisto-
chemical staining reactions. The slide stainer was
equipped with an iView DAB detection kit (Ventana) for
immunoperoxidase visualization of the targeted antigen.
Endogenous biotin reactivity in the tissue sections was
blocked using the Endogenous Biotin Blocking kit from
Ventana. After the completion of the staining run, the
slides were briefly washed in a mild dishwashing deter-
gent solution (Dawn; Proctor & Gable, Ohio, USA) to
remove the liquid cover slip solution and processed for
haematoxylin counterstaining using a 1:8 dilution of
Gills-3 haematoxylin solution (Polysciences, PA, USA) for
1 min. Slides immunostained for 8-OHdG antigen were
counterstained with Fast Green Substitute for Light Green
Working Solution (Poly Scientific, NY, USA). Specific
staining conditions were as follows: p53 mouse mono-
clonal anti-human antibody (clone: Bp53-11; pre-diluted,
37°C for 32 min) (Ventana; 760-2542) (CC1 treatment*
- 1 h); CD68 mouse monoclonal anti-human antibody
(clone: KP-1; pre-diluted, 25°C for 32 min) (Ventana;
790-2931) (CC1 treatment* - 30 min); neutrophil
elastase mouse monoclonal anti-human antibody (clone:
NP57; 1:100 dilution, 25°C for 1 h) (Dakocytomation;
M-0752) (no antigen retrieval); 8-OHdG monoclonal
antibody (1:20 dilution, 25°C for 1 h) (Oxis Interna-
tional, Inc, CA, USA; 24328) (CC2 treatment* - 8 min
then Protease 3 treatment - 16 min); myeloperoxidase
mouse anti-human antibody (1:300 dilution, 25°C for 1
h) (Dakocytomation, CA, USA; A-0398) (CC2 treatment*
- 1 h); and rabbit anti-nitrotyrosine (1:1000 dilution,
37°C for 1 h) (Harry Ischiropoulos, University of Penn-
sylvania, USA) (CC2 treatment* - 1 h);. *CC2 is a citrate
based buffer, pH 6.0, Protease 3 is a low concentration
solution of a serine protease and CC1 is a Tris buffer with
1 mM EDTA (antigen retrieval reagents, Ventana; 950-
124). Slides were then mounted in Permount, cover
slipped and evaluated by microscopy. Control tissues to
determine antibody reactivity and conditions included,
human tonsil tissue, bone marrow, normal breast tissue
and breast tumour tissue.
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Image acquisition and analysis
For each patient two to three blocks of tissue from each
anatomical site were sectioned and complete images of
each section (25-30 individual images) were acquired at a
magnification of 20×. Images were acquired with a Retiga
EXi digital-cooled camera with a red, green and blue elec-
tronic filter (QImaging, BC, Canada) or with an RT Color
Spot camera (Diagnostic Instruments, MI, USA) on either
a Nikon Optiphot or a Nikon E800 (Nikon, NY, USA).
Image quantification was performed with Image Pro Plus
software (Mediacybernetics, MD, USA), using a custom-
ized macro to count diaminobenzidine (DAB) stained
cells and nuclei of cells stained with haematoxylin. A
quantitative value of the inflammatory response was then
presented as the average percent of positive cells (DAB)
per total cell number (haematoxylin) normalized to total
area. The section results for each block from each anatom-
ical site were averaged and site differences compared.

In order to evaluate the number of macrophages (CD68)
and MPO positive cells, the number of each in serial sec-
tions was compared. If they existed, the counts were cor-
rected for total cell number and total area of the section.

Fibroblast isolation
Equal amounts of tissue were taken from each region and
combined (total weight ~0.5 g). The 2 × 2 cm pieces were
rinsed in Hanks' balanced salt solution to remove any
blood, placed in a 25 ml flask and incubated at 37°C for
4 days in α-MEM with 10% fetal bovine serum, 100 units/
ml streptomycin and 100 units/ml penicillin (Mediatech,
Inc, VA, USA) [66]. Tissue pieces were removed and the
media changed on day 4. Cells were passaged when they
reached approximately 80% confluency. Cells were not
used beyond passage seven.

RT-PCR and comparative analysis
RNA isolation, quantitative SYBR® Green-based real-time
PCR (RT-PCR) oxidative stress and antioxidant defense
array and data analysis were performed by SABiosciences
(Frederick, MD, USA). Fibroblasts isolated from arthrofi-
brotic tissue and from primary knee tissue (control) were
analysed. The expression level of the three housekeeping
genes, β2-microglobulin, β-actin and glyceraldehyde-3-
phosphate dehydrogenase, were used to normalize the
data presented.

Statistical analysis
Statistical analysis between groups was performed using a
one way ANOVA for normality and student's t-test for
continuous variables. A level of significance (α), or a P-
value of less than 0.05, with a 95% confidence interval,
was determined. In order to evaluate correlations for
patient clinical information and individual test values for
each patient, a Pearson correlation coefficient was calcu-

lated. For pairs with P-values of less than 0.05, there was
a significant relationship between the two variables. All
parameters were evaluated with SPSS software (version-
Base 13.0; SPSS, IL, USA).
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