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Mechanisms of Activation of Nucleus Accumbens Neurons by 
Cocaine via Sigma-1 Receptor - Inositol 1,4,5-Trisphosphate - 
Transient Receptor Potential Canonical Channel Pathways

Jeffrey L. Barra,b, Elena Deliua, G. Cristina Brailoiuc, Pingwei Zhaoa, Guang Yanc, Mary E. 
Abooda,d, Ellen M. Unterwalda,b,#, and Eugen Brailoiua,#

aCenter for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 
19140, USA

bDepartment of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, 
USA

dDepartment of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, 
PA 19140, USA

cDepartment of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of 
Pharmacy, Philadelphia, PA 19107, USA

Abstract

Cocaine promotes addictive behavior primarily by blocking the dopamine transporter, thus 

increasing dopamine transmission in the nucleus accumbens (nAcc); however, additional 

mechanisms are continually emerging. Sigma-1 receptors (σ1Rs) are known targets for cocaine, 

yet the mechanisms underlying σ1R-mediated effects of cocaine are incompletely understood. The 

present study examined direct effects of cocaine on dissociated nAcc neurons expressing 

phosphatidylinositol-linked D1 receptors. Endoplasmic reticulum-located σ1Rs and inositol 1,4,5-

trisphosphate (IP3) receptors (IP3Rs) were targeted using intracellular microinjection. IP3 

microinjection robustly elevated intracellular Ca2+ concentration, [Ca2+]i. While cocaine alone 

was devoid of an effect, the IP3-induced response was σ1R-dependently enhanced by cocaine co-

injection. Likewise, cocaine augmented the [Ca2+]i increase elicited by extracellularly applying an 

IP3-generating molecule (ATP), via σ1Rs. The cocaine-induced enhancement of the P3/ATP-

mediated Ca2+ elevation occurred at pharmacologically relevant concentrations and was mediated 

by transient receptor potential canonical channels (TRPC). IP3 microinjection elicited a slight, 
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transient depolarization, further converted to a greatly enhanced, prolonged response, by cocaine 

co-injection. The cocaine-triggered augmentation was σ1R-dependent, TRPC-mediated and 

contingent on [Ca2+]i elevation. ATP-induced depolarization was similarly enhanced by cocaine. 

Thus, we identify a novel mechanism by which cocaine promotes activation of D1-expressing 

nAcc neurons: enhancement of IP3R-mediated responses via σ1R activation at the endoplasmic 

reticulum, resulting in augmented Ca2+ release and amplified depolarization due to subsequent 

stimulation of TRPC. In vivo, intra-accumbal blockade of σ1R or TRPC significantly diminished 

cocaine-induced hyperlocomotion and locomotor sensitization, endorsing a physio-pathological 

significance of the pathway identified in vitro.

Graphical Abstract

Keywords

sigma receptors; transient receptor potential channels; calcium; endoplasmic reticulum; imaging; 
nucleus accumbens

1. Introduction

Pharmacotherapy of cocaine addiction is particularly ineffective in that addicts invariably 

relapse to drug use [1–3]. The study of cocaine action in the brain has unraveled newer 

mechanisms, of continually emerging complexity. The initial rewarding effects of cocaine 

are attributed to increased dopamine levels in the nucleus accumbens (nAcc)¶ achieved by 

inhibition of the dopamine transporter [4, 5], however, the transition to cocaine dependence 

likely involves other cellular processes. Further, a multitude of cocaine-induced responses 

are strictly contingent on D1 dopamine-receptor activation [6–8], occurring only in D1-

expressing neurons [7], supporting the existence of additional mechanisms.

Cocaine is a known ligand of sigma-1 receptors (σ1Rs) [9], which are chaperone proteins 

residing at the endoplasmic reticulum in a dormant state, but able to relocate to other areas 

of the cell in response to agonist stimulation, and change their degree of interaction with 

several other chaperone proteins, favoring activation of various types of receptors and ion 

channels [10, 11]. Involvement of σ1Rs in modulation of dopaminergic transmission and 

addictive processes has long been recognized [12, 13]. σ1Rs are expressed in the nAcc, a key 

node in the circuit that controls reward-directed behavior [14, 15], and have been proposed 

as a pharmacologic target in the treatment of cocaine abuse [16, 17].

Data from in vivo animal studies point to involvement of σ1Rs in cocaine-induced responses. 

Cocaine self-administration triggers σ1Rs-mediated reinforcing effects that are absent in 
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subjects without that particular experience with cocaine, and are dopamine-independent [18, 

19]. Administration of σ1Rs agonists potentiates the reinforcing effects of cocaine [19]. 

Conversely,σ1R antagonists attenuate psychomotor and rewarding effects of cocaine [12, 

13]. σ1R-blockade inhibits cocaine-induced place conditioning in mice [20, 21].

At the cellular level, cocaine induces an association of σ1Rs and D1 dopamine receptors, 

which results in cAMP accumulation and ERK1/2 activation in transfected cells and mouse 

striatal slices [22]. Conversely, cocaine promotes formation of σ1R-D2 dopamine receptor 

heterooligomers, inhibiting D2-mediated signaling [23]. Thus cocaine putatively destabilizes 

the balance of D1 and D2 receptor inputs, via σ1Rs, towards the D1 containing, pro-reward 

and motivating pathway [23]. However, a clear mechanism of cocaine-mediated 

enhancement of D1-pathway via σ1Rs remains elusive.

Activation of σ1Rs is associated with prolonged Ca2+ efflux from the endoplasmic reticulum 

(ER) through inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) [10, 24]. The present study 

uses calcium imaging and intracellular microinjection to explore the mechanisms of cocaine-

triggered activation of D1-expressing neurons, focusing on intracellularly-located σ1Rs.

2. Materials and methods

2.1. Ethical approval

Animal protocols were approved by the Institutional Animal Care and Use Committees from 

Temple University and Thomas Jefferson University.

2.2. Chemicals

All chemicals were from Sigma Aldrich (St. Louis, MO), unless otherwise mentioned. 

Cocaine hydrochloride was generously supplied by NIDA; NE-100 hydrochloride was from 

Santa Cruz Biotechnology (Dallas, TX). In experiments using intracellular microinjection, 

the reported concentration of chemicals is the calculated final concentration inside the cell. 

In experiments using ATP and extracellular administration of cocaine, the cells were 

pretreated with cocaine for 10 minutes, a time sufficient to allow intracellular uptake of 

cocaine. In experiments using IP3 and cocaine, there was no pretreatment phase.

2.3. Western blotting

Whole-cell lysates obtained from rat nucleus accumbens and NG108-15 cells (mouse 

neuroblastoma x rat glioma) were separated on Mini-PROTEAN TGX 4–20% gels (Bio-

Rad, Hercules, CA) by SDS-PAGE followed by immunoblotting. Proteins were transferred 

to an Odyssey nitrocellulose membrane (Li-Cor Biosciences; Lincoln, NE). After blocking 

with Odyssey blocking buffer, the membranes were incubated overnight with primary 

antibody against σ1R (rabbit polyclonal, 1:100, OriGene Technologies, Rockville, MD), or 

IP3R3 (mouse monoclonal, 1:1,000, BD Biosciences, San Jose, CA). An antibody against β-

actin (mouse monoclonal, 1:10,000; Sigma Aldrich) was used to confirm equal protein 

loading. Membranes were washed with Tris-buffered saline-Tween 20 (TBST) and 

incubated with the secondary antibodies: IRDye 800CW conjugated goat anti-rabbit IgG, 

and IRDye 680 conjugated goat anti-mouse IgG (1:10,000, 1 h at room temperature). 

Barr et al. Page 3

Cell Calcium. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Membranes were then washed in TBST and scanned using Li-Cor Odyssey Infrared and 

Odyssey V.3 software.

2.4. Neuronal cell culture

Nucleus accumbens neurons were dissociated from neonatal (1–2 day old) Sprague Dawley 

rats (Ace Animal Inc., Boyertown, PA) of both sexes as previously described [25]. Newborn 

rats were decapitated and the brains quickly removed surgically and immersed in ice-cold 

Hanks balanced salt solution (HBSS) (Mediatech, Herndon, VA). The nucleus accumbens 

was identified, removed, minced and subjected to enzymatic digestion (papain, 37°C), 

followed by mechanical trituration in presence of total medium – Neurobasal A (Invitrogen, 

Carlsbad, CA) containing 1% GlutaMax (Invitrogen), 2% penicillin-streptomycin-

amphotericin B solution (Mediatech) and 10% fetal bovine serum. Cells were cultured on 

round 25 mm glass coverslips coated with poly-L-lysine (Sigma-Aldrich) in six-well plates. 

Cultures were maintained at 37°C in a humidified atmosphere with 5% CO2. The mitotic 

inhibitor cytosine β-arabinofuranoside (1μM) (Sigma-Aldrich) was added to the culture the 

third day to inhibit glial cell proliferation. Cells were used after 5 days in culture.

2.5. Calcium imaging

[Ca2+]i was measured as previously described [25]. Cells were incubated with 5 μM fura-2 

AM (Invitrogen, Carlsbad, CA) in HBSS at room temperature for 45 min, in the dark, 

washed three times with dye-free HBSS, and then incubated for another 45 min to allow for 

complete de-esterification of the dye. Coverslips (25 mm diameter) were subsequently 

mounted in an open bath chamber (RP-40LP, Warner Instruments, Hamden, CT) on the 

stage of an inverted microscope Nikon Eclipse TiE (Nikon Inc., Melville, NY). The 

microscope is equipped with a Perfect Focus System and a Photometrics CoolSnap HQ2 

CCD camera (Photometrics, Tucson, AZ). During the experiments, the Perfect Focus 

System was activated. Fura-2 AM fluorescence (emission = 510 nm), following alternate 

excitation at 340 and 380 nm, was acquired at a frequency of 0.25 Hz. Images were acquired 

and analyzed using NIS-Elements AR 3.1 software (Nikon Inc.). After appropriate 

calibration with ionomycin and CaCl2, and Ca2+ free and EGTA, respectively, the ratio of 

the fluorescence signals (340/380 nm) was converted to Ca2+ concentrations. In Ca2+-free 

experiments, CaCl2 was omitted.

2.6. Intracellular microinjection

Intracellular microinjections were performed using FemtotipsII, InjectManNI2 and FemtoJet 

systems (Eppendorf) as reported [25]. Pipettes were back-filled with an intracellular solution 

containing, in mM: 110 KCl, 10 NaCl and 20 HEPES (pH 7.2) or the compounds to be 

tested. The injection time was 0.4 s at 60 hPa with a compensation pressure of 20 hPa in 

order to maintain the microinjected volume to less than 1% of cell volume, as measured by 

microinjection of a fluorescent compound (Fura-2 free acid). The intracellular concentration 

of chemicals was determined based on the concentration in the pipette and the volume of 

injection. The cells to be injected were Z-scanned before injection and the cellular volume 

automatically calculated by the NIS-Elements AR 3.1 software (Nikon, Inc.).
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2.7. Measurement of membrane potential

The relative changes in membrane potential of single neurons were evaluated using bis-(1,3-

dibutylbarbituric acid) trimethine oxonol, DiBAC4(3), a slow response voltage-sensitive 

dye, as previously described [25]. Upon membrane hyperpolarization, the dye concentrates 

in the cell membrane, leading to a decrease in fluorescence intensity, while depolarization 

induces the sequestration of the dye into the cytosol, resulting in an increase of the 

fluorescence intensity. Cultured accumbens neurons were incubated for 30 min in HBSS 

containing 0.5 μM DiBAC4(3) and the fluorescence monitored at 0.17 Hz, excitation/

emission: 480 nm/540 nm. Calibration of DiBAC4(3) fluorescence following background 

subtraction was performed using the Na+-K+ ionophore gramicidin in Na+-free 

physiological solution and various concentrations of K+ (to alter membrane potential) and 

N-methylglucamine (to maintain osmolarity). Under these conditions, the membrane 

potential was approximately equal to the K+ equilibrium potential determined by the Nernst 

equation. The intracellular K+ and Na+ concentration were assumed to be 130 mM and 10 

mM, respectively.

2.8. Data analysis

Data obtained after in vitro experiments are expressed as mean and standard error of mean. 

One way ANOVA, followed by post-hoc Bonferroni and Tukey tests (Origin 7, OriginLab 

Corporation, Northampton, MA), were used to assess significant differences between 

groups; P < 0.05 was considered statistically significant.

2.9. In vivo experiments

Male Sprague–Dawley rats, weighing 250–280 g at the time of surgery, were individually 

housed under standard conditions. Two 26 gauge stainless steel guide cannulas directed 

bilaterally at the nucleus accumbens (nAcc) (± 0.9 mm lateral, 1.6 mm anterior, and 5.8 mm 

ventral to bregma) were stereotaxically implanted under isofluorane anesthesia. Dummy 

cannulae that extended 1 mm beyond the tip of the guide cannula were inserted immediately 

after surgery. Rats were handled and habituated to infusion procedures for 2–3 days before 

testing began. On test Days 1–5, rats were placed in individual automated activity monitors 

containing 16 infrared light emitters and sensors mounted on a frame within which a 

standard plastic animal cage was positioned (45 × 20 × 20 cm; AccuScan Instruments, Inc., 

Columbus, OH, USA). The number of photocell beam breaks was recorded by a computer 

equipped with Digiscan DMicro software (AccuScan Instruments). Following a 60 min 

habituation period, bilateral infusions of vehicle (0.5 μl, artificial cerebrospinal fluid 

(aCSF)) or BD-1063 (80 μg/0.5 μl, ab141323, Abcam, Cambridge, MA) or SKF-96365 (20 

μg/0.5 μl, S7809, Sigma-Aldrich, St Louis, MO) were made into the nAcc, at a rate of 0.5 

μl/min using a microinfusion pump. The injections cannulae remained in situ for one minute 

after the infusion. Twenty minutes following infusions, rats were injected with saline (1 

ml/kg, intraperitoneal (ip)) or cocaine (15 mg/kg, ip) and behavioral activity monitored for 

another 60 min. This was repeated once daily for 5 days. Following a 7-day withdrawal 

period, all rats were then challenged with cocaine (Day 12, 15 mg/kg, ip) in the absence of 

further intracranial infusions. After testing, brains were removed and fixed in 4% 

paraformaldehyde for three days. Brains were sliced at 60 μm on a vibratome through the 
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nAcc, and stained with cresyl violet to determine the location of the infusion cannula; 

injection sites are shown in Fig. 9a. Data from rats with both placements within the nAcc 

were included in the analysis. Behavioral data were analyzed with two-way repeated 

measures ANOVA. Significant main effects of treatment, day or interactions between 

treatment and day were further assessed with a Student-Newman-Keuls (SNK) post hoc test 

for multiple pair wise comparisons at each time point (Sigmaplot 12.5; Systat Software 

Inc.).

3. Results

3.1. Identification of receptors of interest in cultured nucleus accumbens neurons

We used western blotting to confirm the presence of σ1Rs in cultured nAcc neurons (Fig. 

1a), which is in agreement with previous reports [14, 15]. σ1Rs have been shown to 

associate with type 3 of IP3R (IP3R3) to promote increased Ca2+ efflux from the ER [10, 

24]. We found that both IP3R3 and σ1Rs are expressed in cultured nAcc neurons (Fig. 1a). 

NG108 cells were used as a positive control for IP3R3 and σ1Rs [10].

Since several cocaine-mediated responses are strictly dependent on D1 receptor activation or 

are restricted to D1-expressing neurons [6–8], in the present study we used only neurons 

responding to application of D1 agonist SKF83959 (10 μM) with an increase in [Ca2+]i [26, 

27] (Fig. 1b); accordingly, these neurons were considered D1-positive, signaling via Gq-

coupled pathways [26]. When incubated with Ca2+-free saline, neuronal Ca2+ response to 

application of SKF83959 was reduced from 197 ± 4.6 nM (n = 581 cells in Ca2+-containing 

saline) to 96 ± 3.6 nM (n = 6 cells in Ca2+-free medium) and further, largely abolished by 

presence of IP3R inhibitors xestospongin C (XeC, 10 μM, 15 min) and 2-

aminoethoxydiphenyl borate (2-APB, 100 μM, 15 min) − Δ[Ca2+]i = 7 ± 2.1 nM (n = 6, Fig. 

1b). This indicates that indeed, in the responsive neurons, SKF83959 promotes Ca2+ 

mobilization from intracellular stores via IP3Rs, supporting the activity of a Gq-coupled 

pathway.

s3.2. Cocaine enhances IP3-dependent Ca2+ mobilization via σ1R activation

In D1-expressing neurons incubated with Ca2+-containing saline, microinjection of cocaine 

(100 μM, final concentration inside the cell) did not elicit an increase in [Ca2+]i, the effect 

being similar to that produced by microinjection of control buffer (Fig. 1c); Δ[Ca2+]i was 28 

± 4.7 nM, and the area under curve of the Ca2+ response (A.U.C.) was 33.8 ± 4.4 nM x min 

for cocaine (n = 6 D1-positive nAcc neurons), while for control vehicle the effects measured 

21 ± 4.2 nM and 36.5 ± 3.7 nM x min (n = 6), respectively (Fig. 1c).

In an additional series of experiments, we tested the effect of intracellular administration 

cocaine on IP3-induced Ca2+ response in D1-positive accumbens neurons. To evaluate the 

effect of cocaine co-injection on the Ca2+ mobilization triggered by IP3, additional 

experiments were carried out in Ca2+-free saline, in order to prevent interference with any 

Ca2+ entry mechanism. At 20 nM, IP3 microinjection into D1-positive nAcc neurons 

produced a Ca2+ response of 276 ± 2.8 nM (n = 6 cells), while 10 μM cocaine co-injected 

with 20 nM IP3 triggered a significantly enhanced effect, measuring 364 ± 3.6 nM (n = 6 

cells, Fig. 2a). To establish a concentration-response curve, increasing concentrations of IP3 
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(1–60 nM) were injected either alone or in combination with 10 μM cocaine (n = 5 to 6 cells 

for each concentration tested). The two concentration-response curves are presented in Fig. 

2b; cocaine significantly shifted the IP3 concentration-response curve to the left, diminishing 

the EC50 for IP3 from 22.4 nM (when administered alone) to 17.8 nM (when co-

administered with cocaine).

Blocking σ1Rs with either the selective and prototypical σ1R antagonist BD-1063 [28] (10 

μM, 20 min) or with NE-100 (3 μM, 20 min), another selective σ1R inhibitor [29, 30], was 

sufficient to prevent cocaine-induced augmentation of IP3-mediated Ca2+ mobilization: 

Δ[Ca2+]i were 291 ± 3.3 nM (BD-1063 pretreatment, n = 6 cells) and 285 ± 3.2 nM (NE-100 

pretreatment, n = 6) compared with 364 ± 3.6 nM (10 μM cocaine co-injected with 20 nM 

IP3, no antagonists, n = 6) and 276 ± 2.8 nM (20 nM IP3 alone, n = 6 cells, Fig. 2a, c).

Next, we evaluated the effect of cocaine microinjection on the IP3-induced Ca2+ 

mobilization in Ca2+-containing saline-incubated D1-positive neurons. IP3 (20 nM) 

microinjection alone robustly elevated [Ca2+]i by 332 ± 4.8 nM (A.U.C. of 111 ± 4.4 nM x 

min, n = 6 cells), while in the presence of 10 μM co-injected cocaine, the effect was greatly 

enhanced, measuring 576 ± 5.3 nM in amplitude (A.U.C. of 234 ± 6.1 nM x min, n = 6) 

(Fig. 3a, b). Incubation of neurons with BD-1063 (10 μM, 20 min) reduced the Ca2+ 

response to co-injected cocaine and IP3 to that of IP3 alone (Δ [Ca2+]i was 337 ± 5.8 nM, 

A.U.C. was 104 ± 3.3 nM x min, n = 6, Fig. 3a, b), indicating that the cocaine-triggered 

augmentation was σ1R-mediated. This conclusion is supported by the inability of BD-1063 

to reduce the effect IP3 microinjection alone (Δ [Ca2+]i was 342 ± 5.2 nM, A.U.C. was 114 

± 4.8 nM x min, Fig. 3a, b). To further strengthen our findings, we evaluated whether the 

σ1R antagonist NE-100 would block the cocaine-mediated enhancement of IP3-induced 

Ca2+ response: indeed, similar to the effects seen in presence of extracellular Ca2+, 20 min 

pretreatment of neurons with 3 μM NE-100 resulted in a significant reduction of the Ca2+ 

increase promoted by IP3 and cocaine co-injection, the response measuring 341 ± 5.2 nM in 

amplitude and having an A.U.C. of 108 ± 4.8 nM x min (Fig. 3a, b). Noteworthy, σ1R 

blockade by either BD-1063 or NE-100 had largely identical diminishing effect on the 

response triggered by combined cocaine and IP3 administration, both in the presence and in 

the absence of extracellular Ca2+.

In presence of the fast Ca2+ chelator BAPTA-AM (200 μM, 30 min incubation), combined 

intracellular administration of cocaine and IP3 produced a small and insignificant response, 

measuring 49 ± 4.1 nM in amplitude and with an A.U.C. of 14 ± 3.3 nM x min (n = 6, Fig. 

3a, b). In presence of SKF96365 (2 μM), that blocks receptor- and store-operated Ca2+ entry 

via transient receptor potential canonical (TRPC) channels [31, 32], the cocaine-induced 

potentiation was abolished (Δ[Ca2+]i was 268 ± 6.4 nM, A.U.C. of 76 ± 4.6 nM x min, n = 

6, Fig. 3a, b). Fig. 3c depicts representative examples of changes in 340 nm/380 nm Fura-2 

fluorescence ratio of nAcc neurons in presence of D1 agonist SKF83959, followed (after 

washing of SKF83959) by intracellular microinjection of IP3 alone or IP3 and cocaine, in 

absence and presence of the indicated antagonists.

Next, we tested whether cocaine might amplify Ca2+ responses induced by another 

intracellular Ca2+ release mediator, cyclic ADP ribose (cADPR), which acts on ryanodine 
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receptors [33]. Because cADPR has also been involved in the activation of TRPM2 (also 

known as TRPC7 or LTRPC2) [34, 35], to avoid any TRPC-mediated effect, experiments 

were performed in absence of extracellular Ca2+. In cells incubated with Ca2+-free saline, 

cADPR (20 μM) injection elevated [Ca2+]i by 174 ± 2.8 nM (A.U.C. of 52 ± 1.3 nM x min, 

n = 6 cells Fig. 4a, b). Cocaine (10 μM) and cADPR (20 μM) co-injection induced an similar 

response to that of cADPR alone, measuring 171 ± 2.6 nM in amplitude (A.U.C. of 54 ± 1.1 

nM x min, n = 6, Fig. 4a, b), while microinjection of a higher concentration of cADPR (50 

μM) induced a proportionally higher response, of 629 ± 3.7 nM (A.U.C. of 326 ± 2.8 nM x 

min, n = 6 cells, Fig. 4a, b), indicating that 20 μM cADPR produced a submaximal effect. 

Thus, cocaine does not enhance cADPR-mediated Ca2+ signaling in nAcc neurons.

Since diacylglycerol (DAG) has been reported to promote TRPC activation downstream of 

phospholipase C [36], we tested the effect of the membrane-permeable DAG analogue 1-

oleoyl-2-acetyl-sn-glycerol (OAG) on D1-expressing nAcc neurons. Application of OAG 

(75 μM) in cells incubated with Ca2+-free saline elicited no effect (Fig. 4c), while addition 

of Ca2+ to the extracellular medium unmasked a response measuring 251 ± 7.8 nM (A.U.C. 

of 1183 ± 9.3 nM x min, n = 12 neurons, Fig. 4c, d). A likewise effect was produced by 75 

μM OAG in cells treated with 10 μM cocaine: no response in absence of extracellular Ca2+ 

and an [Ca2+]i elevation by 258 ± 6.7 nM (A.U.C. of 1164 ± 9.7 nM x min, n = 12, Fig. 4c, 

d) upon changing to Ca2+-containing saline. Since absence of a cocaine-enhancing effect 

may occur as a consequence of the employment of a concentration of OAG eliciting a 

maximal response, we tested the effect of 100 μM OAG and noted an increase in [Ca2+]i by 

383 ± 11.8 nM upon Ca2+ addition (A.U.C. of 1847 ± 10.2 nM x min, n = 12, Fig. 4c, d), 

significantly higher than that produced by 75 μM OAG.

In D1-positive nAcc neurons, the TRPC antagonist SKF96365 (2 μM) did not block the Ca2+ 

elevation in response to KCl (30 mM) (Fig. 5), which produces depolarization-induced 

activation of voltage-gated Ca2+ channels. Thus, as we have previously reported [25], at 2 

μM SKF96365 has no antagonistic effect on voltage-gated Ca2+ channels.

3.3. Cocaine produces σ1R-mediated potentiation of the Ca2+ response triggered by ATP

Next, we examined the effect of cocaine on ATP, an IP3-generating molecule, in D1-

expressing accumbens neurons. To confirm that ATP mobilizes IP3-sensitive Ca2+ stores in 

nAcc neurons, we first examined the effect of extracellular application of ATP (20 μM) on 

[Ca2+]i in Ca2+-free saline, in the absence and presence of inhibitors of endoplasmic 

reticulum and lysosomal Ca2+ release channels. In the absence of extracellular Ca2+, ATP 

(20 μM) elevated [Ca2+]i of nAcc neurons by 278 ± 3.6 nM (A.U.C. of 78.8 ± 3.1 nM x min, 

n = 9 cells, Fig. 6a, b). Blockade of IP3Rs with XeC (10 μM, 15 min) and 2-APB (100 μM, 

15 min), but not inhibition of ryanodine receptors with ryanodine (Ry, 10 μM, 1h) or of 

lysosomal NAADP-sensitive two pore channels with Ned-19 (5 μM, 15 min) [37], abolished 

the Ca2+ response of nAcc neurons to ATP, indicating that it was IP3R-mediated (Fig. 6a). 

In the presence of these blockers, ATP increased [Ca2+]i by 23 ± 2.7 nM (XeC + 2-APB; 

A.U.C. of 5.6 ± 1.8 nM x min, n = 9 cells), by 269 ± 3.1 nM (Ry; A.U.C. of 74.7 ± 3.8 nM x 

min, n = 9) and by 274 ± 4.9 nM (Ned-19; A.U.C. of 77.3 ± 3.7 nM x min, n = 9), 

respectively (Fig. 6b).
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In Ca2+-containing saline, application of ATP (20 μM) alone elevated [Ca2+]i of D1-positive 

neurons by 377 ± 4.8 nM (A.U.C. of 108 ± 4.4 nM x min, n = 29 cells, Fig. 6c, d). 

Combined administration of cocaine (10 μM) and ATP (20 μM) produced a greatly 

potentiated increase in [Ca2+]i, measuring 613 ± 8.6 nM in amplitude and with an A.U.C. of 

247 ± 4.3 nM x min (n = 47 cells, Fig. 6c, d). The cocaine-induced enhancement was 

completely abrogated by pretreatment of cells with σ1R antagonist BD-1063 (10 μM, 20 

min) or with the TRPC blocker SKF96365 (2 μM, 20 min), when the Ca2+ response was 

similar to that promoted by ATP alone; Δ[Ca2+]i was 364 ± 6.1 nM (A.U.C. of 103 ± 4.6 nM 

x min, n = 31) in the case of BD-1063 and 272 ± 5.7 nM (A.U.C. of 79 ± 5.2 nM x min, n = 

28) in the case of SKF96365 (Fig. 6c, d). In presence of BAPTA-AM (200 μM, 30 min), co-

administration of cocaine and ATP no longer elicited a significant increase in [Ca2+]i 

(amplitude of 23 ± 3.5 nM, A.U.C. of 15 ± 2.3 nM x min, n = 42, Fig. 6c, d).

3.4. Intracellular microinjection of cocaine amplifies IP3-induced depolarization via σ1Rs

The mean resting potential of dissociated D1-positive nAcc neurons was −71.6 ± 0.02 mV (n 

= 258 cells depolarizing in response to SKF83959 in the preliminary screen test). 

Microinjection of cocaine or control vehicle had no effect on neuronal membrane potential; 

ΔVm were −1.2 ± 0.34 mV (n = 6) and −0.9 ± 0.47 mV (n = 6), respectively, (Fig. 7a, b). 

Intracellular administration of IP3 (20 nM) produced a slight and rather transient 

depolarization of 5.12 ± 0.42 mV, which in the presence of co-injected cocaine (10 μM) was 

converted to a greatly enhanced and more prolonged response, measuring 9.77 ± 0.53 mV in 

amplitude (Fig. 7c, d). The cocaine-dependent component of the effect was abolished upon 

blocking σ1Rs with BD-1063 (10 μM, 20 min pretreatment), when the combined 

administration of IP3 and cocaine depolarized neuronal membrane potential by 5.53 ± 0.39 

mV (n = 6), similar to IP3 injection alone (Fig. 7c, d). In presence of the Ca2+ chelator 

BAPTA-AM (200 μM, 30 min) or of TRPC inhibitor SKF96365 (2 μM, 20 min), the IP3 and 

cocaine-triggered depolarization were lost, the changes in resting membrane potential 

measuring 0.79 ± 0.62 mV (n = 6) and 1.34 ± 0.47 mV (n = 6), respectively (Fig. 7c, d).

3.5. Cocaine enhances ATP-elicited depolarization of D1-positive nAcc neurons

Cocaine produced a likewise augmentation of the amplitude and duration of the 

depolarization promoted by the IP3-generating molecule ATP (Fig. 8a). ATP (20 μM) 

depolarized D1-expressing nAcc neurons by 6.71 ± 0.39 mV (n = 36) in absence and by 

11.63 ± 0.54 (n = 52 cells) in presence of co-applied cocaine (10 μM) (Fig. 8b). Pretreatment 

of cells with σ1R blocker BD-1063 (10 μM, 20 min) virtually eliminated the cocaine-

mediated amplification, as neurons depolarized only by 7.38 ± 0.47 mV (n = 46) when ATP 

and cocaine were co-applied in this condition (Fig. 8a, b). The depolarization triggered by 

combined administration of cocaine and ATP measured 5.68 ± 0.53 mV (n = 39) when 

neurons were preincubated with the fast Ca2+ chelator BAPTA-AM (200 μM, 30 min) and 

5.92 ± 0.41 mV (n = 43) upon pretreatment with TRPC blocker SKF96365 (2 μM, 20 min) 

(Fig. 8a, b). These results support a contribution of the [Ca2+]i elevation and of cation entry 

via TRPC in the mechanism of cocaine-induced enhancement of ATP effects in D1-positive 

nAcc neurons.
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3.6. Blockade of σ1Rs or TRPC in the nAcc reverses cocaine-induced hyperlocomotion and 
sensitization in vivo

The role of σ1Rs and TRPC in the nAcc in cocaine-induced hyperactivity was investigated 

in the rat. To this end, the ability of the selective σ1R antagonist BD-1063 (80 μg/0.5 μl, 

intra-nAcc), and the TRPC blocker SKF96365 (20 μg/0.5 μl, intra-nAcc), to attenuate acute 

cocaine (15 mg/kg ip)-induced hyperlocomotion was tested. Two-way ANOVA with 

repeated measures over days revealed a statistically significant main effect of day (F5,202 = 

22.821, p < 0.001), a significant treatment main effect (F5, 202 = 13.994, p < 0.001) and no 

treatment × day interaction (F25,202 = 1.296, p= 0.175). Post test analysis revealed that 

administration of cocaine following aCSF infusion produced a significant increase in 

ambulatory activity on Days 2–5 compared with aCSF + vehicle administration (Fig. 8b; aC 

vs aV; p < 0.05). Pretreatment with BD-1063 or SKF96365 into the accumbens significantly 

inhibited cocaine-induced locomotion on Days 2–5 (aC vs BC or SC, p<0.05). Infusion of 

BD-1063 or SKF96365 alone (prior to a saline injection) did not alter locomotion when 

compared to the levels of activity after aCSF infusion and saline injection (Fig. 8b, BV or 

SV vs aV; p > 0.05). On day 5, activity of the SKF96365 + cocaine group was different 

from the three vehicle control groups (SC vs aV/BV/SV; post hoc p < 0.05), but 

significantly lower than the cocaine alone group (SC vs aV; p < 0.05).

Locomotor sensitization occurs as the result of repeated cocaine administration. The ability 

of the BD-1063 and SKF96365 to block the development of locomotor sensitization to 

repeated cocaine was investigated. Seven days following the five daily treatments described 

above, all rats were challenged with cocaine (15 mg/kg ip) on Day 12 without further 

intracranial infusions and activity recorded. Rats receiving daily intra-accumbens aCSF plus 

cocaine for 5 days showed significantly greater ambulatory response to the cocaine 

challenge on Day 12 than did rats receiving daily intra-accumbens aCSF plus saline, 

demonstrating locomotor sensitization (Fig. 9b; aC vs aV, p < 0.05). Activity following the 

cocaine challenge of the groups receiving daily intra-accumbens BD-1063 or SKF96365 

plus cocaine was significantly lower than those receiving aCSF plus cocaine (BC/SC vs aC, 

p < 0.05). These data demonstrate that cocaine-induced hyperactivity and sensitization can 

be blocked by pretreatment with the σ1R antagonist BD-1063 or TRPC blocker SFK96365.

4. Discussion

Emerging evidence points to IP3 involvement both in σ1R-mediated signaling and in 

cocaine-promoted responses. σ1R activation potentiates not only IP3R-mediated Ca2+ 

release from the ER [24], but also IP3 formation [38, 39]. IP3R blockade at central levels 

inhibits cocaine-induced place preference in mice [40]. Cocaine binds to σ1Rs with a 2 μM 

affinity [9]. In vivo studies have shown that pharmacologically relevant doses of cocaine 

produce striatal levels of the drug in a low μM range [41, 42]. For instance, it has been 

reported that after systemic administration to mice of a 10 mg/kg dose of cocaine, a peak 

value for cocaine of 2.6 μg/g (~7.6 – 8.5 μM) at 5 min was seen in the brain, whereas after a 

25 mg/kg the peak value was 6.7 μg/g (~19.7 – 22.1 μM) [41]; moreover, the cocaine 

concentrations in the brain were always higher than those in the plasma, with an average 

brain/plasma ratio of 7 [41].

Barr et al. Page 10

Cell Calcium. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We report here that, although ineffective by itself at concentrations up to 100 μM, at 10 μM 

cocaine strongly enhances IP3-induced Ca2+ responses in D1-expressing nAcc neurons by 

activating intracellularly-located σ1Rs, significantly shifting the IP3 concentration-response 

curve to the left. Our finding is supported by previous indications that in NG108 cells, 

cocaine promotes σ1R-dependent increase in IP3R3 sensitivity for IP3, further translated into 

augmented Ca2+ efflux from the ER in the presence of IP3-generating mediators such as 

bradykinin [10, 43]. Accordingly, we found that the Ca2+ response induced by ATP (which 

clearly mobilized only IP3-sensitive intracellular Ca2+ stores in our paradigm) was similarly 

enhanced by cocaine via σ1Rs. Conversely, cocaine had no effect on the ryanodine receptor-

mediated Ca2+ release.

We note two potential implications of our findings. On the one hand, cocaine is a dopamine 

transporter blocker, producing indirect activation of phospholipase C β-coupled D1-like 

receptors, which results in IP3 accumulation in the striatum [44]. Thus, one putative 

mechanism of cocaine-induced activation of D1-positive neurons in vivo would include two 

steps: a dopamine-dependent increase in IP3 levels, likely associated with an increase in 

[Ca2+]i, followed by a dopamine-independent, cocaine-directed activation of σ1Rs, resulting 

in potentiation of the initial Ca2+ response.

On the other hand, increased levels of ATP synthase β-chain have been found in the nAcc of 

cocaine-overdose victims [45], suggesting that cocaine may elicit local ATP elevation in this 

brain region. σ1Rs promote ATP production via increased mitochondrial Ca2+ uptake [46] 

and potentiate ATP-triggered Ca2+ mobilization [47]. ATP induces IP3-mediated Ca2+ 

release by activating Gq-coupled P2Y(1) receptors, which are expressed by neurons in the 

nAcc [48]. In view of our present findings, once ATP levels in the nAcc increase, cocaine is 

expected to directly activate D1-positive neurons, by σ1R-dependently enhancing ATP 

effects.

Another important result of our study is that cocaine-triggered enhancement of IP3- or ATP-

mediated Ca2+ elevation was proportionally translated into a σ1R-dependent augmentation 

of IP3- or ATP-induced depolarization of D1-expressing nAcc neurons. Experiments using 

the fast Ca2+ chelator BAPTA-AM clearly indicate contingency of the depolarization on 

[Ca2+]i increase.

Changes in resting membrane potential determine the ease with which excitatory synaptic 

inputs bring the membrane potential closer to the threshold for action potential firing. In 

vivo, the membrane potential of D1-positive medium spiny neurons oscillates between 

“down-states” characterized by highly negative values (ranging from −75 to −85 mV) and 

“up-states” consisting in periodic plateau depolarizations (Vm ~ −55 mV) triggered by 

convergent, temporally coherent excitatory synaptic inputs [49, 50]. Accordingly, we found 

that the resting membrane potential of dissociated D1-positive neurons was ~ −72 mV. 

Given that dopamine depolarizes D1-expressing neurons and that under conditions of 

cocaine administration synaptic dopamine levels are increased, we propose that cocaine-

induced σ1R activation favors the D1 pathway in the nAcc. Indeed, we found that cocaine-

mediated locomotor hyperactivity and sensitization is significantly attenuated by prior 

administration of a σ1R antagonist into the rat nAcc.
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IP3-dependent Ca2+ signaling has been shown to be involved in the activation of TRPC [25, 

51]. TRPC subtypes 4 and 5 are expressed in the rodent nAcc at low and moderate levels, 

respectively [52], and have been implicated in cocaine-triggered motivation/reward-directed 

behaviors [53, 54]. Rats lacking a functional trpc4 gene showed reduced cocaine self-

administration [54]; mice with selective trpc5 knock-down in the forebrain exhibited 

increased cocaine self-administration on the first day of testing, although were similar to 

wild-type mice during the maintenance phase of self-administration [53]. We report here 

that TRPC are critical for cocaine-triggered amplification of IP3/ATP-dependent Ca2+ 

responses and membrane potential changes in D1-expressing nAcc neurons. Importantly, 

cocaine does not enhance OAG-mediated Ca2+ signaling, indication that IP3 is a critical 

molecule in the pathway linking cocaine and TRPC. Moreover, the TRPC-involving route in 

the nAcc mediates cocaine-induced hyperlocomotion and locomotor sensitization, as 

indicated by our experiments using intra-accumbal delivery of a TRPC blocker.

Thus, we propose a new mechanism by which cocaine stimulates or maintains D1-positive 

neurons in active state: σ1R activation at the ER, resulting in dissociation from inhibitory 

proteins [10, 11, 43] and consequent increases in IP3R3 sensitivity for IP3 [10, 43]. This in 

turn correlates with increased Ca2+ efflux from the ER, which promotes TRPC opening [25, 

51] and cation entry, resulting in further [Ca2+]i increase and membrane depolarization, 

converging to locomotor hyperactivity and sensitization (Fig. 10).

Previous studies examining cocaine-induced σ1R activation noted a potential cocaine-

mediated translocation of σ1Rs from the ER to the plasma membrane of cells in striatal 

slices, where σ1Rs interact with a D1-D1 homomer [22] or a heteromer of D1 and H3 

histamine receptor [55], thus facilitating D1-mediated effects. Another σ1R-dependent effect 

of cocaine involves formation of higher order oligomers between σ1R and D2 receptors in 

mouse striatal slices and inhibition of signaling via D2 [23]. These plasma membrane-

initiated mechanisms were clearly demonstrated in transfected cells treated with 15–30 μM 

cocaine, while their potential occurrence in brain striatal slices was apparent at higher 

cocaine concentrations (150 μM) meant to allow diffusion into the tissue [22, 23, 55]. 

Another study identified a cocaine-induced association of σ1R and K+ channels at the 

plasmelemma of nAcc shell neurons with implications for cocaine-promoted changes in 

neuronal excitability and associated behavioral sensitization [56]. Our study is the first 

indication of σ1R-directed effects of cocaine occurring upon their intracellular activation in 

nAcc neurons, and not upon translocation at the plasma membrane. Moreover, we identify a 

previously unknown mechanism of cocaine action in D1-expressing nAcc neurons, involving 

TRPC activation, providing a putative explanation of the in vivo results here shown, as well 

as those of others [54].
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ANOVA analysis of variance

A.U.C area under curve

BAPTA 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis

[Ca2+]i intracellular Ca2+ concentration

DiBAC4(3) bis-(1,3-dibutylbarbituric acid) trimethine oxonol

ER endoplasmic reticulum

HBSS Hank’s balanced salt solution

IP3 inositol 1,4,5-trisphoshate

IP3R IP3 receptor

nAcc nucleus accumbens

σ1R sigma-1 receptor

TRPC transient receptor potential canonical channels
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Highlights

• Cocaine enhances IP3-mediated Ca2+ signaling via sigma-1-receptor (σ1R)

• This induces TRP canonical (TRPC) activation and depolarization of accumbal 

neurons

• Intra-accumbal σ1R/TRPC blockade reduces cocaine-hyperlocomotion/

sensitization.

• We show behavioral relevance of a novel cocaine-triggered pathway in the 

accumbens.
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Figure 1. Neurons of interest
a, Nucleus accumbens neurons express both σ1Rs and IP3R3 proteins; NG108 cells were 

used as positive control; β-actin was used as an internal control. Results are representative 

for three independent experiments. b, Functional characterization of phosphatidylinositol-
linked D1 dopamine receptor expression in nAcc neurons: left panel -averaged Ca2+ 

responses induced by D1 agonist SKF83959 (10 μM) upon extracellular administration to 

D1-expressing nAcc neurons incubated in Ca2+-containing saline (left) or in Ca2+-free 

saline, in absence (middle) and presence of IP3R blockers xestospongin C (XeC) and 2-APB 

(right); right panel – comparison of the Ca2+ responses produced by SKF83959 in the 

mentioned conditions; P < 0.00001 compared to basal Ca2+ levels (*) or to SKF83959 in 

Ca2+-free HBSS (**). Neurons not responding to SKF83959 with an increase in [Ca2+]i 

were not used further for experiments. c, Lack of effect of cocaine microinjection alone on 
[Ca2+]i of D1-positive nAcc neurons: left - averaged tracings of the Ca2+ responses 

produced by intracellular microinjection of either control buffer or cocaine (C, 100 μM); 

right - Comparison of the amplitudes and areas under curve (A.U.C.) of the Ca2+ responses; 

lower concentrations of cocaine were similarly ineffective.
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Figure 2. Cocaine shifts to the left the IP3-induced concentration-Ca2+ response curve via σ1R
a, Averaged Ca2+ responses elicited by IP3 (20 nM) microinjection alone or in combination 

with cocaine (10 μM) or by IP3 (20 nM) and cocaine (10 μM) coinjection upon σ1R 

blockade with either BD-1063 (BD, 10 μM) or NE-100 (NE, 3 μM). b, Concentration-

response curves indicating the effect of IP3 (1, 10, 20, 30, 40, 50 and 60 nM) microinjection 

into D1-expressing nAcc neurons (incubated in Ca2+-free saline) when injected alone (black) 

or in combination with 10 μM cocaine (red); P < 0.005(*), P <0.001(**) and P < 

0.00001(***); comparison of the two data sets yielded statistical significance for the two 

fits: F = 5.1715; P = 0.0378 < 0.05. c, Comparison of the Ca2+ increases triggered by 

treatments mentioned in a; P < 0.00001 compared with IP3 (*) or to combined cocaine and 

IP3 microinjection (#).
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Figure 3. σ1R-mediated enhancement by microinjected cocaine of the IP3-induced [Ca2+]i 
increase
a, Averaged tracings of the Ca2+ responses elicited by intracellular microinjection of IP3 (20 

nM) alone or in presence of σ1R antagonist BD-1063 (BD, 10 μM); or cocaine (C, 10μM) 

and IP3 (20 nM) in absence, or presence of either BD (10 μM) or NE-100 (NE, 3 μM); the 

fast Ca2+ chelator BAPTA-AM (200 μM); or TRPC blocker SKF96365 (SKF, 2 μM). b, 

Comparison of the amplitudes and areas under curve (A.U.C.) of the Ca2+ responses; P < 

0.00001 compared with IP3 alone (*), with combined cocaine and IP3 microinjection (#), or 

with all other treatment groups (+). c, Fura-2 AM fluorescence ratios (340 nm/380 nm) of 

cultured nAcc neurons before and after D1 agonist SKF83959 (10 μM), after washing of 

SKF83959 and after microinjection of indicated compounds in absence and presence of the 

antagonist pretreatment indicated in the right side; cold colors indicate low levels of [Ca2+]i; 

hot colors indicate high levels of [Ca2+]i; fluorescence scale (0–2) is magnified in each panel 

showing the effect of injected compounds.
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Figure 4. Cocaine does not enhance cADPR or OAG-mediated Ca2+ signaling in nAcc neurons
a, Averaged Ca2+ tracings indicating the response of Ca2+-free saline-incubated neurons to 

microinjection of 20 μM cADPR alone or co-injected with 10 μM cocaine or to 

microinjection of 50 μM cADPR. b, Comparison of the amplitudes and areas under curve of 

the Ca2+ responses to treatments indicated in a; P < 0.00001 compared to basal Ca2+ levels 

(*) or to the effect of 20 μM cADPR (**). c, Averaged Ca2+ tracings corresponding to the 

effects produced by OAG (75 μM) in Ca2+-free and Ca2+-containing saline, in absence and 

presence of cocaine (10 μM), or to the effect of 100 μM OAG in Ca2+-negative and Ca2+-

positive conditions. d, Comparison of the effects in Ca2+-containing saline induced by 

treatments indicated in d; P < 0.00001 compared to basal Ca2+ levels (*) or to the effect of 

75 μM OAG in presence of extracellular Ca2+ (**).
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Figure 5. SKF96365 (2 μM) is devoid of inhibitory activity at voltage-gated Ca2+ channels in 
nAcc neurons
a, Averaged Ca2+ responses induced by 30 mM KCl in absence and presence of SKF96365 

(2 μM). b, The amplitudes of the Ca2+ increases produced by KCl measured 357 ± 5.6 nM 

(n = 31 cells) in absence and 351 ± 5.9 nM (n = 37) in presence of SKF96365; the areas 

under curve were 828 ± 11.3nM x min and 817 ± 10.9 nM x min, respectively.

Barr et al. Page 22

Cell Calcium. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Cocaine potentiates the Ca2+ response of nAcc neurons to IP3-generating molecules
a–b, ATP promotes Ca2+ mobilization from IP3-sensitive pools in accumbens neurons: a, 
Averaged tracings of the Ca2+ responses elicited by ATP (20 μM) in Ca2+-free saline, in 

absence or presence of IP3R blockers xestospongin C (XeC) and 2-aminoethoxydiphenyl 

borate (2-APB); ryanodine receptor blocker ryanodine (Ry); or lysosomal two-pore channel 

inhibitor Ned-19. b, Comparison of the amplitudes and the areas under curve (A.U.C.) of the 

Ca2+ increases produced by the indicated treatments; *P < 0.00001 compared with all other 

treatment groups. c–d, Cocaine produces σ1R-dependent potentiation of the ATP-induced 
Ca2+ elevation in D1-expressing accumbens neurons: c, Averaged tracings of the Ca2+ 

responses induced by bath application of ATP (20 μM) or cocaine (C, 10 μM) and ATP (20 

μM), in naïve neurons or neurons incubated with either σ1R antagonist BD-1063 (BD, 10 

μM); or Ca2+ chelator BAPTA-AM (200 μM); or TRPC blocker SKF96365 (SKF, 2 μM). d, 
Comparison of the amplitudes and the areas under curve (A.U.C.) of the Ca2+ responses 

produced by the indicated treatments; P < 0.00001 compared with ATP alone (*), with 

combined cocaine and ATP administration (#), or with all other treatment groups (+).
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Figure 7. Intracellular microinjection of cocaine enhances IP3-induced depolarization in the 
nAcc
a–b, Cocaine microinjection alone does not modify neuronal membrane potential: a, 
Representative recordings of the resting membrane potential of D1-expressing nAcc neurons 

treated intracellularly with either control vehicle or cocaine (C, 10 μM, final intracellular 

concentration). b, Neither control vehicle microinjection or cocaine microinjection did 

produce a significant change in neuronal membrane potential. c-d, Cocaine potentiates the 
IP3-dependent depolarization of D1-expressing accumbens neurons: c, Characteristic 

changes in resting membrane potential of neurons microinjected with either IP3 (20 nM) or 

IP3 (20 nM) and cocaine (C, 10 μM) in absence and presence of bath-applied σ1R inhibitor 

BD-1063 (BD, 10 μM), of the Ca2+ chelator BAPTA-AM (200 μM) or of TRPC blocker 

SKF96365 (SKF, 2 μM). d, Comparison of the amplitudes of the depolarizations induced by 

treatment conditions described in c; P < 0.00001 compared with IP3 injection alone (*), with 

combined cocaine and IP3 microinjection (#), or with all other treatment groups (+).
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Figure 8. Cocaine enhances the ATP-induced depolarization
a, Typical recordings of membrane potential modifications of D1-expressing accumbens 

neurons treated extracellularly with ATP (20 μM) or ATP (20 μM) and cocaine (C, 10 μM) 

in absence and presence of the σ1R inhibitor BD-1063 (BD, 10 μM), of the Ca2+ chelator 

BAPTA-AM (200 μM) or of the TRPC blocker SKF96365 (SKF, 2 μM). b, Comparison of 

the amplitudes of the depolarizations induced by treatments described in a; P < 0.00001 

compared with ATP alone (*) or with combined cocaine and ATP administration (#).
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Figure 9. Cocaine-induced behavioral hyperactivity and sensitization involves σ1R and TRPC
a, Coronal section indicating the distribution of infusion sites in the nAcc for the 35 

experimental animals (aCSF-saline, n = 5; aCSF-cocaine, n = 7; BD-1063-saline, n = 5; 

BD-1063-cocaine, n = 6; SKF96365-saline, n = 6; SKF96365-cocaine, n = 6). Injection sites 

may appear fewer than the reported number of rats because of overlap of placements. b, 
Pretreatment with BD-1063 (80 μg/side) or SKF96365 (20 μg/side) administered 20 min 

prior to each cocaine injection for 5 days significantly inhibited cocaine-induced ambulatory 

activity on Days 2–5, and the development of repeated cocaine-induced locomotor 

sensitization on Day 12. Repeated administration of either antagonist alone did not alter 

levels of locomotion; *P < 0.05, aCSF-cocaine rats were significantly different from all 

other experimental groups; # SKF96365-cocaine rats were significantly different from 

aCSF-saline, BD-1063-saline and SKF96365-saline on day 5. Data are presented as mean +/

− sem ambulatory counts/60 minutes; abbreviations: aV, intra-nAcc aCSF + ip saline 

vehicle; BV, intra-nAcc BD-1063 + ip saline vehicle; SVm intra-nAcc SFK96365 + ip 

saline vehicle; aC, intra-nAcc aCSF + ip cocaine; BC, intra-nAcc BD1063 + ip cocaine; SC, 

intra-nAcc SKF-96365 + ip cocaine.
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Figure 10. Mechanism of cocaine-induced activation of D1-expressing nAcc neurons
Cocaine activates endoplasmic reticulum (ER)-located σ1Rs and potentiates Ca2+ release 

from the ER via IP3 receptors type 3 (IP3 R3) promoted by GPCR agonists (Gq-coupled, 

such as ATP). The increase in cytosolic Ca2+ triggers activation of TRPC and additional 

Ca2+ entry, as well as Na2+ entry, followed by depolarization and activation of these 

neurons, triggering hyperlocomotion and behavioral sensitization in vivo.
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