Cancer Screening 2014

Richard C. Wender, MD
Chief Cancer Control Officer, American Cancer Society

Follow this and additional works at: https://jdc.jefferson.edu/fmlectures

Let us know how access to this document benefits you

Recommended Citation
https://jdc.jefferson.edu/fmlectures/24

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Family & Community Medicine Presentations and Grand Rounds by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Cancer Screening 2014

Richard C. Wender, MD
Chief Cancer Control Officer
American Cancer Society
Professor, Department of Family and Community Medicine
Thomas Jefferson University
What We’ll Cover

1. Breast Cancer
2. Colon Cancer
3. Lung Cancer
4. Prostate Cancer
Breast Cancer

2014
Estimated new cases 232,670
Estimated deaths 40,000
Effect of Three Decades of Screening Mammography on Breast-Cancer Incidence

Archie Bleyer, M.D., and H. Gilbert Welch, M.D., M.P.H.

ABSTRACT

BACKGROUND

To reduce mortality, screening must detect life-threatening disease at an earlier, more curable stage. Effective cancer-screening programs therefore both increase the incidence of cancer detected at an early stage and decrease the incidence of cancer presenting at a late stage.

METHODS

We used Surveillance, Epidemiology, and End Results data to examine trends from 1976 through 2006 in the incidence of early-stage breast cancer (ductal carcinoma in situ and localized disease) and late-stage breast cancer (regional and distant disease) among women 40 years of age or older.

RESULTS

The introduction of screening mammography in the United States has been associated with a doubling in the number of cases of early-stage breast cancer that are detected each year, from 112 to 234 cases per 100,000 women — an absolute increase of 122 cases per 100,000 women. Concomitantly, the rate at which women present with late-stage cancer has decreased by 8%, from 102 to 94 cases per 100,000 women — an absolute decrease of 8 cases per 100,000 women. With the assumption of a constant underlying disease burden, only 8 of the 122 additional early-stage cancers diagnosed were expected to progress to advanced disease. After excluding the transient excess incidence associated with hormone-replacement therapy and adjusting for trends in the incidence of breast cancer among women younger than 40 years of age, we estimated that breast cancer was overdiagnosed (i.e., tumors were detected on screening that would never have led to clinical symptoms) in 1.3 million U.S. women in the past 30 years. We estimated that in 2008, breast cancer was overdiagnosed in more than 70,000 women; this accounted for 31% of all breast cancers diagnosed.

CONCLUSIONS

Despite substantial increases in the number of cases of early-stage breast cancer detected, screening mammography has only marginally reduced the rate at which women present with advanced cancer. Although it is not certain which women have benefited from screening and which have not, it is clear that we must now reflect on the impact of screening mammography over the past 30 years.
Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial

Anthony B Miller professor emeritus, Claus Wall data manager, Cornelia J Baines professor emerita, Ping Sun statistician, Teresa To senior scientist, Steven A Narod professor

Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada; Women’s College Research Institute, Women’s College Hospital, Toronto, Ontario M5G 1N8, Canada; Child Health Evaluative Services, The Hospital for Sick Children, Toronto, Ontario, Canada

Abstract

Objective To compare breast cancer incidence and mortality up to 25 years in women aged 40-59 who did or did not undergo mammography screening.

Design Follow-up of randomised screening trial by centre coordinators, the study’s central office, and linkage to cancer registries and vital statistics databases.

Conclusion Annual mammography in women aged 40-59 does not reduce mortality from breast cancer beyond that of physical examination or usual care when adjuvant therapy for breast cancer is freely available. Overall, 22% (106/484) of screen detected invasive breast cancers were over-diagnosed, representing one over-diagnosed breast cancer for every 424 women who received mammography screening in the trial.

Introduction

Regular mammography screening is done to reduce mortality from breast cancer. It is associated with early diagnosis of breast cancer and is widely recommended by national breast cancer control guidelines. However, the optimal screening interval and age at which women should begin mammography screening is not yet established. Breast cancer screening guidelines recommend annual mammography for women aged 40-49 years, but the evidence is inconclusive. Concerns have been raised that annual mammography screening increases the risk of over-diagnosis and may result in unnecessary treatment. The Canadian National Breast Screening Study (CNBSS) was planned to address the optimal age and frequency of breast cancer screening in Canadian women.
A Systematic Assessment of Benefits and Risks to Guide Breast Cancer Screening Decisions

Lydia E. Pace, MD, MPH; Nancy L. Keating, MD, MPH

IMPORTANCE Breast cancer is the second leading cause of cancer deaths among US women. Mammography screening may be associated with reduced breast cancer mortality but can also cause harm. Guidelines recommend individualizing screening decisions, particularly for younger women.

OBJECTIVES We reviewed the evidence on the mortality benefit and chief harms of mammography screening and what is known about how to individualize mammography screening decisions, including communicating risks and benefits to patients.

EVIDENCE ACQUISITION We searched MEDLINE from 1960-2014 to describe (1) benefits of mammography, (2) harms of mammography, and (3) individualizing screening decisions and promoting informed decision making. We also manually searched reference lists of key articles retrieved, selected reviews, meta-analyses, and practice recommendations. We rated the level of evidence using the American Heart Association guidelines.
The Mammography Debate – Understanding the Science, Positions, and Beliefs

• Positions of scientists, journals, and reporters are largely entrenched
• The randomized trial data are flawed and are old
• The ACA was a game changer
 – Linking USPSTF guidelines to coverage
The USPSTF downgraded their recommendation for mammography screening in women aged 40-49 years from a B to a C.

A “C” recommendation indicates that harms and benefits are about equal.
“The USPSTF recommends against routine screening mammography in women aged 40 to 49 years.”
They Continued:

“...the decision to start regular, biennial screening mammography before the age of 50 years should be an individual one and take into account patient context, including the patient’s values regarding specific benefits and harms.”
The USPSTF performed an updated meta-analysis and found:

- 15% mortality reduction among women screened in their 40’s
- 14% mortality reduction for women screened in their 50’s

Number Needed To Be Invited To Screening To Save One Life

<table>
<thead>
<tr>
<th>Age</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-49</td>
<td>1,904</td>
</tr>
<tr>
<td>50-59</td>
<td>1,339</td>
</tr>
</tbody>
</table>
Ultimately, the USPSTF concluded that the majority of screening benefit was due to screening women aged 50-74 years. Screening at 40 only contributes to an additional 3% of mortality reduction
The Evolving Evidence for Breast Cancer Screening—Benefits & Harms
The argument against screening women in their 40s

• Risk of developing and dying from breast cancer during the decade of the 40s is low

• While the *relative risk* of dying from breast cancer associated with screening in women ages 40-49 is similar to women ages 50-59, *the absolute benefit is lower*
The argument against screening women in their 40s

• The risk of harms (false positives, etc.) is high

• Thus, the balance of benefits and harms indicates a recommendation against routine screening (C rating)
Premature mortality and incidence based mortality from breast cancer, U.S Women

- Percent of deaths from breast cancer by age at diagnosis, U.S., 2005-2006
 - < 40 7.7%
 - 40-49 17.8%
 - 50-59 22.3%
 - 60-69 19.0%
 - 70-79 18.8%
 - 80+ 14.5%

Meta-analysis of the RCTs, Women age 39-49

RR (95% CI)

- HIP: 0.77 (0.52, 1.13)
- Malmo: 0.70 (0.49, 1.00)
- Two-county: 0.93 (0.63, 1.37)
- Edinburgh: 0.75 (0.48, 1.18)
- Stockholm: 1.52 (0.80, 2.88)
- NBSS1: 0.97 (0.74, 1.27)
- Gothenburg: 0.65 (0.40, 1.05)
- Combined: 0.85 (0.73, 0.98)

15% reduction in breast cancer mortality
20% reduction without NBSS-1
Evaluation of Service Screening in Sweden
Effectiveness of Population-Based Service Screening With Mammography for Women Ages 40 to 49 Years

- Contemporaneous comparison of breast cancer mortality in Swedish counties offering mammography vs. those not offering mammography
- 1986-2005
- Average follow-up = 16 years
Swedish Mammography In Young Women Cohort

• Screened every 18 to 24 months

• All outcomes in Sweden are recorded in the Swedish County Registry

• Analyzed data both based on invitation and attendance
Swedish Results: Before Screening – 1970-1985

<table>
<thead>
<tr>
<th>Study Group</th>
<th>Breast Cancer Deaths</th>
<th>Person-Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group</td>
<td>607</td>
<td>4.8 million</td>
</tr>
<tr>
<td>Control Group</td>
<td>846</td>
<td>6.3 million</td>
</tr>
</tbody>
</table>

RR: 0.94 (CI 0.85-1.05)

No Reduction In Mortality
<table>
<thead>
<tr>
<th></th>
<th>Breast Cancer Deaths</th>
<th>Person-Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group</td>
<td>803</td>
<td>7.3 million</td>
</tr>
<tr>
<td>Control Group</td>
<td>1238</td>
<td>8.8 million</td>
</tr>
</tbody>
</table>

Number needed to screen to save 1 life: 1252
Map of Study and Control Group Areas, and Crude Cumulative Breast Cancer Mortality per 100,000 Person Years

Figure 1. This is a simplified map of the areas that were included in the study group and the control group.

Figure 2. This chart illustrates the crude cumulative breast cancer mortality per 100,000 person-years. Solid line indicates the study group; dashed line, control group.

RR = 0.74; 95% CI 0.66 – 0.83)

Cancer 2010; published online: 29 SEP 2010
Results from randomized trials are a solid basis for breast cancer screening policy

• Mortality reductions in the trials, closely parallel the reduction in the risk of being diagnosed with an advanced breast cancer.

• Those trials that succeeded in downstaging, also succeeded in reducing breast cancer deaths.
• Two important points:
 – Long term follow-up is necessary to measure the full benefit of breast cancer screening
 – With long follow-up, the number-needed-to-screen to save one life steadily improves

Table 3

<table>
<thead>
<tr>
<th>Time between Randomization and Follow-up (y)</th>
<th>RR*</th>
<th>Deaths from Breast Cancer in ASP Group</th>
<th>Expected Deaths in ASP Group†</th>
<th>Deaths Prevented in ASP Group</th>
<th>No. of Women Needed to Screen*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.74 (0.57, 0.98)</td>
<td>206</td>
<td>277</td>
<td>71</td>
<td>922 (515, 4410)</td>
</tr>
<tr>
<td>15</td>
<td>0.78 (0.59, 0.97)</td>
<td>284</td>
<td>408</td>
<td>124</td>
<td>526 (351, 1055)</td>
</tr>
<tr>
<td>20</td>
<td>0.79 (0.59, 0.99)</td>
<td>324</td>
<td>465</td>
<td>141</td>
<td>464 (316, 871)</td>
</tr>
<tr>
<td>25</td>
<td>0.84 (0.65, 1.08)</td>
<td>347</td>
<td>497</td>
<td>150</td>
<td>436 (297, 815)</td>
</tr>
<tr>
<td>29</td>
<td>0.84 (0.59, 1.20)</td>
<td>351</td>
<td>509</td>
<td>158</td>
<td>441 (286, 748)</td>
</tr>
</tbody>
</table>

* Numbers in parentheses are 95% confidence intervals.
† Expected deaths if the ASP had the same mortality rate as the PSP, calculated by dividing the observed deaths by the RR (eg, at 10 years, 206/0.7435 = 277 expected deaths).

31% fewer deaths After 29 years
Number Needed to Screen (NNS) vs. Number Needed to Invite (NNI) to Avoid One Breast Cancer Death

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Swedish data (NNS)(^1)</th>
<th>USPSTF (NNI)(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>464</td>
<td>1224</td>
</tr>
<tr>
<td>40-49</td>
<td>726</td>
<td>1,904</td>
</tr>
<tr>
<td>50-59</td>
<td>260</td>
<td>1,339</td>
</tr>
<tr>
<td>60-69</td>
<td>198</td>
<td>377</td>
</tr>
</tbody>
</table>

\(^1\) Number Needed to Screen (NNS) Every 2 Years (40-49—18 mos.) for a Period of Ten Years, with 20 Years of Follow-up, to Save One Life.

\(^2\) Number Needed to Invite (NNI), estimated from randomized trial data with variable screening intervals, variable screening rounds, different rates of adherence and non-compliance, and variable periods of follow-up (14 yrs.)
<table>
<thead>
<tr>
<th>Source</th>
<th>No. needed to screen/invite (original)*</th>
<th>No. needed to screen (adjusted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK review (2012)</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>USPSTF, depending on age (2009)</td>
<td>377-1904</td>
<td>193</td>
</tr>
<tr>
<td>Nordic Cochrane Review (2011)</td>
<td>2000†</td>
<td>257</td>
</tr>
<tr>
<td>EUROSCREEN (2012)</td>
<td>90</td>
<td>64-96</td>
</tr>
</tbody>
</table>

* Original estimates are adjusted to the same scenario used in the UK Independent Review, i.e., the impact of screening UK women ages 50-51 every 3 years for 20 years on mortality in women ages 55-79.
Adverse Effects and Harms

- False positive findings
- Anxiety
- Overdiagnosis
False Positive and Patient Recall in Mammography Screening

The USPTF labeled all women with an initial abnormal mammogram who were found to not have cancer as “false positives” – 100 out of 1000 women screened
False Positives and Patient Recall - An Analysis of the 100 Recalls

• 56 out of 100 will have additional views and a mammogram and will be found to be normal

• 25 out of 100 will have a 6 month follow-up
False Positives and Patient Recall - An Analysis of the 100 Recalls

- 19 (1.9% of the 1000) will have a biopsy
- 6 of 19 (32%) will have cancer. An excellent yield
- Biopsies of a palpable lump: only 15% have cancer
US women’s attitudes to false positive mammography results and detection of ductal carcinoma in situ: cross sectional survey

Lisa M Schwartz, Steven Woloshin, Harold C Sox, Baruch Fischhoff, H Gilbert Welch

Abstract

Objective To determine women’s attitudes to and knowledge of both false positive mammography results and the detection of ductal carcinoma in situ after screening mammography.

Design Cross sectional survey.

Setting United States.

Participants 479 women aged 18-97 years who did not report a history of breast cancer.

A positive result (n = 76) expressed the same high tolerance: 39% would tolerate 10,000 or more false positives. 62% of women did not want to take false positive results into account when deciding about screening. Only 8% of women thought that mammography could harm a woman without breast cancer, and 94% doubted the possibility of non-progressive breast cancers. Few had heard about ductal carcinoma in situ, a cancer that may not progress, but when informed, 60% of women wanted...
Schwartz & Colleagues found:

– Women had high awareness of false positives from mammography

– Women were highly tolerant of false positives
 • 63% felt 500 FP per life saved was reasonable
 • 37% felt 10,000 FP per life saved was reasonable
Schwartz & Colleagues found:

– Women who had had experienced a FP result had the same level of tolerance as women who had not had experienced a FP

– 63% did not regard false positives as an important factor in decisions about screening
Over Diagnosis:
The Hottest Topic In Cancer Screening

Lack of consistent definition and methods of measurement causes confusion.
Over Diagnosis Definitions

• Three potential definitions:
 • A cancer with no biologic potential to cause harm
 • A cancer that is very unlikely to cause harm within the predicted life expectancy of the individual
 • Any cancer case where the individual dies before the cancer causes harm
Measuring Over Diagnosis

• Excess number of cancers detected in the screening arm compared to the control arm
 • Effective screening should detect more cancers earlier than no screening
 • Cancers detected through usual care should catch-up with time
 • If there is over-diagnosis the usual care group will never catch up
Measuring Over-Diagnosis

• The natural history of cancers may be longer than we suspected

• Usual care group may take many years to catch up
Measuring Over-Diagnosis

- Some usual care patients, who would have developed the target cancer, will die of another cause before the cancer is diagnosed
- 15 to 20 years of measurement are needed to accurately measure over-diagnosis
- In the meantime, some women in usual care will get screened which may falsely lower the estimate of over diagnosis
Overdiagnosis

- Estimates of overdiagnosis of screen detected breast tumors range from 0 - > 50%, with some claiming that it is the major harm of screening.

- Reality: To estimate overdiagnosis, we must examine incidence rates over time, and adjust for:
 - Pre-existing trend of increasing incidence
 - Lead time
Overdiagnosis Estimates Based on Adjustment for Incidence Trends and Lead-time

Adjusted Estimates

Not Adequately Adjusted Estimates

Puliti, et al. JMS 2012;19(1)
Are there harms from not screening?

- A study of 1977 women aged 40-49 diagnosed with breast cancer compared the tumor characteristics, treatment regimens used, and long-term outcome of women with symptomatic versus women with mammographically detected breast cancer.

Radiology 2012;262:797-806.)
Are there harms from not screening?

- Women with symptomatically detected breast cancer had:
 - A higher rate of mastectomy (47% vs. 25%)
 - Larger average tumor size (3.02 vs. 1.63 cm)
 - Significantly worse disease survival

Radiology 2012;262:797-806.
Is there a role for ultrasound screening in women with significant breast density?

- 2809 women with heterogeneously dense breasts in at least one quadrant were recruited to undergo both mammography and ultrasound, with the exams delivered in a randomized order.
Performance of Screening With Combined Mammography and Ultrasound vs. Mammography or Ultrasound Alone

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammography plus Ultrasound</td>
<td>77.5%</td>
</tr>
<tr>
<td>Mammography alone</td>
<td>50%</td>
</tr>
</tbody>
</table>

Screening with mammography and ultrasound improves the detection of cancer, but at significant increase in false positives

- The positive predictive value of biopsy recommendation after full diagnostic workup was:
 - Mammography: 22.6% (95% CI, 14.2%-33%)
 - Ultrasound: 8.9% (95% CI, 5.6%-13.3%)
 - Combination: 11.2% (95% CI, 7.8%-15.6%)

Breast Cancer Screening Guidelines: More Agreement Than Disagreement
Every Guideline Recommends That

• All women 50 and older should have a mammogram every 1 to 2 years, until life expectancy becomes limited
• All women ages 40-49 should be offered a mammogram with or without shared decision making
• Corollary: Accepting a refusal without discussion is NOT recommended
Best Estimates of Over-Diagnosis of Breast Cancer

• 1-3% for invasive cancer

• 15-25% for DCIS
 – Ductal Carcinoma In Situ is a pre-cancerous condition that is currently treated just like cancer
Reducing Over Diagnosis of Breast Cancer and Particularly DCIS

—New approaches to genetic profiling and to treatment options hold potential to reduce overtreatment
And for those who argue that the impact is not big enough or fast enough.......*one more example*
Cancer Mortality Rates in Denmark, by Major Cancer, Women
Colon Cancer

2014

Estimated new cases 136,830
Estimated deaths 50,310
Colon Cancer Screening: A Public Health Success Story

- Colon cancer mortality has dropped over 40% from its peak
- Colon cancer incidence dropped 30% between 2000 and 2010
- Colon cancer incidence is rising in younger people and in other countries
Trends in Colorectal Cancer Incidence Trends* by Age and Sex, 2001-2010

*Rates are age adjusted to the 2000 US standard population.
Trends in Colorectal Cancer Mortality Rates by Sex and Race/Ethnicity, US, 1975-2010

API indicates Asian/Pacific Islander. Trends for American Indian/Alaska Natives are not shown due to sparse data. Rates are per 100,000 and age adjusted to the 2000 US standard population. *Rates are two-year moving averages. †Rates are three-year moving averages. ‡Persons of Hispanic origin may be of any race; rates exclude deaths from CT, DC, LA, ME, MD, MN, MS, NH, NY, ND, OK, SC, VT, and VA due to incomplete ethnicity data.

Source: National Center for Health Statistics, Centers for Disease Control and Prevention, as provided by the Surveillance, Epidemiology, and End Results Program, National Cancer Institute.
Colorectal Cancer Incidence

Sedentary lifestyles, increase in red meat consumption and obesity increase risk for colorectal cancer.

*World Cancer Report 2014

Chart 5.5-2. Age-standardized (World) incidence rates per 100,000 by year in selected populations, for colorectal cancer in men, circa 1975–2012.
Increasing Decline in Colorectal Cancer Death Rates, 1970-2010

Decline per decade: 3% 11% 15% 25%
Seven Basic Truths of Colon Cancer Screening

1. If you only offer colonoscopy you can achieve very good but not spectacular screening rates
Stool Blood Testing – A Critical Part of ANY CRC Screening Strategy

- Even if you recommend colonoscopy for all, some people won’t get one or can’t get one. Using colonoscopy exclusively will, inevitably, lead to a screening gap.
Evaluating Test Strategies for Colorectal Cancer Screening

Zauber and her team conducted a decision analysis using microsimulation models

• Number of life-years gained is essentially identical regardless of screening strategy used:
 – Sensitive guaiac FOBT annually
 – Fecal Immunochemical Test (FIT) annually
 – Flexible sigmoidoscopy every 5 years with mid-interval sensitive FOBT
 – Colonoscopy every 10 years

ASSUMING 100% ADHERENCE
Fecal Immunochemical Tests (FIT’s) Should Replace Guaiac FOBT

- FIT’s
 - Demonstrate superior sensitivity and specificity
 - Are specific for colon blood and are unaffected by diet or medications
 - Some can be developed by automated readers
 - Some improve patient participation in screening

FIT’s available in the US

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSure</td>
<td>Enterix, Quest Company</td>
</tr>
<tr>
<td>Hemoccult-ICT</td>
<td>Breckman-Coulter</td>
</tr>
<tr>
<td>Instant-View</td>
<td>Alpha Scientific Designs</td>
</tr>
<tr>
<td>MonoHaem</td>
<td>Chemicon International</td>
</tr>
<tr>
<td>Clearview Ultra-FOB</td>
<td>Wampole Laboratory</td>
</tr>
<tr>
<td>Fit-Chek</td>
<td>Polymedco</td>
</tr>
<tr>
<td>Hemosure One Step</td>
<td>WHPM, Inc.</td>
</tr>
<tr>
<td>Magstream Hem Sp</td>
<td>Fujirebio, Inc.</td>
</tr>
</tbody>
</table>
Many Patients Prefer FOBT

- Diverse sample of 323 adults given detailed side-by-side description of FOBT and colonoscopy (DeBourcy et al. 2007)
 - 53% preferred FOBT
 - Almost half felt very strongly about their preference
Many Patients Prefer FOBT

• 212 patients at 4 health centers rated different screening options with different attributes (Hawley et al. 2008)
 – 37% preferred colonoscopy
 – 31% preferred FOBT

• Nationally representative sample of 2068 VA patients given brief descriptions of each screening mode (Powell et al. 2009)
 – 37% preferred colonoscopy
 – 29% preferred FOBT
Many Patients Prefer FOBT

Randomized clinical trial in which 997 patients in the San Francisco PH care system received different recommendations for screening (Inadomi et al. 2012)

- Colonoscopy recommended: 38% completed screening
- FOBT recommended: 67% completed screening
- Colonoscopy or FOBT: 69% completed screening

Many patients may forgo screening if they are not offered an alternative to colonoscopy
Seven Basic Truths of Colon Cancer Screening

2. If you **only** offer screening to patients who are coming to a primary care office, you can achieve very good **but not** spectacular screening rates.
Population Management is Vital

• Every practice must have a system to assess screening gaps and conduct population outreach by letter or by phone
Seven Basic Truths of Colon Cancer Screening

3. If you give out FIT or FOBT tests but do not track whether the patient returns the test and prompt them to do so, return rates will be poor.
Seven Basic Truths of Colon Cancer Screening

4. If you ask a patient to schedule their colonoscopy but do not schedule it before they leave the office, only about one half of them will call and schedule
Seven Basic Truths of Colon Cancer Screening

5. If you are “screening” patients with a stool blood test at the time of a rectal exam, it’s time to stop. This method doesn’t work.
Seven Basic Truths of Colon Cancer Screening

6. The quality of colonoscopy varies dramatically ... and this has a major impact on outcomes
Interval Cancer: Why?

• New, fast growing lesions
• Incomplete removal (19-27%)
• Missed lesions
 – Up to 17% of polyps > 1cm are missed!
 – Less protection in proximal colon
Percent of Colonoscopies where Biopsy Was Taken (and Findings on Biopsy) for Colonoscopists Who Performed ≥30 Colonoscopies between 7/1/2006--3/31/2012 in Average Risk Clients 50+ Years of Age Who Reported No Bleeding in the CRF CRC Screening Program, MD

The number on the X axis represents the number of colonoscopies performed by the endoscopist from which these results were derived.

(5,598 were done statewide and the bar represents the statewide percentages for Maryland)
Seven Basic Truths of Colon Cancer Screening

7. Surveillance guidelines are not being followed, leading to some over-testing and some under-testing.
Recommendations for Adenoma Surveillance

<table>
<thead>
<tr>
<th>Category</th>
<th>Next examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 tubular adenomas < 10 mm</td>
<td>5-10 years</td>
</tr>
<tr>
<td>> 3 tubular adenomas < 10 mm</td>
<td>3 years</td>
</tr>
<tr>
<td>> 10 adenomas</td>
<td>< 3 years</td>
</tr>
<tr>
<td>Any adenoma with villous features</td>
<td>3 years</td>
</tr>
<tr>
<td>Any adenoma with high grade dysplasia</td>
<td>3 years</td>
</tr>
<tr>
<td>Sessile adenoma with piecemeal excision</td>
<td>2-6 months</td>
</tr>
</tbody>
</table>

Recommendations for Adenoma Surveillance After First Surveillance Colonoscopy

<table>
<thead>
<tr>
<th>Baseline Colonoscopy</th>
<th>First Surveillance</th>
<th>Interval for 2(^{nd}) Surveillance (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk adenoma (LRA)</td>
<td>HRA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LRA</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>No adenoma</td>
<td>10</td>
</tr>
<tr>
<td>High risk adenoma (HRA)</td>
<td>HRA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>LRA</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>No adenoma</td>
<td>5</td>
</tr>
</tbody>
</table>

©2013 American Cancer Society, Inc. No.0059.55

<table>
<thead>
<tr>
<th>Category</th>
<th>Surveillance interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperplastic polyp</td>
<td>No surveillance, unless multiple, large and proximally located</td>
</tr>
<tr>
<td>Sessile serrated adenoma/polyp (SSA/P) without cytological dysplasia</td>
<td>q5 years if < 3 lesions, all <1 cm size; q3 years if ≥ 3 lesions, or any ≥1 cm size</td>
</tr>
<tr>
<td>SSA/P with cytological dysplasia</td>
<td>q3 years, after ensuring complete resection</td>
</tr>
<tr>
<td>Traditional serrated adenoma (TSA)</td>
<td>Same as SSPD</td>
</tr>
<tr>
<td>Suspected Type I hyperplastic polyposis (serrated adenomatous polyposis)</td>
<td>q1-3 years, with resection of polyps >5 mm vs. surgery</td>
</tr>
</tbody>
</table>
Screening Older Patients
Screening Frail Elderly Patients for Colorectal Cancer

• American Geriatrics Society recommends individualized health screening decisions for older patients

• US Preventive Services Task Force recommends that the decision to screen people 76-85 years old should be individualized (not routine), and discouraged in those ≥ 85 years old
Screening Frail Elderly Patients for Colorectal Cancer

- ACS does not currently address CRC screening in the elderly, but they will likely recommend individualized decision-making in the future, as they do with their breast and prostate cancer screening guidelines
An Opportunity to Substantially Eliminate Colon Cancer as a Major Public Health Problem

• Over 80 organizations from all sectors of public life have signed a pledge to achieve the goal of having 80% of all eligible adults up to date with CRC screening by the end of 2018
We have A Symbol
We Have A Month

(...March)
We Have A Plan
Time for Coordinated PUSH
80% Colon Cancer Screening Rate By 2018

......I Can See It!!!
Lung Cancer

2014

Estimated New Cases 224,210
Estimated deaths 159,260
American Cancer Society Lung Cancer Screening Guidelines

Richard Wender, MD¹; Elizabeth T. H. Fontham, MPH, DrPH²; Ermilo Barrera, Jr, MD³;
Graham A. Colditz, MD, DrPH⁴; Timothy R. Church, PhD⁵; David S. Ettinger, MD⁶; Ruth Etzioni, PhD⁷;
Christopher R. Flowers, MD⁸; G. Scott Gazelle, MD, MPH, PhD⁹; Douglas K. Kelsey, MD, PhD¹⁰;
Samuel J. LaMonte, MD¹¹; James S. Michaelson, PhD¹²; Kevin C. Oeffinger, MD¹³; Ya-Chen Tina Shih, PhD¹⁴;
Daniel C. Sullivan, MD¹⁵; William Travis, MD¹⁶; Louise Walter, MD¹⁷; Andrew M. D. Wolf, MD¹⁸;
Otis W. Brawley, MD¹⁹; Robert A. Smith, PhD²⁰
National Lung Screening Trial
53,000 current or ex-smokers (≥ 30 pack-year) ages 55-74

Randomly Assigned

Low dose helical (spiral) CT
Chest X-Ray
NLST – Preliminary Results

20% fewer lung cancer deaths in spiral CT group

Results were highly statistically significant
.... And That’s Not All

7% reduction in all cause mortality in CT group!
A 20% reduction in lung cancer death rate would prevent 30,000 lung cancer deaths every year!
That’s equivalent to wiping out all deaths from prostate cancer in men, or ...
...all deaths from cervix cancer, uterine cancer, and ovarian cancer in women... ...combined
Major Complication Associated With Invasive Diagnostic Procedure Following Positive Low-Dose CT Screen

<table>
<thead>
<tr>
<th>Category</th>
<th>% with major complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did not result in cancer diagnosis</td>
<td>0.06</td>
</tr>
<tr>
<td>Did result in cancer diagnosis</td>
<td>11.2</td>
</tr>
</tbody>
</table>
16 participants in low-dose CT group (10 of whom had lung cancer) and 10 in the radiography group (all of whom had lung cancer) died within 60 days after an invasive diagnostic procedure.
The ACS Guideline

“Clinicians with access to high volume, high quality lung cancer screening and treatment centers should initiate a discussion about screening with apparently healthy patients aged 55 to 74 years who have at least a 30 pack/year smoking history and who currently smoke or have just quit within the past 15 years.”
“A process of informed and shared decision making ... should occur before any decision is made to initiate lung cancer screening.”
“Smoking cessation counseling remains a high priority for clinical attention in current smokers.”
“Where risk seems to approximate or exceed the NLST eligibility criteria in one category but not another, clinicians should consider offering the chance to screen.”
Coverage for Low Dose C-T Screening is a Reality

• USPSTF B recommendation requires coverage by most commercial plans

• CMS currently considering coverage
Prostate cancer

2014

Estimated new cases: 233,000
Estimated deaths: 29,480
Some Prostate Cancer Facts

From 2006-2010:

– The median age at diagnosis was 66 y.o.
– 0.6% diagnosed between 35-44
– 9.6% between 45-54
– 32.3% between 55-64
– 35.8% between 65-74
– 17.7% between 75-84
Some Prostate Cancer Facts

From 2006-2010:

– The median age at death for Prostate Cancer: 80 y.o.
– 1.6% between 45-54
– 8.3% between 55-64
– 20% between 65-74
– 37.6% between 75-84
Survival for men diagnosed with distant disease is not great: 27.9% at 5 years
Prostate Cancer Screening and Co-Morbidities

The PLCO study showed no benefit from inviting men to be screened for prostate cancer.

Analysis of PLCO stratified by co-morbidities may guide targeted screening
In 10 years f/u of PLCO, 9,565 deaths occurred, 164 from prostate cancer

60% of these patients had minimal or no co-morbidity
Prostate Cancer Deaths in PLCO Men With No or Minimal Co-Morbidity

Intervention group: 22
Control group: 38

RR: 0.56 (p = 0.03)

Active Surveillance in Prostate Cancer Treatment

Recurrence risk and expected years to live

Very low risk
Low risk >10 years

Low risk with <10 years
Intermediate risk with <10 years

Active Surveillance

• PSA every 3 months
• DRE every 6 months
• Prostate biopsy at least every 12 months

• PSA every 6 months
• DRE every 6 months

NCCN Guidelines – Prostate Cancer www.nccn.org
When To Begin Treatment

• Rising Gleason score
• Increasing cancer volume on biopsies
• Doubling of PSA in <3 years
Prostate Cancer Take Home Points

1. Abandoning PSA screening will lead to an increase in stage of diagnosis and more prostate cancer deaths

2. More men die from prostate cancer than from colon cancer but the median age of death is 6 years older
“A man who chooses to be screened might place a higher value on avoiding death from prostate cancer, and might be willing to risk injury to urinary, sexual or bowel function.”
“A man who chooses not to be screened might place a higher value on avoiding the potential harms of screening and treatment, such as anxiety or the risk of injury to urinary, sexual or bowel function, and might be willing to accept a higher risk of dying from prostate cancer prematurely.”
The Department of Family and Community Medicine - 40 years of excellence in education, research, clinical care and cancer screening
BEYOND 100