Jefferson

Thomas Jefferson University

HOME OF SIDNEY KIMMEL MEDICAL COLLEGE Jefferson D ig ital Com monS

Thomas Jefferson University

Department of Neuroscience Faculty Papers Department of Neuroscience

5-16-2017

Identification of octopaminergic neurons that modulate sleep
suppression by male sex drive.

Daniel R. Machado
Thomas Jefferson University

Dinis Afonso
Thomas Jefferson University

Alexandra R. Kenny
Thomas Jefferson University

Arzu Oztiirk-Golak
Thomas Jefferson University

Emt!w {HidMR SR Gtional works at: https://jdc.jefferson.edu/department_neuroscience
IInjversity of Pennsylvania

b Part of the Neurosciences Commons

Let us know how access to this document benefits you

See next page for additional authors

Recommended Citation

Machado, Daniel R.; Afonso, Dinis; Kenny, Alexandra R.; Oztiirk-Colak, Arzu; Moscato, Emilia H.;
Mainwaring, Benjamin; Kayser, Matthew; and Koh, Kyunghee, "ldentification of octopaminergic
neurons that modulate sleep suppression by male sex drive." (2017). Department of
Neuroscience Faculty Papers. Paper 24.
https://jdc.jefferson.edu/department_neuroscience/24

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been
accepted for inclusion in Department of Neuroscience Faculty Papers by an authorized administrator of the
Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.


https://jdc.jefferson.edu/
https://jdc.jefferson.edu/department_neuroscience
https://jdc.jefferson.edu/neuroscience
https://jdc.jefferson.edu/department_neuroscience?utm_source=jdc.jefferson.edu%2Fdepartment_neuroscience%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1010?utm_source=jdc.jefferson.edu%2Fdepartment_neuroscience%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/

Authors

Daniel R. Machado, Dinis Afonso, Alexandra R. Kenny, Arzu Oztiirk-Golak, Emilia H. Moscato, Benjamin
Mainwaring, Matthew Kayser, and Kyunghee Koh

This article is available at Jefferson Digital Commons: https://jdc.jefferson.edu/department_neuroscience/24


https://jdc.jefferson.edu/department_neuroscience/24

eLIFE

elifesciences.org

*For correspondence: kyunghee.
koh@jefferson.edu

TThese authors contributed
equally to this work

Competing interests: The
authors declare that no
competing interests exist.

Funding: See page 17

Received: 09 November 2016
Accepted: 25 April 2017
Published: 16 May 2017

Reviewing editor: Leslie C
Griffith, Brandeis University,
United States

(©) Copyright Machado et al. This
article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

RESEARCH ARTICLE a @

Identification of octopaminergic neurons
that modulate sleep suppression by male
sex drive

Daniel R Machado™%?*, Dinis JS Afonso™*3", Alexandra R Kenny’,
Arzu Ozturk-Colak®, Emilia H Moscato®, Benjamin Mainwaring®, Matthew Kayser?,
Kyunghee Koh'*

'Department of Neuroscience, the Farber Institute for Neurosciences, Kimmel
Cancer Center, Thomas Jefferson University, Philadelphia, United States; “Life and
Health Sciences Research Institute (ICVS), School of Medicine, University of Minho,
Braga, Portugal; 3ICVS/3B’s - PT Government Associate Laboratory, Braga,
Portugal; “Departments of Psychiatry and Neuroscience, Perelman School of
Medicine at the University of Pennsylvania, Philadelphia, United States

Abstract Molecular and circuit mechanisms for balancing competing drives are not well
understood. While circadian and homeostatic mechanisms generally ensure sufficient sleep at night,
other pressing needs can overcome sleep drive. Here, we demonstrate that the balance between
sleep and sex drives determines whether male flies sleep or court, and identify a subset of
octopaminergic neurons (MS1) that regulate sleep specifically in males. When MS1 neurons are
activated, isolated males sleep less, and when MS1 neurons are silenced, the normal male sleep
suppression in female presence is attenuated and mating behavior is impaired. MS1 neurons do not
express the sexually dimorphic FRUITLESS (FRU) transcription factor, but form male-specific
contacts with FRU-expressing neurons; calcium imaging experiments reveal bidirectional functional
connectivity between MS1 and FRU neurons. We propose octopaminergic MS1 neurons interact
with the FRU network to mediate sleep suppression by male sex drive.

DOI: 10.7554/elife.23130.001

Introduction

Sleep is mainly regulated by two processes: the circadian process, which controls the timing of sleep,
and the homeostatic process, which modulates sleep drive based on sleep-wake history
(Borbély and Achermann, 1999). However, because sleep is incompatible with virtually all other
behaviors, sometimes it may be advantageous to forgo sleep in order to engage in other critical
behaviors (Siegel, 2012). For example, male arctic sandpipers that sleep the least during 3 week
mating periods produce the most offspring (Lesku et al., 2012). Elucidating the neural mechanisms
underlying the choice between sleep and sex, two behaviors critical for the fitness of individuals and
species, would provide valuable insights into the general problem of balancing conflicting needs.

Sleep in Drosophila shares many features with sleep in humans. Like humans, flies adjust their
sleep behavior depending on other needs (Griffith, 2013). Starved flies sleep less than well-fed flies,
presumably to forage for food (Keene et al., 2010); female flies sleep less after mating, presumably
to lay eggs (Isaac et al., 2010); and mixed-sex groups of flies sleep less than single-sex groups, pre-
sumably to engage in sexual activities (Liu et al., 2015). Although several neuronal populations that
regulate sleep or courtship in the fly nervous system have been identified (Auer and Benton, 2016;
Chakravarti et al., 2017; Griffith, 2013; Yamamoto and Koganezawa, 2013), neural substrates
underlying coordinated regulation of sleep and sexual behavior remain elusive.
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elLife digest Most people sleep for around seven or eight hours at night, but if there is
something important or interesting to do — for example, taking care of a baby, finishing a task
before a deadline, or watching an entertaining movie — we may stay up late. In other words, sleep is
regulated by motivational states. The drive to sleep accumulates during wakefulness and decreases
during sleep. Thus sleep and other motivational drives compete to decide whether we sleep or
engage in other important or interesting activities.

The idea that sleep and sex drives might compete with each other is intuitive, but had not been
studied experimentally. Machado, Afonso et al. have now studied how this competition determines
the behavior of male fruit flies. The presence of a female fly usually keeps a male fly awake at night.
However, a male that has recently mated several times (and has low sex drive) or one that was sleep
deprived (and has high sleep drive) ignores the female and goes to sleep.

Further investigation revealed a small number of previously unknown neurons (termed MS1) are
required for sexual arousal to overcome the male’s desire to sleep. These neurons do not belong to
a circuit that is known to be important for male sexual behavior, but they do communicate with that
circuit using a neurotransmitter called octopamine. This communication suppresses sleep and
promotes courtship.

The next steps will be to identify the specific neurons that communicate directly with the MS1
neurons and to determine whether MS1 neurons have a direct role in regulating sex drive.
Investigating these details will help us to understand more generally how competing drives influence
behavioral choices.

DOI: 10.7554/eLife.23130.002

Here we demonstrate that the balance between sleep and sex drives determine whether male
flies sleep or court, and describe a newly identified neuronal group mediating sleep suppression by
male sexual arousal. Earlier studies have shown that norepinephrine and its Drosophila counterpart
octopamine act as wake-promoting signals (Aston-Jones and Bloom, 1981; Carter et al., 2010;
Crocker and Sehgal, 2008). We found that a small number of octopaminergic neurons, which we
named MS1 (Male Specific 1), regulate the decision between sleep and courtship in males. Activat-
ing MS1 neurons reduced sleep specifically in males, and silencing MS1 neurons led to decreased
female-induced sleep loss and impaired mating behavior. The male-specific isoform of the FRU tran-
scription factor FRUM, which we will refer to as FRU for simplicity, is expressed in ~1500 neurons
that range from peripheral sensory neurons to motor neurons, forming a circuit that controls court-
ship behavior (Auer and Benton, 2016; Kimura et al., 2005; Manoli et al., 2005; Stockinger et al.,
2005; Yamamoto and Koganezawa, 2013). We found that MS1 neurons do not express FRU, but
instead interact with the FRU neural circuit; calcium imaging experiments revealed that MS1 neurons
act both upstream and downstream of FRU neurons. We propose that octopaminergic MS1 neurons
communicate with the FRU courtship circuit bidirectionally to promote sexual arousal and establish a
state of enhanced readiness for sustained courtship.

Results

Balance between sex and sleep drives determines courtship vs sleep
behavior

To determine the effects of sexual stimuli on male sleep, we measured sleep in wild-type flies in dif-
ferent social settings: isolated male (M) or female (F) flies, and male-male (MM) or male-female (MF)
pairs using multi-beam or single-beam Drosophila Activity Monitors (DAMs) (see Materials and meth-
ods). Sleep amount was markedly reduced in MF pairs relative to MM pairs (Figure 1A,B and Fig-
ure 1—figure supplement 1). As expected, isolated females exhibited reduced daytime sleep
relative to isolated males, and the reduction was comparable to the daytime sleep reduction in MF
relative to MM pairs (Figure 1B and Figure 1—figure supplement 1B), consistent with the possibil-
ity that the difference in daytime sleep between MF and MM pairs is largely due to female wakeful-
ness. In contrast, nighttime sleep loss in MF relative to MM pairs is considerably greater than the
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Figure 1. Balance between sleep drive and sex drive determines male sleep levels. (A) Sleep profile in 30 min intervals for wild-type (iso31) flies in
isolation (M for male, F for female) or in pairs (MM for male-male, MF for male-female) using multi-beam monitors. Corresponding data using single-
beam monitors are shown in Figure 1—figure supplement 1. In all figures, the white and black bars below the x-axis indicate light and dark periods,
respectively. N = 29-44. (B) Daytime and nighttime sleep amount of flies shown in (A). (C) Nighttime sleep profile in 5 min bins each hour for wild-type
(is031) flies from video analysis. Sleep amount was manually scored for the first 5 min of each hour for individual males (M w/ F) or females (F w/ M) in
MF pairs or individual males in MM pairs (M w/ M). Collective sleep amount of MM and MF pairs, i.e., when both flies were asleep, is presented on the
right. N = 15-24. (D) Percentage of three types of male behavior, i.e., sleep, courtship, and wake but not courtship, during the 5 min bins shown in (C).
In all figures, error bars represent SEM; *p<0.05; **p<0.01; ***p<0.001; ns = not significant. Two-way ANOVA (B) or one-way ANOVA (C) followed by
Tukey post hoc test. Significance of the interaction between the two factors (single vs pair and presence vs absence of a female) is indicated in (B).
Sleep amounts obtained for 5 min intervals were summed for ANOVA in (C) and significant differences between conditions are indicated above the
brackets. Sleep amount was not significantly different between individual males and females in MF pairs (M w/ F vs F w/ M).

DOI: 10.7554/eLife.23130.003

The following figure supplement is available for figure 1:

Figure supplement 1. Single-beam DAM data demonstrating reduced male sleep in the presence of females.
DOI: 10.7554/eLife.23130.004

difference in sleep amount between isolated males and females (Figure 1B and Figure 1—figure
supplement 1B), which suggests that the nighttime sleep loss in MF pairs is not simply due to the
presence of another fly or sex differences in sleep amount between males and females in isolation.
To assess nighttime behavior of individual flies in MM or MF pairs, we made video recordings
under infrared light, which revealed that males paired with females spent much of the night engaged
in courtship (Video 1). To quantify this observation, we manually scored courtship and sleep-wake
behavior of individual flies for the first 5 min every hour during the 12 hr dark period. Male behavior
was categorized as sleep, courtship, or wake without courtship, whereas female behavior was
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categorized as sleep or wake. Individual male flies slept more in MM pairs than in MF pairs
(Figure 1C), with awake males spending most of their time courting in MF pairs (Figure 1D), a
behavior not exhibited by either male in MM pairs. Pairs of flies tended to be awake or asleep
together, and only ~2% of the time was a female awake while its male partner was asleep. As a
result, sleep in a pair of flies (defined as when both flies are asleep) is a good measure of sleep in a
single male fly in the pair (Figure 1C). These results demonstrate that males spend much of the night
courting instead of sleeping when paired with females, and validate the use of DAMs to measure
sleep in pairs of flies. Our data, together with previous work that employed video tracking to con-
clude that daily rhythms in the proximity between flies in MF pairs are driven by male sex drive
(Fujii et al., 2007), led to the idea that male flies possess mechanisms for suppressing sleep in the
presence of female flies.

If sex drive underlies female-induced male sleep loss, sexually satiated males would not exhibit
sleep loss in the presence of females. To test this prediction, we employed a recently developed
satiety assay (Zhang et al., 2016). As previously shown, male flies housed with a number of virgin
females exhibited reduced courtship and copulation behaviors over a ~5 hr period (Figure 2—figure
supplement 1). When paired with a female in a DAM, a satiated male that had been grouped with
virgin females slept more than a naive male that had been grouped with other males (Figure 2A).
Video analysis confirmed that satiated males exhibited increased sleep accompanied by decreased
courtship index (Figure 2B,C). These data suggest that when sex drive is satisfied, the normal level
of nighttime sleep drive is sufficient to allow males to sleep in the presence of females.

In a complementary experiment, we tested whether excessive sleep drive can overcome sex drive
in non-satiated males by depriving them of sleep by mechanical stimulation. Whereas MF pairs slept
less than MM pairs under non-deprived conditions, MF pairs slept as much as MM pairs following 6
hr of sleep deprivation (Figure 2D). Video analysis confirmed that sleep-deprived males slept more
and courted less than non-deprived males (Figure 2E,F). These results demonstrate that excessive
sleep drive can overcome sex drive.

We next examined how activation of the sleep-promoting dorsal fan-shaped body (dFSB) affects
sleep in MF pairs. The dFSB is thought to function in the output arm of the sleep homeostat
(Donlea et al., 2014, Donlea et al., 2011). We induced sleep by activating dFSB using the R23E10-
Gal4 driver (Donlea et al., 2014) to express the bacterial sodium channel NaChBac. As expected,
activation of dFSB induced sleep in isolated males (Figure 2—figure supplement 2). Notably, males
with activated dFSB slept almost as much when paired with control females (MF®) as when paired
with control males (MM®) at night (Figure 2G). In contrast, parental controls, i.e., males carrying
either R23E10-Gal4 or UAS-NaChBac alone, exhibited the normal pattern of reduced nighttime
sleep in MF€ relative to MM pairs (Figure 2G). These data provide further evidence that elevated
sleep drive suppresses sexual behavior. Together, our data demonstrate that the relative strength of
sleep drive and sex drive determines whether a male engages in sleep or courtship.

MS1 neuronal activity regulates
male sleep and courtship

What are the neural mechanisms underlying
the decision between sleep and courtship? In
an ongoing screen for neuronal populations
regulating sleep in Drosophila, we isolated
MS1-Gal4, an enhancer trap line that is associ-
ated with sexually dimorphic regulation of
sleep. The Gal4 insertion (BG02822) is in an
intron of the gene encoding Multidrug-Resis-
tance like Protein 1 (MRP1). It is not known
whether MRP1 plays a role in sleep or court-
ship. We employed the Gal4/UAS binary
expression system to express the warmth-sensi-
tive TrpA1 channel in MS1 neurons, and acti-
vated MS1 neurons by shifting the temperature

Video 1. Wild-type male-male (MM) and male-female
(MF) pairs at ~ZT18 under infrared light. While most
MM pairs slept, many males paired with females
engaged in courtship behaviors including chasing and

from 22°C to 29°C. We found that activation of
MS1 neurons led to decreased sleep in isolated

wing extension.
DOI: 10.7554/eLife.23130.005
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Figure 2. Sexual satiety and sleep deprivation attenuate female-induced sleep loss in males. (A) Sleep profile of
wild-type (is031) MF pairs including satiated or non-satiated (naive) males assayed using single-beam monitors.
N = 31-33. (B-C) Sleep amount (B) and courtship index (C) of males in MF pairs from video analysis of the first 5
min every nighttime hour. N = 38-40. (D) Sleep profile of wild-type (is031) MM or MF pairs without sleep
deprivation or with 6 hr sleep deprivation in the early night measured using single-beam monitors. Dotted
rectangles indicate the period of sleep deprivation by mechanical stimulation. N = 38-42. (E-F) Sleep amount (E)
and courtship index (F) of males in MF pairs without sleep deprivation or with 6 hr sleep deprivation in the early
night. Sleep during the first 5 min every 30 min during 6 hr after sleep deprivation (ZT18 — ZT24) was scored from
videos. N = 40-48. (G) Sleep profile of ‘experimental’ (R23E10>NaChBac, R23E10/+, or NaChBac/+) males, paired
with iso031 control females (MF€) or control males (MM®) measured using multi-beam monitors. N = 28-30.
Student'’s t test (A-G) with Bonferroni correction (A, D, G). For statistical analysis, sleep amounts were summed
and courtship index averaged over the periods indicated by the brackets above the sleep profiles or as noted on
the y-axis of the bar graphs. For simplicity, in all figures involving comparison of a genotype against two parental
controls, significant differences are indicated only if the experimental group differed significantly from both control
groups in the same direction.

DOI: 10.7554/eLife.23130.006

The following figure supplements are available for figure 2:

Figure supplement 1. Successful manipulation of sexual satiety in male flies.

DOI: 10.7554/eLife.23130.007

Figure supplement 2. Activation of dFSB induces sleep in isolated males.

DOI: 10.7554/eLife.23130.008
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males, but not in isolated females (Figure 3A). Males with activated MS1 neurons did not exhibit
male-specific behaviors, such as courtship and aggression, but instead exhibited locomotor behavior
typically observed in awake flies, i.e., pacing the perimeter of the recording arena (Video 2).
Although males with activated MS1 neurons lost about 2/3 of nighttime sleep relative to controls at
29°C, they slept no more than the control males when the temperature was returned to 22°C
(Figure 3A), suggesting that sleep loss due to activated MS1 neurons does not lead to recovery
sleep. Since the TrpA1 channels were activated for only one day during the adult stage, these results
indicate that MS1 neurons function in adult male flies to promote wakefulness. Constitutive activa-
tion of MS1 neurons by NaChBac expression also resulted in male-specific sleep reduction
(Figure 3B), demonstrating that both chronic and acute activation of MS1 neurons affect male sleep.

When we expressed tetanus toxin (TNT) in MS1 neurons to block neurotransmission, sleep in iso-
lated males was not altered (Figure 3C). We hypothesized this may be because MS1 neurons
become activated only under specific social contexts. Indeed, whereas silencing of MS1 neurons via
TNT expression did not affect sleep in MM€ pairs (experimental males paired with control males), it
led to a significant occlusion of the nighttime sleep loss in MF€ pairs (Figure 3C). For further analysis
of male sleep and courtship behavior in MF® pairs, we examined videos recorded under infrared
light. We quantified sleep amount and courtship index for the first 5 min every nighttime hour. Males
with silenced MS1 neurons slept more and courted less than parental control males (Figure 3D,E).
These data suggest that activation of MS1 neurons is dependent on female cues and is required to
keep males awake in the presence of females, presumably so that they can engage in sustained
courtship.

The above experiment was conducted at night when sleep drive is high and MF pairs had been
together for over a day. To further examine the role of MS1 neurons in male mating behavior, we
performed courtship and copulation assays during the day immediately after a virgin female was
introduced to a virgin male. Inhibition of MS1 activity by TNT expression had little effect on court-
ship index and copulation latency when assayed under white light conditions (Figure 3F,G). Since
the sleep-suppressing effects of MS1 activity manipulation were stronger in the dark, we repeated
the assays in infrared light during the subjective day. We found that whereas inhibition of MS1 activ-
ity by TNT expression had little effect on courtship index, it had a significant effect on copulation
latency (Figure 3F,G). Since males with silenced MS1 neurons can successfully copulate in the light
condition, it is unlikely that MS1 neuronal activity is directly required for copulation. Instead it may
be required for timely progression through stages of courtship in the dark. Consistent with delayed
copulation in these assays, MS1>TNT males were also less successful in mating when competing
against control males (Figure 3H). Together, our findings suggest that MS1 neuronal activity is
important for optimal mating performance in the dark, especially during the night when sleep drive
is high.

Octopamine mediates male sleep regulation by MS1 neurons
We next examined the expression pattern of MS1-Gal4 using membrane-bound GFP, and found a
restricted pattern of expression in 3 to 7 neurons in the subesophageal ganglion (SOG) near the
midline and ~4 pairs of neurons in the dorsal brain (Figure 4A). No cell bodies were detectable in
the ventral nerve cord, although there were descending projections from the central brain
(Figure 4B). Differences between male and female expression patterns were not apparent. We
noticed that some of the projection patterns of the MS1 neurons in the SOG resemble those of octo-
paminergic neurons (Busch et al., 2009; Busch and Tanimoto, 2010). In addition, previous findings
showed that sleep loss through activation of octopaminergic neurons does not result in rebound
sleep (Seidner et al., 2015), and light inhibits the wake-promoting effects of octopamine
(Shang et al., 2011). These observations led us to hypothesize that some of the MS1 neurons are
octopaminergic. To test this idea, we expressed RFP in MS1 neurons and GFP in TDC2-expressing
octopaminergic neurons (TDC2 is an enzyme required for octopamine synthesis in the nervous sys-
tem [Cole et al., 2005]). We found that all MS1 neurons in the SOG are octopaminergic (Figure 4C).
Consistent with this finding, co-expression of Gal80, an inhibitor of Gal4, in TDC2 neurons removed
all MS1-Gal4 activity in the SOG (Figure 4D).

To test whether the octopaminergic subset of MS1 neurons underlie male-specific sleep suppres-
sion, we restricted NaChBac expression to the non-octopaminergic subset of MS1 neurons using
Gal80 in TDC2 neurons. Indeed, we found that activation of non-TDC2 MS1 neurons did not alter
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Figure 7. Activation of P1 neurons suppresses male sleep and experimental activation of FRU neurons elicits calcium responses in MS1 neurons. (A)
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raising the temperature from 22°C to 29°C. N = 82-91. (C) GCaMPém response to ATP (AF) in MS1 neurons of a male brain in which FRU neurons are
activated by P2X2 expression and ATP perfusion. (D) Normalized GCaMPém response (AF/FY in the cell bodies of MS1 neurons in males (M) and
females (F). N = 5-7. One-way ANOVA followed by Dunnett post hoc tests (A, B); Student's t test (C, D).
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Discussion

Behavioral choice is a continual challenge facing
organisms with multiple goals. Here we have
investigated the choice between two essential
behaviors: sleep and sex. We found that male
flies suppressed sleep in the presence of females,
and that sexual satiety or elevated levels of sleep
drive attenuated female-induced male sleep sup-
pression. These findings demonstrate that sleep
and sex drives compete to control behavior,

Video 3. Male flies with activated P1 neurons and highlighting the importance of motivational fac-
control males (left) as well as male flies with activated tors such as sex drive in sleep regulation.

MS1 neurons and control males (right) at 29°C. The flies A number of wake-promoting neuronal popu-
were recorded ~30 min after the switch from 22°C to lations in flies and mammals have previously been

29°C (ZT0.5) under white light. Wing extension is seen identified (Afonso et al., 2015; Brown et al.,
lr:aTeaslev:itvl:ltahcta;\fztaltV:;el\(jISP11 ::L:Jrf:ss((t?prlief:{)bu notin 2012; Crocker et al., 2010; Joiner et al., 2006;
e e e e o Sl Liu et al, 2012; Parisky et al, 2008;

Pitman et al., 2006, Saper et al., 2010;

Sitaraman et al., 2015; Ueno et al., 2012,

Weber and Dan, 2016), but why activation of
these neurons leads to wakefulness is largely unclear. Since sleep is incompatible with many other
behaviors, it is plausible that the role of some arousal centers is to keep animals awake so that they
can address other pressing needs. For instance, dopaminergic ventral tegmental area (VTA) neurons
in mice are required for maintaining wakefulness in the presence of motivating stimuli such as food
and sexual partners (Eban-Rothschild et al., 2016), and LEUCOKININ-expressing neurons in Dro-
sophila promote wakefulness under starvation conditions (Murakami et al., 2016). Our research
identified a small number of octopaminergic neurons in the SOG that regulate male sleep specifically

in a sexual context. MS1 neurons act in concert with the FRU circuit to promote wakefulness and
courtship, suggesting that activation of MS1 neurons tips the balance in favor of courtship over
sleep. The selective advantage of being able to inhibit sleep drive in a sexual context is demon-
strated by our finding that inhibition of MS1 neurons places male flies at a disadvantage when they
must compete for sexual partners.

Whereas total sleep deprivation by external stimulation led to suppression of courtship and wake-
fulness, partial sleep loss due to activation of MS1 neurons did not lead to rebound sleep. This may
be because activation of MS1 neurons mimics self-motivated sleep loss in a sexual context, which
allows flies to sleep when sleep drive is sufficiently high, and thus prevents accumulation of excessive
sleep drive that leads to rebound sleep. Octopamine signaling may inhibit accumulation or expres-
sion of sleep drive (Seidner et al., 2015), and thus may be especially well suited for adaptive, self-
motivated sleep loss under conditions where
wakefulness is required for something important
such as sex and food (Siegel, 2012). Consistent
with this view, octopamine mediates starvation-
induced foraging behavior (Yang et al., 2015).
The noradrenergic system in humans, which is
similar to the Drosophila octopaminergic system,
may function in an analogous manner to allow
important motivational factors such as sex drive,
fear, and hunger to overcome sleep drive.

In addition to promoting wakefulness, octop-
amine regulates other behaviors such as aggres-
sion (Hoyer et al., 2008; Zhou et al., 2008),
choice between courtship and aggression

Video 4. Flies shown in Video 3 at ~ZT5 at 29°C. Males
with activated P1 neurons no longer exhibited wing

extension, but engaged in behavior typical of awake (Certel et al, 2007), memory formation
flies such as pacing, feeding, and grooming. (Burke et al., 2012), egg |aying
DOI: 10.7554/eLife.23130.018 (Monastirioti et al., 1996), and foraging
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(Yang et al., 2015). MS1 neurons in the SOG are distinct from previously characterized octopaminer-
gic neurons, and play a novel role as a link between sleep and courtship circuits. Each of the behav-
iors modulated by octopamine may be mediated by distinct subsets of octopaminergic neurons.

Earlier research documented sex differences in sleep (Isaac et al., 2010; Krishnan and Collop,
2006), yet little has been known about the neural mechanisms underlying sexually-dimorphic regula-
tion of sleep. Enhanced neuronal activity in a subset of dorsal clock neurons (DN1s) was proposed to
underlie elevated siesta in males relative to females (Guo et al., 2016), but DN1 activation has simi-
lar effects on sleep in males and females. The MS1 neurons are unusual in regulating sleep only in
males. The sexual dimorphism does not appear to stem from differences in MS1 neurons themselves,
but rather from sexually dimorphic connectivity between MS1 and FRU neurons at both anatomical
and functional levels. We found that MS1 stimulation elicits calcium responses in several FRU clusters
specifically in males. Two of the clusters, P1 and mAL, play important roles in courtship
(Clowney et al., 2015; Kallman et al., 2015; Kimura et al., 2008, Koganezawa et al., 2016;
Kohatsu et al., 2011; Kohatsu and Yamamoto, 2015). An additional pair in the superior protocere-
brum, which may be aSP4 neurons, has been shown to signal mating drive (Zhang et al., 2016), rais-
ing the possibility that MS1 neurons modulate mating drive depending on social context. A
widespread increase in the excitability of the FRU circuit may keep males in a sexually aroused state
and provide enhanced sensitivity to cues from females.

In addition to providing excitatory input to several FRU clusters, MS1 neurons receive excitatory
input from the FRU circuit. Since MS1 neurons are important for male sleep regulation in the pres-
ence of a female especially in the dark, and many FRU neurons respond to female pheromones
directly or indirectly, it is plausible that the message conveyed to MS1 neurons from FRU neurons
concerns female pheromones. The specific neuronal groups that communicate directly with MS1
neurons have yet to be identified. Nevertheless, MS1 neurons are well positioned to translate the
detection of female cues into an arousal signal for sustained courtship. A heightened state of arousal
may be especially important for successful mating when sleep drive is high and vision is limited, con-
ditions under which MS1 activity strongly impacts sleep and courtship.

Our work demonstrates that sex drive and sleep drive are integrated in a circuit that contains
optopaminergic neurons and FRU neurons, and provides a valuable entry point for investigating the
neural circuitry underlying the coordination of sleep and courtship, and more generally the choice
between competing behaviors.

Materials and methods

Fly stocks

Flies were raised on standard food containing molasses, cornmeal, and yeast under a 12 hr:12 hr
light:dark cycle. MS1-Gal4 (BDSC#12837) (Bellen et al., 2004), Tdc2-LexA (BDSC#52242)
(Shearin et al., 2013), UAS-TrpA1 (BDSC#26263) (Hamada et al., 2008), UAS-mCD8::GFP
(BDSC#5137) (Lee and Luo, 1999), lexAop2-mCD8::GFP, UAS-IVS-mCD8::RFP (BDSC#32229), UAS-
NaChBac::eGFP (BDSC# 9466) (Luan et al., 2006), UAS-TNT (BDSC#28838) (Sweeney et al., 1995),
LexAop2-FLPL (BDSC#55820), GMR23E10-Gal4 (BDSC#49032), GMR71G01-lexA (BDSC#54733),
UAS-GCaMPém (BDSC#42750), and iso31 (w'''8) (BDSC#5905) were obtained from the Blooming-
ton Stock Center. UAS-FRT-stop-FRT-mCD8::GFP, UAS-FRT-stop-FRT-Dscam::GFP and UAS-FRT-
stop-FRT-nSyb::GFP and fru-FLP (Yu et al., 2010), LexAop-GCaMPém and UAS-P2X2 (Lima and
Miesenbéck, 2005), LexAop-P2X2 (Yao et al., 2012), and fru**° (Demir and Dickson, 2005) lines
were obtained from Barry Dickson; dsx®837958 and dsx'%477%%> mutants (Chatterjee et al., 2011),
and fru-LexA (Mellert et al., 2010) from Bruce Baker; LexAop-Gal80 (Thistle et al., 2012) and Lex-
Aop-spGFP11::CD4 (Gordon and Scott, 2009) from Kristin Scott; UAS- spGFP1-10::NRX (Fan et al.,
2013) from Nirao Shah; P1-split Gal4 (Inagaki et al., 2014) from David Anderson; Thbh™™'® mutants
(Monastirioti et al., 1996) from Maria Monastirioti; and Oamb 286 mutants (Lee et al., 2003) from
Kyung-An Han. Fly lines used in behavioral experiments were outcrossed to an isogenic background
(iso31) for at least five generations, except for the Tbh and Oamb lines.
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Sleep analysis

For sleep analysis, 4- to 7-day-old flies entrained to a 12 hr:12 hr LD cycle were placed in glass tubes
containing 5% sucrose and 2% agar. Flies were raised and monitored at 25°C except where noted.
Males and females were housed together in groups of ~30 flies until they were loaded into tubes.
For experiments involving TrpA1, flies were raised in LD at 22°C and monitored for 1 day at 22°C to
determine baseline levels, 1 day at 28-29°C to activate the TrpA1 channel, and 1 day at 22°C to
examine recovery. For TNT experiments comparing MM and MF pairs, flies were raised and assayed
at 22°C because initial data suggested that UAS-TNT/+ controls behaved differently from other con-
trols at 25°C, perhaps due to leaky TNT expression. Activity data were collected in 1 min bins using
Drosophila Activity Monitoring (DAM) System (Trikinetics, Waltham, MA). Beam breaks from single-
beam (SB) monitors with infrared (IR) detectors at a single location or inter-beam movements from
multi-beam (MB) monitors with IR detectors at 17 locations (Garbe et al., 2015) were used to mea-
sure sleep as a period of inactivity lasting at least 5 min (Huber et al., 2004). SB monitors were used
for all experiments involving isolated flies, while both SB and MB monitors were used in the MF
interaction experiments. We found that although the absolute sleep levels were somewhat higher
with SB monitors, the same pattern of reduced sleep in MF compared to MM pairs was seen using
SB or MB monitors. For video recording, flies were loaded into 7 mm x 16 mm x 3 mm recording
arenas. For nighttime recording, a USB webcam (Logitech Webcam Pro 9000) and infrared LEDs
were used as previously described (Faville et al., 2015), and for daytime recording, a digital camera
(Sony DCR-SX63) and white LEDs were used. For sleep deprivation experiments, flies placed in SB
monitors or recording arenas were deprived of sleep using mechanical stimulation. A multi-tube vor-
texer fitted with a mounting plate (Trikinetics, Waltham, MA) was used to apply mechanical stimula-
tion for 3 s every min. Satiety manipulation was essentially as described (Zhang et al., 2016), except
that single virgin males were grouped with 10-15 virgin females for 4.5-5.5 hr to induce satiety. Mat-
ing behavior (courtship and copulation) was scored at the beginning and end of the satiety assay,
which confirmed that males were satiated by the end of the assay. Immediately following the satiety
manipulation, shortly before ZT12, individual male flies were aspirated into monitor tubes or record-
ing arenas that contained control females for sleep assay in the MF condition. For DAM data, sleep
parameters were analyzed using a MATLAB-based software, SleeplLab (William Joiner). For video
data, sleep amount of individual flies was manually scored for the first 5 min of each nighttime hour,
except for the sleep deprivation experiment, where the first 5 min of each 30 min interval during 6
hr after deprivation was scored. Scoring was done blind to the experimental condition and geno-
type. In cases where only one fly in a MF pair was active, we used male courtship behavior to deter-
mine its sex.

Analysis of mating behavior

For simultaneous analysis of courtship and sleep during the night, videos recorded under infrared
light were manually scored for courtship and sleep during 5 min periods as indicated. For analysis of
courtship during the day, virgin male flies were collected and housed in groups of ~10 on standard
fly food for 4-8 days. Is031 virgin females (3-7 days post-eclosion) were used in non-competitive
assays, which were performed during the day phase (ZT1-6). For non-competitive courtship assays, a
male and female were gently aspirated into a plastic mating chamber (15 mm diameter and 3 mm
depth) covered with a clear plastic plate, and were kept separated until a divider was removed
after ~10 min. For the light condition, dim light (~25 lux) was used because bright light has been
shown to interfere with courtship performance of white males (Krstic et al., 2013). For the dark con-
dition, infrared light was used. Flies were recorded for 90 min using a USB webcam (Logitech Web-
cam Pro 9000) and scored blind to experimental condition. Courtship index was determined as the
fraction of total time a male was engaged in courtship activity during a period of 5 min or until suc-
cessful copulation after courtship initiation. Courtship activity included orienting, chasing, singing,
attempted copulation, and ‘scanning’, a behavior specific to the dark condition, where the male
extends both wings in search of a female (Krstic et al., 2009). Only males that took at least 1 min to
copulate after courtship initiation were included in the computation of courtship index. Competitive
copulation assays were performed under dim red light using Canton-S virgin females. Males of dif-
ferent genotypes were marked with a small dot of acrylic paint on their thorax. Two males and one
female were aspirated into each well of a 12-well plate, and the first male to successfully copulate
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within 90 min was determined the winner. Trials in which neither male succeeded in copulating were
not included in the analysis.

Immunohistochemistry and GRASP

For whole mount immunostaining, fly brains were fixed in 4% paraformaldehyde (PFA) for 30 min,
dissected, and blocked in 5% normal goat serum for 1 hr at RT. The following primary antibodies
were used: rabbit anti-GFP (Molecular Probes, Eugene, OR, Cat# A-21312, RRID:AB_221478) at
1:500, mouse anti-RFP (Rockland Cat, Limerick, PA, # 600-401-379, RRID:AB_2209751) at 1:500, BRP
(DSHB, lowa City, IA, Cat# nc82, RRID:AB_528108) at 1:150; anti-HA (Covance Research Products
Inc, Princeton, NJ, Cat# MMS-101R-500, RRID:AB_10063630) at 1:1000; and anti-DSX (kind gift from
Bruce Baker) at 1:300. The secondary antibodies, Alexa Fluor 488 goat anti-rabbit (Thermo Fisher
Scientific, Waltham, MA, Cat# A11008, RRID:AB_143165) and Cy5 goat anti-mouse (Thermo Fisher
Scientific, Waltham, MA, Cat# A10524, RRID:AB_2534033) were used at 1:1000. Primary and sec-
ondary antibodies were incubated at 4°C overnight. For GRASP experiments, fly brains were fixed in
PFA for 30 min at RT, and imaged without immunostaining. Images were obtained on a Leica SP8
confocal microscope.

Calcium imaging

4- to 7-day-old flies that were housed individually and entrained to LD cycles were anesthetized on
ice and dissected in adult hemolymph-like saline (AHL [Wang et al., 2003]), and brains were
mounted on a glass-bottom chamber containing AHL. A custom-built gravity-dependent perfusion
system was used to control perfusion flow. Leica SP8 confocal microscope was used to acquire 20 to
25 slices (~2.5 um/slice) of the antero-dorsal, ventral, or posterior brain every 2.5 or 5 s for 3 to 5
min. 2.5 mM ATP in AHL was delivered for 1 min after 1 min of baseline measurements. FIJI was
used to compute projections of relevant confocal slices, and regions of interest (ROls) were selected
using images taken at high laser intensity. The average intensity of the ROIls during the 30s period
before the start of ATP perfusion was used as the baseline measurement, F°. For each time point,
normalized AF, (F-F)/F°, was computed.

Statistical analysis

To compare multiple groups, one-way ANOVAs were performed followed by Tukey or Dunnett
post-hoc tests. Two-way ANOVAs were performed to test for the interaction in experiments involv-
ing two factors. Student’s t tests were used to compare pairs of groups. Log-rank tests were used
for cumulative courtship initiation rate and cumulative copulation success rate in non-competitive
mating assays. For competitive copulation data, binomial tests were used to assess whether the
observed percentage was different from 50%. Bonferroni corrections were applied to correct for
multiple tests performed on data from the same flies (e.g., daytime and nighttime). All experiments
were repeated on at least two separate occasions using flies from independent genetic crosses, and
pooled data are presented.
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