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Figure 6. Experimental activation of MS1 neurons elicits calcium responses in FRU neurons. (A) GCaMP6m

increase (4F) in FRU neurons of a dissected male brain in which MS1 neurons are activated by P2X2 expression

and ATP perfusion. Antero-dorsal (left) and posterior (right) views are presented using the ‘fire’ look-up table. AL:

antennal lobes. Arrows point to a pair of neurons that may be aSP4. Scale bar: 100 mm. (B) Normalized GCaMP6m

response (4F/F0) in the cell bodies of mAL and P1 neurons, and the arch region in male (M), female (F), or

negative control (C) brains. Female brains do not exhibit calcium responses in P1 neurons because these neurons

are male specific. Flies carrying UAS-P2X2, fru-LexA, and LexAop-GCaMP6m, but not MS1-Gal4 served as negative

controls. Fluorescence traces (top) and peak responses (bottom) are presented. Gray rectangles indicate 2.5 mM

ATP perfusion. N = 4–9. Student’s t test (B).

DOI: 10.7554/eLife.23130.014

The following figure supplement is available for figure 6:

Figure supplement 1. MS1 stimulation induces calcium responses in P1.

DOI: 10.7554/eLife.23130.015
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Figure 7. Activation of P1 neurons suppresses male sleep and experimental activation of FRU neurons elicits calcium responses in MS1 neurons. (A)

Sleep profile of males expressing NaChBac in MS1 neurons (MS1>NaChBac) and control males (MS1/+ and NaChBac/+) in an iso31 control (left),

fruLexA/4-40 mutant (middle) and dsx683/1649 mutant (right) background. N = 11–83. (B) Sleep profile of male (M) and female (F) flies in which P1-split-Gal4

(Inagaki et al., 2014) was used to drive UAS-TrpA1 (P1 > TrpA1) and parental control flies (P1/+ and TrpA1/+). TrpA1 was activated on the 2nd day by

raising the temperature from 22˚C to 29˚C. N = 82–91. (C) GCaMP6m response to ATP (4F) in MS1 neurons of a male brain in which FRU neurons are

activated by P2X2 expression and ATP perfusion. (D) Normalized GCaMP6m response (4F/F0) in the cell bodies of MS1 neurons in males (M) and

females (F). N = 5–7. One-way ANOVA followed by Dunnett post hoc tests (A, B); Student’s t test (C, D).

DOI: 10.7554/eLife.23130.016
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Discussion
Behavioral choice is a continual challenge facing

organisms with multiple goals. Here we have

investigated the choice between two essential

behaviors: sleep and sex. We found that male

flies suppressed sleep in the presence of females,

and that sexual satiety or elevated levels of sleep

drive attenuated female-induced male sleep sup-

pression. These findings demonstrate that sleep

and sex drives compete to control behavior,

highlighting the importance of motivational fac-

tors such as sex drive in sleep regulation.

A number of wake-promoting neuronal popu-

lations in flies and mammals have previously been

identified (Afonso et al., 2015; Brown et al.,

2012; Crocker et al., 2010; Joiner et al., 2006;

Liu et al., 2012; Parisky et al., 2008;

Pitman et al., 2006; Saper et al., 2010;

Sitaraman et al., 2015; Ueno et al., 2012;

Weber and Dan, 2016), but why activation of

these neurons leads to wakefulness is largely unclear. Since sleep is incompatible with many other

behaviors, it is plausible that the role of some arousal centers is to keep animals awake so that they

can address other pressing needs. For instance, dopaminergic ventral tegmental area (VTA) neurons

in mice are required for maintaining wakefulness in the presence of motivating stimuli such as food

and sexual partners (Eban-Rothschild et al., 2016), and LEUCOKININ-expressing neurons in Dro-

sophila promote wakefulness under starvation conditions (Murakami et al., 2016). Our research

identified a small number of octopaminergic neurons in the SOG that regulate male sleep specifically

in a sexual context. MS1 neurons act in concert with the FRU circuit to promote wakefulness and

courtship, suggesting that activation of MS1 neurons tips the balance in favor of courtship over

sleep. The selective advantage of being able to inhibit sleep drive in a sexual context is demon-

strated by our finding that inhibition of MS1 neurons places male flies at a disadvantage when they

must compete for sexual partners.

Whereas total sleep deprivation by external stimulation led to suppression of courtship and wake-

fulness, partial sleep loss due to activation of MS1 neurons did not lead to rebound sleep. This may

be because activation of MS1 neurons mimics self-motivated sleep loss in a sexual context, which

allows flies to sleep when sleep drive is sufficiently high, and thus prevents accumulation of excessive

sleep drive that leads to rebound sleep. Octopamine signaling may inhibit accumulation or expres-

sion of sleep drive (Seidner et al., 2015), and thus may be especially well suited for adaptive, self-

motivated sleep loss under conditions where

wakefulness is required for something important

such as sex and food (Siegel, 2012). Consistent

with this view, octopamine mediates starvation-

induced foraging behavior (Yang et al., 2015).

The noradrenergic system in humans, which is

similar to the Drosophila octopaminergic system,

may function in an analogous manner to allow

important motivational factors such as sex drive,

fear, and hunger to overcome sleep drive.

In addition to promoting wakefulness, octop-

amine regulates other behaviors such as aggres-

sion (Hoyer et al., 2008; Zhou et al., 2008),

choice between courtship and aggression

(Certel et al., 2007), memory formation

(Burke et al., 2012), egg laying

(Monastirioti et al., 1996), and foraging

Video 3. Male flies with activated P1 neurons and

control males (left) as well as male flies with activated

MS1 neurons and control males (right) at 29˚C. The flies

were recorded ~30 min after the switch from 22˚C to

29˚C (ZT0.5) under white light. Wing extension is seen

in males with activated P1 neurons (top left), but not in

males with activated MS1 neurons (top right).

DOI: 10.7554/eLife.23130.017

Video 4. Flies shown in Video 3 at ~ZT5 at 29˚C. Males

with activated P1 neurons no longer exhibited wing

extension, but engaged in behavior typical of awake

flies such as pacing, feeding, and grooming.

DOI: 10.7554/eLife.23130.018
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(Yang et al., 2015). MS1 neurons in the SOG are distinct from previously characterized octopaminer-

gic neurons, and play a novel role as a link between sleep and courtship circuits. Each of the behav-

iors modulated by octopamine may be mediated by distinct subsets of octopaminergic neurons.

Earlier research documented sex differences in sleep (Isaac et al., 2010; Krishnan and Collop,

2006), yet little has been known about the neural mechanisms underlying sexually-dimorphic regula-

tion of sleep. Enhanced neuronal activity in a subset of dorsal clock neurons (DN1s) was proposed to

underlie elevated siesta in males relative to females (Guo et al., 2016), but DN1 activation has simi-

lar effects on sleep in males and females. The MS1 neurons are unusual in regulating sleep only in

males. The sexual dimorphism does not appear to stem from differences in MS1 neurons themselves,

but rather from sexually dimorphic connectivity between MS1 and FRU neurons at both anatomical

and functional levels. We found that MS1 stimulation elicits calcium responses in several FRU clusters

specifically in males. Two of the clusters, P1 and mAL, play important roles in courtship

(Clowney et al., 2015; Kallman et al., 2015; Kimura et al., 2008; Koganezawa et al., 2016;

Kohatsu et al., 2011; Kohatsu and Yamamoto, 2015). An additional pair in the superior protocere-

brum, which may be aSP4 neurons, has been shown to signal mating drive (Zhang et al., 2016), rais-

ing the possibility that MS1 neurons modulate mating drive depending on social context. A

widespread increase in the excitability of the FRU circuit may keep males in a sexually aroused state

and provide enhanced sensitivity to cues from females.

In addition to providing excitatory input to several FRU clusters, MS1 neurons receive excitatory

input from the FRU circuit. Since MS1 neurons are important for male sleep regulation in the pres-

ence of a female especially in the dark, and many FRU neurons respond to female pheromones

directly or indirectly, it is plausible that the message conveyed to MS1 neurons from FRU neurons

concerns female pheromones. The specific neuronal groups that communicate directly with MS1

neurons have yet to be identified. Nevertheless, MS1 neurons are well positioned to translate the

detection of female cues into an arousal signal for sustained courtship. A heightened state of arousal

may be especially important for successful mating when sleep drive is high and vision is limited, con-

ditions under which MS1 activity strongly impacts sleep and courtship.

Our work demonstrates that sex drive and sleep drive are integrated in a circuit that contains

optopaminergic neurons and FRU neurons, and provides a valuable entry point for investigating the

neural circuitry underlying the coordination of sleep and courtship, and more generally the choice

between competing behaviors.

Materials and methods

Fly stocks
Flies were raised on standard food containing molasses, cornmeal, and yeast under a 12 hr:12 hr

light:dark cycle. MS1-Gal4 (BDSC#12837) (Bellen et al., 2004), Tdc2-LexA (BDSC#52242)

(Shearin et al., 2013), UAS-TrpA1 (BDSC#26263) (Hamada et al., 2008), UAS–mCD8::GFP

(BDSC#5137) (Lee and Luo, 1999), lexAop2-mCD8::GFP, UAS-IVS-mCD8::RFP (BDSC#32229), UAS-

NaChBac::eGFP (BDSC# 9466) (Luan et al., 2006), UAS-TNT (BDSC#28838) (Sweeney et al., 1995),

LexAop2-FLPL (BDSC#55820), GMR23E10-Gal4 (BDSC#49032), GMR71G01-lexA (BDSC#54733),

UAS-GCaMP6m (BDSC#42750), and iso31 (w1118) (BDSC#5905) were obtained from the Blooming-

ton Stock Center. UAS-FRT-stop-FRT-mCD8::GFP, UAS-FRT-stop-FRT-Dscam::GFP and UAS-FRT-

stop-FRT-nSyb::GFP and fru-FLP (Yu et al., 2010), LexAop-GCaMP6m and UAS-P2X2 (Lima and

Miesenböck, 2005), LexAop-P2X2 (Yao et al., 2012), and fru4-40 (Demir and Dickson, 2005) lines

were obtained from Barry Dickson; dsx683-7058 and dsx1649-9625 mutants (Chatterjee et al., 2011),

and fru-LexA (Mellert et al., 2010) from Bruce Baker; LexAop-Gal80 (Thistle et al., 2012) and Lex-

Aop-spGFP11::CD4 (Gordon and Scott, 2009) from Kristin Scott; UAS- spGFP1-10::NRX (Fan et al.,

2013) from Nirao Shah; P1-split Gal4 (Inagaki et al., 2014) from David Anderson; Tbhnm18 mutants

(Monastirioti et al., 1996) from Maria Monastirioti; and Oamb 286 mutants (Lee et al., 2003) from

Kyung-An Han. Fly lines used in behavioral experiments were outcrossed to an isogenic background

(iso31) for at least five generations, except for the Tbh and Oamb lines.
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Sleep analysis
For sleep analysis, 4- to 7-day-old flies entrained to a 12 hr:12 hr LD cycle were placed in glass tubes

containing 5% sucrose and 2% agar. Flies were raised and monitored at 25˚C except where noted.

Males and females were housed together in groups of ~30 flies until they were loaded into tubes.

For experiments involving TrpA1, flies were raised in LD at 22˚C and monitored for 1 day at 22˚C to

determine baseline levels, 1 day at 28–29˚C to activate the TrpA1 channel, and 1 day at 22˚C to

examine recovery. For TNT experiments comparing MM and MF pairs, flies were raised and assayed

at 22˚C because initial data suggested that UAS-TNT/+ controls behaved differently from other con-

trols at 25˚C, perhaps due to leaky TNT expression. Activity data were collected in 1 min bins using

Drosophila Activity Monitoring (DAM) System (Trikinetics, Waltham, MA). Beam breaks from single-

beam (SB) monitors with infrared (IR) detectors at a single location or inter-beam movements from

multi-beam (MB) monitors with IR detectors at 17 locations (Garbe et al., 2015) were used to mea-

sure sleep as a period of inactivity lasting at least 5 min (Huber et al., 2004). SB monitors were used

for all experiments involving isolated flies, while both SB and MB monitors were used in the MF

interaction experiments. We found that although the absolute sleep levels were somewhat higher

with SB monitors, the same pattern of reduced sleep in MF compared to MM pairs was seen using

SB or MB monitors. For video recording, flies were loaded into 7 mm x 16 mm x 3 mm recording

arenas. For nighttime recording, a USB webcam (Logitech Webcam Pro 9000) and infrared LEDs

were used as previously described (Faville et al., 2015), and for daytime recording, a digital camera

(Sony DCR-SX63) and white LEDs were used. For sleep deprivation experiments, flies placed in SB

monitors or recording arenas were deprived of sleep using mechanical stimulation. A multi-tube vor-

texer fitted with a mounting plate (Trikinetics, Waltham, MA) was used to apply mechanical stimula-

tion for 3 s every min. Satiety manipulation was essentially as described (Zhang et al., 2016), except

that single virgin males were grouped with 10–15 virgin females for 4.5–5.5 hr to induce satiety. Mat-

ing behavior (courtship and copulation) was scored at the beginning and end of the satiety assay,

which confirmed that males were satiated by the end of the assay. Immediately following the satiety

manipulation, shortly before ZT12, individual male flies were aspirated into monitor tubes or record-

ing arenas that contained control females for sleep assay in the MF condition. For DAM data, sleep

parameters were analyzed using a MATLAB-based software, SleepLab (William Joiner). For video

data, sleep amount of individual flies was manually scored for the first 5 min of each nighttime hour,

except for the sleep deprivation experiment, where the first 5 min of each 30 min interval during 6

hr after deprivation was scored. Scoring was done blind to the experimental condition and geno-

type. In cases where only one fly in a MF pair was active, we used male courtship behavior to deter-

mine its sex.

Analysis of mating behavior
For simultaneous analysis of courtship and sleep during the night, videos recorded under infrared

light were manually scored for courtship and sleep during 5 min periods as indicated. For analysis of

courtship during the day, virgin male flies were collected and housed in groups of ~10 on standard

fly food for 4–8 days. Iso31 virgin females (3–7 days post-eclosion) were used in non-competitive

assays, which were performed during the day phase (ZT1-6). For non-competitive courtship assays, a

male and female were gently aspirated into a plastic mating chamber (15 mm diameter and 3 mm

depth) covered with a clear plastic plate, and were kept separated until a divider was removed

after ~10 min. For the light condition, dim light (~25 lux) was used because bright light has been

shown to interfere with courtship performance of white males (Krstic et al., 2013). For the dark con-

dition, infrared light was used. Flies were recorded for 90 min using a USB webcam (Logitech Web-

cam Pro 9000) and scored blind to experimental condition. Courtship index was determined as the

fraction of total time a male was engaged in courtship activity during a period of 5 min or until suc-

cessful copulation after courtship initiation. Courtship activity included orienting, chasing, singing,

attempted copulation, and ‘scanning’, a behavior specific to the dark condition, where the male

extends both wings in search of a female (Krstic et al., 2009). Only males that took at least 1 min to

copulate after courtship initiation were included in the computation of courtship index. Competitive

copulation assays were performed under dim red light using Canton-S virgin females. Males of dif-

ferent genotypes were marked with a small dot of acrylic paint on their thorax. Two males and one

female were aspirated into each well of a 12-well plate, and the first male to successfully copulate
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within 90 min was determined the winner. Trials in which neither male succeeded in copulating were

not included in the analysis.

Immunohistochemistry and GRASP
For whole mount immunostaining, fly brains were fixed in 4% paraformaldehyde (PFA) for 30 min,

dissected, and blocked in 5% normal goat serum for 1 hr at RT. The following primary antibodies

were used: rabbit anti-GFP (Molecular Probes, Eugene, OR, Cat# A-21312, RRID:AB_221478) at

1:500, mouse anti-RFP (Rockland Cat, Limerick, PA, # 600-401-379, RRID:AB_2209751) at 1:500, BRP

(DSHB, Iowa City, IA, Cat# nc82, RRID:AB_528108) at 1:150; anti-HA (Covance Research Products

Inc, Princeton, NJ, Cat# MMS-101R-500, RRID:AB_10063630) at 1:1000; and anti-DSX (kind gift from

Bruce Baker) at 1:300. The secondary antibodies, Alexa Fluor 488 goat anti-rabbit (Thermo Fisher

Scientific, Waltham, MA, Cat# A11008, RRID:AB_143165) and Cy5 goat anti-mouse (Thermo Fisher

Scientific, Waltham, MA, Cat# A10524, RRID:AB_2534033) were used at 1:1000. Primary and sec-

ondary antibodies were incubated at 4˚C overnight. For GRASP experiments, fly brains were fixed in

PFA for 30 min at RT, and imaged without immunostaining. Images were obtained on a Leica SP8

confocal microscope.

Calcium imaging
4- to 7-day-old flies that were housed individually and entrained to LD cycles were anesthetized on

ice and dissected in adult hemolymph-like saline (AHL [Wang et al., 2003]), and brains were

mounted on a glass-bottom chamber containing AHL. A custom-built gravity-dependent perfusion

system was used to control perfusion flow. Leica SP8 confocal microscope was used to acquire 20 to

25 slices (~2.5 mm/slice) of the antero-dorsal, ventral, or posterior brain every 2.5 or 5 s for 3 to 5

min. 2.5 mM ATP in AHL was delivered for 1 min after 1 min of baseline measurements. FIJI was

used to compute projections of relevant confocal slices, and regions of interest (ROIs) were selected

using images taken at high laser intensity. The average intensity of the ROIs during the 30s period

before the start of ATP perfusion was used as the baseline measurement, F0. For each time point,

normalized 4F, (F-F0)/F0, was computed.

Statistical analysis
To compare multiple groups, one-way ANOVAs were performed followed by Tukey or Dunnett

post-hoc tests. Two-way ANOVAs were performed to test for the interaction in experiments involv-

ing two factors. Student’s t tests were used to compare pairs of groups. Log-rank tests were used

for cumulative courtship initiation rate and cumulative copulation success rate in non-competitive

mating assays. For competitive copulation data, binomial tests were used to assess whether the

observed percentage was different from 50%. Bonferroni corrections were applied to correct for

multiple tests performed on data from the same flies (e.g., daytime and nighttime). All experiments

were repeated on at least two separate occasions using flies from independent genetic crosses, and

pooled data are presented.
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