Prediction of Sublingual Bioavailability of Buprenorphine in Newborns with Neonatal Abstinence Syndrome—a case study on physiological and developmental changes using NONMEM and SIMCYP

Di Wu
Thomas Jefferson University

Walter K. Kraft
Thomas Jefferson University

Michelle E. Ehrlick
Thomas Jefferson University

Jeffrey S. Barnett
University of Pennsylvania

Follow this and additional works at: https://jdc.jefferson.edu/petfp

Part of the
Medical Pharmacology Commons, and the Pharmacy and Pharmaceutical Sciences Commons

Let us know how access to this document benefits you

Recommended Citation

https://jdc.jefferson.edu/petfp/24

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Pharmacology and Experimental Therapeutics Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact:
JeffersonDigitalCommons@jefferson.edu.
ABSTRACT

In vitro enzyme kinetic data was incorporated into SIMCYP to simulate intravenous clearance in newborn patients. Median (min, max) molecular weight, pKa, log P, dose, unbound fraction in plasma (f) were obtained from SIMCYP previously using NONMEM, individual changes of sublingual bioavailability were evaluated with physiological development in the first one and half month during the newborn period.

Results: Intravenous clearance of BUP in newborns were incorporated into enzyme kinetic data obtained from literature. Change of sublingual bioavailability for newborns was evaluated with bioavailability-postmenstrual age profiles. Sublingual bioavailability of BUP was estimated at 8.9–56.8% in newborn patients studied during the first one and half postnatal month.

Conclusion: Developmental considerations for the PK of BUP in newborns are important for the characterization of the dose-exposure relationship. We have evaluated this from “bottom-up” and “top-down” approaches with SIMCYP and NONMEM respectively and found these approaches to be complementary and valuable for clinical trial design and routine clinical care. Presumably they would facilitate rational decision making in pediatric drug development as well.

OBJECTIVES

1. To characterize PK and sublingual bioavailability of buprenorphine (BUP) in target population during newborn period.
2. To evaluate the developmental changes in newborns in order to assist dosing optimization in ongoing clinical studies.

INTRODUCTION

- BUP is a semi-synthetic opioid derived from thebaine and used in clinics as an analgesic and as a detoxification agent and a maintenance treatment for opioid dependence.
- BUP is administered via intravenous and sublingual routes, since BUP has very low oral bioavailability due to extensive first-pass metabolism.
- BUP has large volume of distribution and is extensively metabolized to norbuprenorphine (NBUP) by N-dealkylation mediated mainly by CYP3A4 (65%) and CYP2D6 (35%).
- BUP is metabolized in other metabolic pathways to a minor extent by CYP 2C9, 2C18, and 2C19 and to a major extent by CYP 3A.
- BUP and NBUP undergo glucuronidation by UGT1A3, 1A6, and 2B7.
- NAS occurs in 55 to 94% of infants who are born to opioid-dependent mothers.
- It had been reported about the use of sublingual administration below the age of 4 year, especially for term infants with NAS.
- Therefore, there is a need to determine the PK characteristics in order to optimize pediatric therapy.

MODEL DEVELOPMENT

- Nonlinear mixed-effect modeling was employed to characterize the pharmacokinetics of BUP and NBUP based on data from a pilot clinical trial in 12 newborn patients with NAS (Pediatrics, 2008, 122, e601-e607).
- Population PK analysis was performed using non-linear mixed-effects modeling with the NONMEM software, Version VI, Level 1.1.
- One compartment model with first order absorption, metabolism, and elimination was developed in describing the PK of BUP and NBUP.

RESULTS

- The higher BUP to NBUP ratio (0.7–19.3) than adults (0.16–1.4) has been observed in newborn patients studied. It might be due to immature hepatic function in newborns and compliance to BUP sublingual administration.
- ID 6 showed the two highest BUP/NBUP ratio among 12 newborns examined. It might be due to large percentage of BUP dose not being administered (medical record errors) and/or analytical measurement errors.
- Large individual variability has been observed in sublingual bioavailability. Higher values of bioavailability observed might be due to underestimation CCLCM and/or overestimated CLCM.
- Sublingual bioavailability was estimated from 13.5% to 56.6% in the 9 neonates treated exclusively with BUP during the first postnatal month. The bioavailability of these 9 neonates except ID 28 was increased gradually by 15% at least during this period. Linear increase trend is observed when plotting sublingual bioavailability versus PMA for each of the 9 neonates studied.
- Sublingual bioavailability of ID 13, 22, and 27 showed less linear increase with PMA compared with that of all other patients. It might be due to enzyme induction of CYP 3A, CYP 2C, and UGTs caused by phenobarbital.
- Growth factors such as age, body weight can be important covariates to BUP exposure levels in newborns, given the fact of the significant changes of body fat content and enzyme levels of CYP 3A, 2C8, 2C9, 2C18 and 2C19.

- Dose adjustment is needed for BUP therapy in newborns based on lower sublingual bioavailability estimated in newborn patients, compared to that of BUP sublingual bioavailability observed in adults, and drug-drug interaction induced by phenobarbital. A larger, double-blind, properly powered clinical trial on BUP in young infants will enhance and validate this model.

ACKNOWLEDGMENT

We cordially thank Dr. Masoud Jamei and Mr. Steve Marciniak in Simcyp Limited for their technical assistance to operation and installation of SIMCYP software.