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Abstract

Background—Virtual reality and augmented feedback have become more prevalent as training 

methods to improve balance. Few reports exist on the benefits of providing trunk motion visual 

feedback (VFB) during treadmill walking, and most of those reports only describe within session 

changes.

Research Question—To determine whether trunk motion VFB treadmill walking would 

improve over-ground balance for older adults with self-reported balance problems.

Methods—40 adults (75.8 years (SD 6.5)) with self-reported balance difficulties or a history of 

falling were randomized to a control or experimental group. Everyone walked on a treadmill at a 

comfortable speed 3x/week for 4 weeks in 2 minute bouts separated by a seated rest. The control 

group was instructed to look at a stationary bulls-eye target while the experimental group also saw 

a moving cursor superimposed on the stationary bulls-eye that represented VFB of their walking 
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trunk motion. The experimental group was instructed to keep the cursor in the center of the bulls-

eye. Somatosensory (monofilaments and joint position testing) and vestibular function (canal 

specific clinical head impulses) was evaluated prior to intervention. Balance and mobility were 

tested before and after the intervention using Berg Balance Test, BESTest, mini-BESTest, and Six 

Minute Walk.

Results—There were no significant differences between groups before the intervention. The 

experimental group significantly improved on the BESTest (p = 0.031) and the mini-BEST (p = 

0.019). The control group did not improve significantly on any measure. Individuals with more 

profound sensory impairments had a larger improvement on dynamic balance subtests of the 

BESTest.

Significance—Older adults with self-reported balance problems improve their dynamic balance 

after training using trunk motion VFB treadmill walking. Individuals with worse sensory function 

may benefit more from trunk motion VFB during walking than individuals with intact sensory 

function.

This clinical trial was registered at www.clinicaltrials.gov Clinical Trial # 366151-1.

Keywords

Balance; Visual Biofeedback; Exercise Therapy; Gait

Introduction

Falls are the leading cause of fatal and nonfatal injuries in older adults [1,2]. Close to one 

third of the population over the age of 65 fall annually, with a half of those falls leading into 

injuries [2,3]. Aging is accompanied by an overall reduction in mobility and decrease in 

sensory integration which have been associated with falls [4–6]. Visual feedback/augmented 

reality for balance training has become more common method to reduce fall risk [7]. These 

technologies afford new avenues to enhance balance ability in a safe, controlled, and 

engaging environment [8].

Most visual feedback (VFB) balance interventions have focused on standing or weight-

shifting tasks [9–16], however, falls primarily occur during locomotion [3,17,18]. While 

virtual/augmented reality (VR) training has recently been shifting to more dynamic activities 

like walking, the majority of the walking VFB training is based on foot or leg kinematics 

with an emphasis on normalizing the gait cycle [19–23]. Control of foot placement is 

important for controlling displacement of the whole body center of mass, but upright trunk 

orientation is degraded for individuals with balance problems [24,25]. Specifically, excessive 

forward trunk lean during walking has been associated with increased fall risk [26].

Training foot placement may contribute to enhanced control of center of mass translation 

[27], but may be insufficient to improve trunk on legs orientation as the legs and trunk 

respond differently and on different time scales to sensory perturbations [28,29]. VFB 

training involving trunk orientation and trunk translation would allow the individual to more 

flexibly solve the stability problem (trunk on legs, stepping, or both) by taking advantage of 

their many degrees of freedom [30]. Considering the benefits of improved trunk motion for 
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balance [31], providing concurrent VFB of trunk motion during walking may be a beneficial 

training strategy to improve balance [32].

This study builds on responses to concurrent trunk motion VFB during treadmill walking 

[32,33] to investigate carry over and transfer to over-ground dynamic balance for older 

adults at risk of falling. The primary aim of this study was to determine whether training 

with trunk motion VFB for 4 weeks would result in improved balance for older adults with 

self-reported balance problems. We hypothesized that training with trunk motion VFB while 

walking on a treadmill will improve balance measured with clinical tests of dynamic 

balance.

Methods

Design Overview

This study was a 2 arm, assessor blinded experimental design with random assignment to the 

control and experimental arms.

Setting and Participants

40 older adults with self-reported balance difficulties or a history of falling completed this 

study (Clinical Trial # 366151-1, www.ClinicalTrials.gov). The average age of the control 

group was 75.8 years (SD 6.5, range 66–92 years) and 65% of them were female. The 

average age of the experimental group was 75.7 years (SD 5.3, range 68–87 years) and 80% 

were female. This study was approved by the Institutional Review boards at the University 

of Maryland and Temple University. All subjects provided written informed consent prior to 

participation. The experiment was performed at two locations: Temple University and 

Collington Episcopal Life Care Community. After providing informed consent and passing 

the Mini Mental Status Exam (scores > 23) subjects demonstrated they could safely and 

independently walk on a treadmill for at least 2 minutes at a self-selected speed. Subjects 

were excluded for not passing the Mini Mental Status Exam (n = 1) or not safely and 

independently walking on the treadmill for 2 minutes (n = 1). The assessors were blinded to 

group allocation until the study was completed. No attempt was made to blind the subjects, 

although they were not explicitly told whether they were in the control or VFB group.

Randomization and Interventions

Individuals were randomized into either the experimental (n = 20) or control (n = 20) arms 

of the study. For each recruitment phase the study coordinator (LM) assigned participants a 

computer generated random number determining group allocation, see Figure 1.

Trunk Motion Visual Feedback

Subjects walked on a treadmilla approximately 24 inches in front of a 27” TVb, as shown in 

Figure 2. The VFB device has been described in detail and is briefly presented here [32]. 

Each of the 10 rings of the bull’s-eye was one inch wide and corresponded to one inch of 

aSuppliers list:
Cybex Trotter 900T, Cybex International, 10 Trotter Dr, Medway, MA
bViewSonic VA2703, Viewsonic Corporation, 10 Pointe Dr, Brea, CA
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physical space on the treadmill (translation) or 1 degree from vertical (orientation). Two 

webcamsc tracked the 3-D position of three markers (at the navel, and each shoulder, see the 

inset of Figure 2) attached to suspenders [32]. The subject’s virtual motion (translation vs. 

orientation) was displayed in the form of a moving cursor on the TV screen. Translation was 

defined as the 2-dimensional (anterior-posterior [AP] and mediolateral [ML]) displacement 

of the lower marker on the suspenders, see inset Figure 2. Orientation with respect to vertical 

was defined as the angular deviation of the trunk segment (defined by the lower marker and 

the midpoint of the two upper markers) from vertical [34]. Cursor motion was smoothed 

using a 5 point moving average filter and scaled to map subject motion to on screen cursor 

motion in a 1:1 manner.

Intervention Procedures

The VFB training sessions lasted 30 minutes and were conducted 3 times per week for 4 

weeks. Training sessions always consisted of the following: subjects were asked if they had 

fallen since their last session and donned a safety harness. Subjects were instructed to use 

the handrails only if they lost balance. Each session, the subject’s “comfortable speed” was 

determined: the treadmill speed was increased until the subject said “too fast” and then 

decreased speed until the subject said “too slow.” The midpoint of “too fast” and “too slow” 

was their “comfortable speed” for that session [35,36]. Subjects were blinded to their 

walking speed. During the first training session, subjects in the experimental group were 

instructed on how to interact with both types of trunk motion VFB (translation and 

orientation). They were briefly trained and demonstrated the ability to keep the cursor “as 

close to the center of the bull’s-eye as possible,” minimizing displacement or angular 

deviations. VFB sessions consisted of 2 minute walks with VFB, followed by a seated rest 

(30, 60, or 120 seconds at the subject’s request). That process was repeated for 30 minutes 

resulting in 8–12 walking bouts per session. The VFB (translation and orientation) order was 

randomized during each training session, each 2 minute walking bout provided either 

translation or orientation VFB. The experimental group was informed as to the type of VFB 

prior to each 2 minute bout.

The control group also attended the same training schedule. The procedures were the same 

except that they did not receive training in how to use the VFB, and they did not see or 

interact with the VFB. The bulls-eye was visible and the control group was instructed to 

look at the center of the bulls-eye while walking. Walking and seated rest timing was the 

same as for the experimental group.

Outcomes and Follow-up

The standardized gait and balance assessments were administered by blinded assessors (EA, 

ET, RR) at Pre-test 1 (week 1), Pre-test 2 (week 4) and the Post-test (week 8). The 

experimental timeline is provided in Table 2. No further follow up was provided. The 

BESTest, mini-BESTest (mBEST), Berg Balance Scale (BBS), Timed Up and Go (TUG), 

Activities-specific Balance Confidence (ABC) scale, and 6 minute walk test (6MWT) have 

excellent test-retest reliability (ICCs 0.84 – 0.99) and were used to characterize balance and 

cLogitech Orbit AF, Logitech Int., 7700 Gateway Blvd., Newark, CA
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walking ability [37–44]. The primary outcome measures were BESTest and mBEST scores, 

which may provide systems level mechanistic insight into clinical balance problems [42]. 

The BESTest is a physical performance test with 27 items distributed among six sub-systems 

of static and dynamic balance: 1) biomechanical constraints, 2) stability limits/verticality, 3) 

anticipatory postural adjustments, 4) postural responses, 5) sensory orientation, and 6) 

stability in gait [42]. The BESTest may allow for more targeted rehabilitation based on 

identified balance system impairments. The mBEST, a shortened version of the BESTest, 

more explicitly focuses on dynamic balance assessment [43,45]. Secondary outcome 

measures were the BBS, TUG, the ABC, and 6MWT. Fallers were classified using cut-off 

scores for the ABC, TUG, TUGc, BBS, and self-reported fall history in the previous 12 

months [37,39]. Individuals with two or more positive scores after the first testing session 

were classified as fallers [40,41].

Vestibular and Somatosensory Assessment

Touch/pressure was measured using: Semmes Weinstein mono-filaments [46], passive tests 

of proprioception at the great toe, vibration testing using a 128 Hz tuning fork at the medial 

malleolus [47]. Canal specific clinical head impulse testing measured vestibular function 

[48]. Any plantar testing site requiring 2g or more force to identify monofilament touch was 

classified as impaired touch sensation [49]. Inability to discriminate tuning fork vibration 

was classified as impaired vibration sensation. Any incorrect identification of the great toe 

position during the proprioception test was classified as impaired proprioception. These 

classifications were coded (0/1) and summed (0–3) to indicate an overall sense of 

somatosensory impairment. Any positive head impulse test (observed re-fixation saccade) 

was classified as impaired vestibular function [48]. Some individuals refused specific tests 

(see Table 1).

Sample Size

Sample size was estimated using G*Power© [50], with a conservative estimate of a medium 

effect size for the clinical tests a sample size of 14 subjects in each group (28 total) with α 
= .05 results in 95% power to detect a medium effect size with correlation r = 0.7. Sample 

size was inflated to 45 to allow for up to 10% loss to follow up. 20 individuals in each group 

should be more than sufficient to detect a significant difference in performance on the 

BESTest with 80% power at a significance level of 5%.

Statistical Analysis

Age was compared between groups with a t-test. Mixed-model repeated measures ANOVAs 

were used to investigate changes in balance and mobility, with post hoc comparisons for 

effects of time (within subjects) and group (between subjects) adjusting for multiple 

comparisons using Tukey’s method. Post-hoc exploratory linear regressions investigated 

whether prior sensory function impacted change in BESTest subtest scores. Statistical 

analysis was performed using STATA softwared. Hypothesis testing was conducted at α = 

0.05.

dStataCorp LLC, 4905 Lakeway Drive, College Station, TX
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Results

Only the 40 individuals who completed the intervention were included in the analysis. Each 

subject attended at least 10 of the 12 scheduled training sessions, see Figure 1. There were 

no adverse effects during the study. 75% reported at least one fall in the previous 12 months. 

Fourteen out of the 40 individuals were classified as fallers. Somatosensory impairments 

were identified in 76% (n = 17) of control subjects and 89% (n = 18) of experimental 

subjects who participated in the touch, vibration, and proprioception testing. Angular 

vestibular function was impaired in approximately 50% of subjects from each group.

There were no between group differences for age or balance and mobility scores before the 

four week training period, see Table 1. There was a main effect of time for the experimental 

group for the BESTest (F(2,76) = 10.97, p < 0.0001) and mBESTest (F(2,76) = 10.83, p < 

0.0001). Tukey post hoc comparisons demonstrated that the experimental group showed 

significant improvement on the BESTest (t(3,76) = 3.11, p = 0.031) and the mBEST (t(3,76) 

= 3.28, p = 0.019) between Pre-Test 2 and Post-Test, see Table 3. There were no significant 

changes on any measures of balance and mobility for the control group, see Table 3.

Individuals with isolated vestibular impairment (n = 5) or multisensory (vestibular and 

somatosensory) impairment (n = 5) improved significantly more on stability limits and 

verticality ability (BESTest component 2) (β = 11.9, p = 0.011, 95% CI [3.2–20.6]) and (β = 

10.2, p = 0.025, 95% CI [1.5–18.9]) respectively, compared to individuals with no sensory 

impairments (n = 4). Individuals with no sensory impairment (n = 4) improved significantly 

more on the BESTest component 4 which focuses on postural responses (β = 32.7, p = 

0.031, 95% CI [3.5–61.8]) compared to individuals with multisensory impairment (n = 5). 

Individuals with multisensory impairment (n = 5) improved significantly more on stability in 

gait (BESTest component 6) (β = 14.2, p = 0.037, 95% CI [1.0–27.5]) compared to 

individuals with no sensory impairment (n = 4).

Discussion

Overall, training for four weeks with trunk motion VFB during treadmill walking resulted in 

a significant improvement in balance and mobility as measured by the BESTest and mBEST. 

No improvement was observed from treadmill walking without VFB. This is consistent with 

previous reports that walking alone was insufficient to improve balance [52,53], although a 

recent study reported that walking both forward and backward on a treadmill improved 

balance for older adults [54]. Overall, the magnitude of average improvement on the 

BESTest and mBEST was below the minimum detectable change (MDC) reported for these 

tests [44]. However, MDC values are intended to be applied to individual and not aggregate 

group change. Three individuals exceeded the MDC for the BESTest and another 3 exceeded 

the MDC for the mBEST. Approximately half of the cohort approached these clinical criteria 

for improvement, and those individuals who improved the most had lower scores before the 

training (data not shown). The current results add to the growing body of evidence 

suggesting that augmented reality or VFB may be an important tool for balance 

rehabilitation [10,55,56], by expanding those results specifically to balance training during 

walking.
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VFB operates on a relatively slow time scale which suggests that changes in trunk motion 

may reflect voluntary changes in behavior [23,32,57]. These voluntary changes necessitate 

active participation, which may allow integration of the VFB error signal with internal 

sensory feedback leading to in an increased awareness of body motion during walking with 

respect to the external environment [58]. We previously demonstrated that the same visual 

input results in different responses for trunk translation and trunk orientation [34]. 

Therefore, the VFB in this study alternately represented either deviation from gravitational 

vertical, or a navigational cue of center of mass displacement. The external contextualization 

(gravity/path integration) may facilitate reweighting of visual, somatosensory, and vestibular 

signals for dynamic balance during walking [4,10,59]. Although the mechanism cannot be 

elucidated, trunk translation VFB was designed to enhance path integration [32], while the 

trunk orientation VFB was designed to facilitate balance while walking. Future studies are 

needed to characterize the mechanisms which mediate the balance improvement facilitated 

by trunk motion VFB reported here.

Partial vestibular loss is known to occur associated with the normal aging process [60]; 

however, it is unclear how impactful vestibular impairment is on walking balance ability 

[4,61]. In this cohort, approximately 75% had some form of somatosensory impairment and 

approximately 50% had some degree of rotational vestibular impairment (see Table 1). 

Interestingly, our preliminary results demonstrate that an individual’s response to VFB 

training may depend on the severity or complexity of their sensory impairment. Those with 

greater sensory impairment demonstrated significantly greater improvement on the BESTest 

sub-tests which emphasize “limits of stability/verticality” and “stability in gait” compared to 

their sensory healthy counterparts. Although the sample size is small, these preliminary 

results suggest that training trunk orientation and whole body translation during walking led 

to greater improvement in standing verticality ability and dynamic gait stability. This 

suggests individuals with sensory impairment would benefit from fall prevention programs 

using trunk feedback during walking. The sensory intact group improved to a greater extent 

on BESTest component evaluating reactive “postural responses.” It is unclear whether the 

group with impaired sensation responded more slowly (impaired detection of the loss of 

balance) or whether the corrective stepping was insufficient to correct the loss of balance 

(weak response or an underestimation of appropriate step size). The mechanisms driving 

improvement following trunk motion VFB training remain to be investigated. Future studies 

should evaluate sensory function before and after training to determine whether changes are 

driven by physiological adaptation or higher levels of sensory processing like perception.

Interestingly, the participants in this study only improved on balance tests including 

components of walking. The average BBS score before the intervention was 51 for this 

cohort; therefore, a ceiling effect may have contributed to the lack of change. However, it is 

also possible that the BBS is not capable of capturing changes in dynamic walking balance 

since the majority of BBS test items are performed with a fixed base of support. The 

“comfortable speed” walking VFB training paradigm was specifically designed not to 

introduce potentially confounding changes in walking ability [62]. This accounts for the lack 

of change in over-ground walking ability based on the 6MWT. The average ABC scores 

were above the threshold for elevated fall risk, which may make it more difficult to identify 

measureable change in balance confidence. Alternatively, the modest improvements 
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observed on the BESTest and mBEST after only four weeks of training may not have been 

sufficient for subjects to recognize or attribute improvements in daily activities to improved 

balance ability [63]. Future work should identify appropriate dosage and training durations 

that will maximize balance improvements and retention.

Limitations

Recruiting individuals based on self-reported balance problems may have resulted in a 

biased sample, and cannot be generalized to more impaired clinical population. Many of the 

subjects were not classified as fallers and scored above the cut-off thresholds for identifying 

increased fall risk [37,39]. It is unknown whether any individuals experienced a change in 

sensory function or sensitivity following the training which may have contributed to our 

results. The results suggesting an increased effect for individuals with greater sensory 

impairment are preliminary, but may assist with determining which patients are appropriate 

for this type of intervention in clinical settings. It is unknown how long the beneficial effects 

of walking VFB balance training last.

Conclusion

Older adults with self-reported balance problems improved their over-ground dynamic 

walking balance after trunk motion VFB training while treadmill walking. Older adults with 

vestibular loss or mixed sensory impairments may benefit from trunk motion VFB training 

during walking more than individuals with normal sensory function. The effects of training 

with trunk motion VFB may be more beneficial for individuals with more severe balance 

impairment.
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Abbreviations

VR Virtual/augmented reality

ML Mediolateral

AP Anterior-posterior

VFB Visual feedback

mBEST mini-BESTest

BBS Berg Balance Scale
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TUG Timed Up and Go

ABC Activities-specific Balance Confidence

6MWT 6 minute walk test
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Highlights

• Trunk motion VFB while walking improved balance for older adults

• Walking on a treadmill alone did improve balance

• The degree of sensory impairment may impact balance training using VFB
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Figure 1. 
CONSORT flow chart diagram.
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Figure 2. 
Illustration of the experimental set-up. Participants walked on a treadmill in front of a TV 

with a bulls-eye display. Participants wore a safety harness (not depicted) that did not 

provide support unless they fell. A moving cursor representing either their center of mass 

translation or trunk orientation motion was superimposed over the bullseye target only for 

the experimental group.
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Table 1

Demographics and average balance and mobility scores before the visual feedback training. There were no 

significant differences between groups before the visual feedback training.

Balance/Mobility Test Control Group Experimental Group p value

Age 75.8 (6.5) 75.7 (5.3) p = 0.937

Gender (male/female) 7/13 4/16

Impaired Touch (%) 80%, n=20 80% n = 19†

Impaired Vibration (%) 26%, n = 19† 37%, n = 19†

Impaired Proprioception (%) 18%, n = 17† 22%, n = 18†

Somatosensory Impairment

Impairment = 0 24%, n = 17† 11%, n = 18†

Impairment = 1 41%, n = 17† 39%, n = 18†

Impairment = 2 24%, n = 17† 28%, n = 18†

Impairment = 3 6%, n = 17† 17%, n = 18†

Impaired Vestibular (%) 50%, n = 20 53%, n = 19

Fall History (n) 14 16 p = 0.478

Classified Fallers (n) 8 6 p = 0.752

BESTest (%) 76 (7.6) 75.9 (7.7) p = 1.000

Mini-BESTest 20.6 (4.1) 20.3 (3.1) p = 0.309

BBS 51.2 (3.1) 51.7 (3.8) p = 0.188

ABC (%) 80.5 (14.3) 77.7 (18.9) p = 1.000

TUG (sec) 11.1 (3.3) 10.6 (3.1) p = 0.981

6MWT (m) 370.8 (94.8) 380.7 (74.2) p = 0.174

†
- not all subjects were willing to complete the test
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Table 2

Experimental timeline. The treadmill training started within 48 hours of Pretest#2 and the Post-test occurred 

within 48 hours of the last treadmill training session. At the time the study was initiated the BESTest and 

mBEST were not validated for older fallers and the test retest reliability had not been reported. We used data 

from Pretest#1 and Pretest#2 to determine validity and test retest reliability which is reported elsewhere [37].

Pretest#1 4 week control period with instructions 
not to modify physical activity

Pretest#2 4 weeks Treadmill Training either with VFB 
(experimental) or without VFB (control)

Post-test

BESTest BESTest BESTest

mBEST mBEST mBEST

BBS BBS BBS

ABC ABC ABC

TUG TUG TUG

6MWT 6MWT 6MWT

Vestibular Test

Monofilament Test

Joint Position Test

Vibration Test
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