2009

Targeting the cGMP Pathway to Treat Colorectal Cancer

Giovanni Mario Pitari
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/petfp

Part of the Medical Pharmacology Commons, and the Pharmacy and Pharmaceutical Sciences Commons

Let us know how access to this document benefits you

Recommended Citation
Pitari, Giovanni Mario, "Targeting the cGMP Pathway to Treat Colorectal Cancer" (2009). Department of Pharmacology and Experimental Therapeutics Faculty Papers. Paper 21.
https://jdc.jefferson.edu/petfp/21

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Pharmacology and Experimental Therapeutics Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Targeting the cGMP Pathway to Treat Colorectal Cancer

GianMario Pitari, M.D., Ph.D.

Department of Pharmacology and Experimental Therapeutics

Thomas Jefferson University

Philadelphia, PA 19107
Translational Medicine

Laboratory

Molecular Biology
Cell Culture
Organ Culture
Animal Models
Clinical Trials

Clinic
Translational Research Project: from the cGMP Pathway to Colorectal Cancer

Targeting Strategies:

1. Cyclic GMP-Dependent Pathway as a Tumor Suppressor System to Prevent Colorectal Tumorigenesis

2. Cyclic GMP-Dependent Pathway as an Antimetastatic Strategy to Disrupt Colorectal Cancer Metastatic Progression
Cyclic GMP Signaling

General Model for cGMP Signaling

Guanylyl Cyclases

Lucas, et al. (2000)
Pharmacol. Rev. 52: 375-413
Guanylyl Cyclase C (GCC)

GCC is selectively expressed at brush-border membranes of intestinal epithelial cells and regulates fluid homeostasis.

Crypt and Villus Enterocytes

Brush Border Microvilli

Antiproliferative cGMP Signaling Targets
Cyclic Nucleotide-Gated Channel

Antiproliferative cGMP Signaling Undergoes Negative Feedback Regulation

The Antiproliferative cGMP Signaling Pathway in Intestinal Epithelial Cells

Cyclic GMP Signaling by GCC Controls The Crypt-Villus Homeostasis

Colon Cancer: the 2nd Most Deadly Cancer in Developed Nations

More developed regions
Number of cases (all ages)
The Pathological Sequence of Colorectal Cancer

- Early Genetic Mutations
- Aberrant Crypt Foci
- Adenomatous Polyps
- Dysplastic Adenomas
- Carcinomas

Cancer Risk

Reversibility

Incidence
Colon Cancer: Diagnosis and Therapy

Stage I
Invasion up to the *muscularis propria*

- Surgery

5-years survival
~ 95%

Stage II
Invasion of the serosa and adjacent organs

- Surgery
- Chemotherapy

~ 80%

Stage III
Invasion of regional lymph nodes

- Surgery
- Chemotherapy

~ 65%

Stage IV
Distant Metastasis

- Surgery
- Chemotherapy

~ 7%
ETEC Infections Confer Resistance to Colon Cancer

Risk for ETEC infection
low medium high

Colorectal Cancer Incidence (ASR-W)

New Zealand Australia West Europe United States Canada Northern Europe South Europe East Europe Caribbean Islands East Asia South America Southeast Asia Middle East Central America Africa Indian Subcontinent

$r^2=0.99$
GCC is a Therapeutic Target in Colon Cancer

N T F Y C C E L C C N P A C A G C Y

ST

NDDCEL CVNV ACT GCL
PGTCEI CAYAAC TGC

uroguanylin
guanylin

GCC is a Novel Intestinal Tumor Suppressor
GCC Signaling through cGMP Potentiates Cytostatic Calcium Effects

GCC Regulates the Function of Calcium-Sensing Receptor (CaR) in the Intestine

Pitari, G.M. et al. (2008)
Carcinogenesis 29:1601-7
GCC-Targeted Therapy in Combination with Dietary Calcium

A Tumor Suppressor cGMP Signaling Pathway in Colon Cancer

Pitari, G.M. et al. (2008)
Carcinogenesis 29:1601-7
Colon Cancer Mortality Reflects Metastatic Disease Progression

Cyclic GMP Induces Functional Remodeling of Cancer Cell MMP-9

Protein Gelatinolytic Activity,

MMP-9 Dependent

Relative Levels of MMP-9 mRNA

Primary Neoplasms

MMP-9

Growth

Vascularization

Invasion

Detachment

Migration

Extravasation

Proliferation/angiogenesis

Metastasis

MMP-9 Promotes Metastasis in Colon Cancer

Colon Cancer Cell MMP-9 Induces Metastatic Seeding

GCC and cGMP Signaling through MMP-9 Regulates Colon Cancer Cell Shape and Spreading

GCC and cGMP Signaling through MMP-9 Suppresses Metastatic Seeding by Colon Cancer Cells

The Antimetastatic cGMP Signaling Pathway in Colon Cancer Cells

(-) cGMP Pathway

GCC → cGMP → MMP-9 secretion → Matrix Degradation → Cell Spreading → Metastatic Seeding

Tumor Containment / Vascular Clearance

(+) cGMP Pathway

Metastasis

Summary

• The cGMP pathway in intestinal epithelial cells regulates the crypt-villus axis and opposes colorectal tumorigenesis

• GCC, a guanylyl cyclase receptor selectively expressed by normal and malignant intestinal epithelial cells, coordinates a paracrine tumor suppressor system in the intestine

• The cGMP pathway potentiates the cytostatic effects of extracellular calcium by regulating the activity of CaR

• The cGMP pathway reduces the metastatic potential of colorectal cancer cells, in vitro and in vivo, in part by regulating the function of MMP-9

• Cancer cell MMP-9 regulates metastatic functions, including actin polymerization and cell spreading, and in vivo seeding of target organs
Translational Significance

• GCC ligands represents novel agents for the prevention of primary and metastatic colon cancer
• GCC ligands represents novel agents for the treatment of primary and metastatic colon cancer
• Combinatorial strategies with GCC ligands and dietary calcium may provide a novel paradigm for the treatment of colon cancer
• Cancer cell MMP-9 is a highly selective and effective molecular target for preventing metastatic progression of colorectal cancer