Optical Imaging for Determination of Apoptosis Medicated Therapeutic Efficacy

Kaijun Zhang
Thomas Jefferson University

Bishnuhari Paudyal
Thomas Jefferson University

Neil Mehta
Thomas Jefferson University

Brian Gray
Molecular Targeting Technologies, Inc.

Koon Y. Pak
Molecular Targeting Technologies, Inc.

Follow this and additional works at: https://jdc.jefferson.edu/radiologyfp

Recommended Citation

Zhang, Kaijun; Paudyal, Bishnuhari; Mehta, Neil; Gray, Brian; Pak, Koon Y.; Wickstrom, Eric; and Thakur, Mathew L, "Optical Imaging for Determination of Apoptosis Medicated Therapeutic Efficacy" (2012). *Department of Radiology Faculty Papers.* Paper 19.

https://jdc.jefferson.edu/radiologyfp/19
Results: T/M ratios for PSVue®794 were 200% times higher than for PSVue®643 (P < 0.05). Both probes showed 25%-30% increased T/M ratios post DOX treatment, (P < 0.05) indicative of enhanced apoptosis. With PSVue®643 tumor intensity declined over time, but increased for intestine. With PSVue®794 tumor intensity and T/M ratios increased as a function of time, with a decreased M/O ratios for all organs.

Conclusion: OI of apoptotic BC cells mediated by DOX treatment permits to determine the effectiveness of DOX within 24 hrs. These results are consistent with those in another investigation in which F-18-FDG was used to monitor diminished metabolic activity following DOX treatment. PSVue®794 which eliminates radiation burden to normal organs is a preferable NIR fluorophore for determination of therapeutic effectiveness of BC by OI. Support: NIH 1S10 RR026678-01 (MLT).