2012

Optical Imaging for Determination of Apoptosis Medicated Therapeutic Efficacy

Kaijun Zhang
Thomas Jefferson University

Bishnuhari Paudyal
Thomas Jefferson University

Neil Mehta
Thomas Jefferson University

Brian Gray
Molecular Targeting Technologies, Inc.

Koon Y. Pak
Molecular Targeting Technologies, Inc.

Follow this and additional works at: https://jdc.jefferson.edu/radiologyfp

Part of the *Medical Molecular Biology Commons, and the Radiology Commons*
See next page for additional authors

Let us know how access to this document benefits you

Recommended Citation

Zhang, Kaijun; Paudyal, Bishnuhari; Mehta, Neil; Gray, Brian; Pak, Koon Y.; Wickstrom, Eric; and Thakur, Mathew L, "Optical Imaging for Determination of Apoptosis Medicated Therapeutic Efficacy" (2012). *Department of Radiology Faculty Papers*. Paper 19.
https://jdc.jefferson.edu/radiologyfp/19

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Radiology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Authors
Kaijun Zhang, Bishnuhari Paudyal, Neil Mehta, Brian Gray, Koon Y. Pak, Eric Wickstrom, and Mathew L Thakur

This poster is available at Jefferson Digital Commons: https://jdc.jefferson.edu/radiologyfp/19
Results: T/M ratios for PSVue®794 were 200% times higher than for PSVue®643 (P < 0.05). Both probes showed 25%-30% increased T/M ratios post DOX treatment, (P < 0.05) indicative of enhanced apoptosis. With PSVue®643 tumor intensity declined over time, but increased for intestine. With PSVue®794 tumor intensity and T/M ratios increased as a function of time, with a decreased M/O ratios for all organs.

Conclusion: OI of apoptotic BC cells mediated by DOX treatment permits to determine the effectiveness of DOX within 24 hrs. These results are consistent with those in another investigation in which F-18-FDG was used to monitor diminished metabolic activity following DOX treatment. PSVue®794 which eliminates radiation burden to normal organs is a preferable NIR fluorophore for determination of therapeutic effectiveness of BC by OI. Support: NIH 1S10 RR026678-01 (MLT).