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RESEARCH PAPER

Neuroendocrine gene subsets are uniquely dysregulated in prostate 
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Nicole M. Naranjoa,b#, Anne Kennedya,b#, Anna Testaa,b*, Cecilia E. Verrilloa,b*, Adrian D. Altierib, Rhonda Keanb, 
D. Craig Hooperb,c, Jindan Yud, Jonathan Zhaoe, Oliver Abinaderf, Maxwell W. Picklesa,b, Adam Hawkinsa,b, 
William K. Kellya,g, Ramkrishna Mitraf, and Lucia R. Languino a,b

aProstate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, PA, USA; bDepartment of Pharmacology, 
Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA; cDepartment of Neurological Surgery, Thomas Jefferson 
University, Philadelphia, PA, USA; dDepartment of Urology, Emory University School of Medicine, Atlanta, GA, USA; eDepartment of Human Genetics, 
Emory University School of Medicine, Atlanta, GA, USA; fDivision of Biostatistics and Bioinformatics, Department of Pharmacology, Physiology and 
Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA; gDepartment of Medical Oncology, Thomas Jefferson University, Philadelphia, 
PA, USA

ABSTRACT
Prostate cancer has heterogeneous growth patterns, and its prognosis is the poorest when it progresses 
to a neuroendocrine phenotype. Using bioinformatic analysis, we evaluated RNA expression of neuroen-
docrine genes in a panel of five different cancer types: prostate adenocarcinoma, breast cancer, kidney 
chromophobe, kidney renal clear cell carcinoma and kidney renal papillary cell carcinoma. Our results 
show that specific neuroendocrine genes are significantly dysregulated in these tumors, suggesting that 
they play an active role in cancer progression. Among others, synaptophysin (SYP), a conventional 
neuroendocrine marker, is upregulated in prostate adenocarcinoma (PRAD) and breast cancer (BRCA). 
Our analysis shows that SYP is enriched in small extracellular vesicles (sEVs) derived from plasma of PRAD 
patients, but it is absent in sEVs derived from plasma of healthy donors. Similarly, classical sEV markers are 
enriched in sEVs derived from plasma of prostate cancer patients, but weakly detectable in sEVs derived 
from plasma of healthy donors. Overall, our results pave the way to explore new strategies to diagnose 
these diseases based on the neuroendocrine gene expression in patient tumors or plasma sEVs.
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Introduction

Prostate cancer is the most common cancer among men in the 
United States, with 299,010 estimated new cases diagnosed and 
35,250 estimated deaths attributed to the disease this year.1 

Prostate cancer has heterogeneous growth patterns;2 treatment 
strategies include androgen deprivation therapy.3 If the disease 
has progressed to androgen independence, it becomes castrate- 
resistant prostate cancer (CRPC);3 its prognosis is the poorest 
when it progresses to neuroendocrine prostate cancer (NEPC) 
phenotype.4

The role of extracellular vesicles (EVs) in cancer has been 
recently established, as EVs can contribute to cancer progres-
sion hallmarks including proliferation, migration, angiogen-
esis, evasion of cell death, and metastasis.5 EVs are 
heterogeneous, displaying different biogenesis, and size 
ranges.6 small EVs (sEVs) may have an endosomal or non- 
endosomal origin, and a size range of <200 nm.6,7 sEVs are 
characterized by classical markers such as Syntenin, TSG101, 
Alix, and the tetraspanins (CD9, CD63, and CD81)6. Syntenin, 
TSG101, and Alix are part of the ESCRT (endosomal sorting 

complex required for transport) family of proteins, and play 
important roles in sEV biogenesis, as these proteins regulate 
multivesicular body formation and the inward budding of 
intraluminal vesicles.6 The tetraspanins are also crucially 
involved in sEV biogenesis and release as they can re-arrange 
the membrane curvatures and thus promote sEV budding and 
facilitate release.8,9 sEVs are present in several biological fluids, 
such as blood (serum or plasma), urine, semen, and milk.10 

The content of sEVs can differ between cancer and physiolo-
gical conditions.11–14

In this study, we performed a bioinformatic analysis of 
publicly available RNA-seq data of a neuroendocrine gene 
panel. This panel included twenty-two genes which were cho-
sen based on the work done by Hofsli et al., who analyzed 
genes differentially expressed in neuroendocrine and non- 
neuroendocrine cancer cell lines that did not include prostate 
cancer cells.15 In our study, we used this neuroendocrine gene 
panel to analyze the differential expression in five different 
cancer type and normal tissue samples: Prostate adenocarci-
noma (PRAD), Breast cancer (BRCA), Kidney Chromophobe 
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(KICH), Kidney renal clear cell (KIRC) carcinoma, and Kidney 
renal papillary cell (KIRP) carcinoma. BRCA is the most com-
mon non-skin cancer in women in the world.16 Renal cell 
carcinoma (RCC) is a relatively rare and heterogeneous 
group of tumors with distinct mutations, histologic appear-
ance, and clinical behaviors.17,18 RCC is frequently divided 
into KIRC, KIRP, and KICH. KIRC is the most common 
subtype, and it has been correlated with aggressive clinical 
features.17 KIRP is the second most common RCC subtype, 
which is also aggressive and has a poor prognosis when 
metastatic.19 KICH is the third most common RCC subtype 
and is mainly sporadic and indolent with a favorable clinical 
outcome.20 The neuroendocrine gene panel includes conven-
tional neuroendocrine protein markers such as synaptophysin 
(SYP), chromogranin A (CHGA) and enolase 2,15 which are 
routinely used for the diagnosis of neuroendocrine tumors. 
SYP is involved in the process of formation, transport, and 
release of synaptic vesicles and neuronal transmitters.21 SYP is 
a widely used immunohistochemical marker for neuroendo-
crine tumor diagnosis.21 CHGA is a neuroendocrine secretory 
protein involved in sorting and packaging of neurotransmit-
ters into secretory granules.22 CHGA is an important neuroen-
docrine tumor marker used both in examination of biopsied 
tumor tissue and as a serum tumor marker. Enolase 2 is an 
enzyme of the glycolytic pathway and one of the main markers 
used to diagnose poorly differentiated neuroendocrine 
tumors.23,24 Additionally, we evaluated other neuroendocrine 
genes that have also been implicated in the pathogenesis of 
neuroendocrine cancers, such as MYCN, GDNF Family 
Receptor Alpha 2 (GFRA2), and the neurofilament protein 
genes (NEFL, NEFM, NEFH).25–27

In this manuscript, we show that neuroendocrine genes are 
expressed in patients diagnosed with PRAD and other cancers 
such as BRCA, KICH, KIRC, and KIRP. We also provide 
evidence that SYP and sEV classical markers are detected in 
PRAD patient plasma-derived sEVs but are barely detectable 
in healthy donor sEVs.

Results

Neuroendocrine genes are differentially expressed across 
cancer types

It has been shown that PRAD patients have distinct hetero-
geneous molecular alterations that vary between individuals.2 

Therefore, we decided to analyze the expression levels of 
literature-curated neuroendocrine genes in PRAD patient tis-
sues compared to normal tissues. In order to broaden the 
scope of the study, we included in the analysis BRCA, KICH, 
KIRC, and KIRP patient tissues compared to their healthy 
counterparts. For this analysis, the RNA-seq expression profil-
ing data were downloaded from the Cancer Genome Atlas 
(TCGA) database. For TCGA RNA-seq analysis, surgical 
resection biospecimens were collected from patients diagnosed 
with PRAD, and had not received prior treatment for their 
disease (chemotherapy, radiotherapy, or hormonal ablation 
therapy).28 Analysis of TCGA RNA-seq data shows upregula-
tion or downregulation of several genes in cancer versus nor-
mal tissues, as shown in Figure 1(a), the volcano plots in 

Figure 1(b) as well as Figure 2(a). These genes appear to 
encode proteins found in secretory granules, plasma mem-
brane, cytoskeleton, cytosol, and nucleus (Table 1).

Proteins related to synaptic vesicles and secretory gran-
ules are differentially expressed across cancer types. For 
instance, SYP is upregulated in PRAD and BRCA, and 
downregulated in KICH, KIRC, and KIRP. Secretogranin 
2 (SCG2), and Secretogranin 3 (SCG3) are the only genes 
with statistically significant upregulation in four out of the 
five cancer types compared to the corresponding normal 
tissue. SCG2 and SCG3 are upregulated in BRCA, KICH, 
KIRC, and KIRP, while SCG2 is downregulated in PRAD. 
CHGA is upregulated in BRCA and downregulated in 
KIRC. Furthermore, plasma membrane proteins are dysre-
gulated in different cancers. GFRA2, which is significantly 
upregulated in KIRC, is downregulated in PRAD, BRCA, 
KICH, and KIRP. Myelin basic protein (MBP) is upregu-
lated in PRAD and KICH while being downregulated in 
BRCA and KIRC. Additionally, Contactin 1 (CNTN1) is 
downregulated in all five cancer types. Of note, the cytos-
keletal proteins Neurofilament light chain (NEFL), 
Neurofilament medium chain (NEFM), Neurofilament 
heavy chain (NEFH), and Transgelin 3 (TAGLN3) are 
downregulated in PRAD and upregulated in BRCA. In 
the other cancers, NEFL is upregulated in KIRC and 
KIRP. NEFM is upregulated in KIRP and downregulated 
in KICH. In contrast, NEFH is downregulated in KIRC. 
TAGLN3 is upregulated in KIRP but is downregulated in 
KIRC and KICH. The cytosolic protein Dopa decarboxylase 
(DDC) is upregulated in PRAD and BRCA, and downre-
gulated in KICH, KIRC, and KIRP. The transmembrane 
enzymes Monoamine Oxidase A (MAOA), and Hepsin 
(HPN) are upregulated in PRAD. In the other cancers, 
MAOA is downregulated in BRCA, KICH, KIRC, and 
KIRP, and HPN is upregulated in BRCA. Additionally, 
the other transmembrane proteins are also distinctly dysre-
gulated in different cancers. Integrin alpha subunit 10 
(ITGA10) is downregulated in BRCA, KICH, and KIRP 
and upregulated in PRAD and KIRC. Plexin A2 
(PLXNA2) is downregulated in PRAD and KIRP and upre-
gulated in KIRC. Claudin 4 (CLDN4) is upregulated in 
BRCA and KIRP and downregulated in KIRC. Neural cell 
adhesion molecule 1 (NCAM1) is downregulated in PRAD 
and BRCA and upregulated in KIRC. Finally, the genes 
encoding for the cytoplasmic/nuclear proteins, Brain 
expressed X linked 1 (BEX1), MYCN and Enolase 2 
(ENO2) are downregulated in PRAD and upregulated in 
BRCA. In the other cancers, MYCN is downregulated in 
KIRC and KIRP; ENO2 is upregulated in KIRC, and KIRP. 
Peroxiredoxin 2 (PRDX2), another protein in this category 
is upregulated in PRAD, BRCA, and KICH, and is down-
regulated in KIRC. Collectively, the results show inconsis-
tent dysregulation patterns for most neuroendocrine genes 
across the cancer types, which is expected due to the high 
intra-tumor heterogeneity. 2,29

Based on these data, PRAD was selected as an area of 
specific interest. We then evaluated the levels of these twenty- 
two genes in CRPC compared to NEPC (Figure 3). These data 
show that thirteen genes (SYP, BEX1, CHGA, DDC, ENO2, 
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ITGA10, MYCN, NCAM1, NEFH, PLXNA2, SCG2, SCG3, and 
TAGLN3) are differentially expressed in NEPC compared to 
CRPC. Twelve genes are significantly upregulated, and one 
gene (NEFH) is significantly downregulated in NEPC com-
pared to CRPC. As summarized in Table 1, different sub-
groups of proteins encoded by these genes are significantly 
dysregulated in PRAD, BRCA, KICH, KIRC or KIRP. 
Therefore, our data suggest that distinct protein subtypes 
promote cell differentiation toward a neuroendocrine pheno-
type in different cancers.

PRAD patient plasma-derived sEVs express higher levels 
of synaptophysin and sEV classical markers compared to 
healthy donor sEVs

Among the genes identified, SYP is usually abundant at the 
protein level in advanced-stage aggressive neuroendocrine in 
PRAD. Thus, we assessed the levels of SYP in plasma-derived 
sEVs from PRAD patients and healthy donor plasma sEVs. 
Furthermore, we also assessed sEV marker levels in plasma 

sEVs, as it has been shown that sEVs derived from a variety of 
tumor cells express high levels of sEV classical markers.30,31 

Immunoblotting (IB) analysis shows that SYP is absent in all 
healthy donor plasma sEVs but is expressed in two of the 
PRAD patient plasma sEVs (Figure 4). The IB analysis also 
shows that sEV markers CD63, Syntenin, Alix, and CD9 are 
enriched in PRAD patient plasma sEVs compared to healthy 
donor plasma sEVs (Figure 4a).

Nanoparticle tracking analysis (NTA) shows that the aver-
age size of healthy donor and PRAD patient-derived plasma 
sEVs is ~ 150-160 nm, falling within the expected size range of 
sEVs (Figure 4b).

We analyzed the plasma-derived sEVs by IB, and our results 
show that SYP and sEV markers are enriched in patient plasma 
sEVs. Then, we reviewed groups, which are a five‐tier grade 
system based on Gleason score grouping and different histol-
ogy definitions,32 the pathological state at diagnosis, and pros-
tate-specific antigen (PSA) levels, and found no correlation 
with these parameters (Table 2). Patients diagnosed with 
T2N0M0 (tumor confined within prostate, no regional 

Figure 1. Differential expression patterns of known neuroendocrine cancer genes across TCGA cancer types. (a) Venn diagram depicting the neuroendocrine genes 
reported in TCGA (The Cancer Genome Atlas) that are significantly upregulated (FDR: False Discovery Rate <0.05) in one or more indicated cancer types [Prostate 
adenocarcinoma (PRAD), Breast cancer (BRCA), Kidney Chromophobe (KICH), Kidney renal clear cell (KIRC) carcinoma, and Kidney renal papillary cell (KIRP) carcinoma] 
compared to normal samples. The table below indicates the genes that are significantly upregulated according to the cancer type. (b) Volcano plots of log2 fold-change 
(Log FC) in expression of the known neuroendocrine genes (X-axis) with statistical significance (Y-axis) in five cancer types. Significantly downregulated and up 
regulated genes are represented in blue and red colors, respectively. Grey color represents not significant (NS). The genes with 1.5 fold-change are shown. Y-axis 
represents mRNA expression (Normalized expression). Significantly (FDR <0.05) differentially expressed genes are shown. P-value < 0.05 are considered significant.
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lymph node metastasis and no distant metastasis)33 express 
different levels of CD63, Syntenin, Alix, and CD9 compared to 
patients diagnosed with more advanced PRAD, T3BN0M0 
(tumor with extracapsular extension-seminal vesicle invasion, 
with no regional nodal or metastatic spread).33 Overall, these 
data show that SYP and classical sEV marker expression is 
variable but, in most cases, enriched in PRAD patient plasma 
sEVs as compared to healthy donor sEVs.

Discussion

In this study, we show expression of neuroendocrine genes in 
PRAD as well as BRCA, KIRC, KICH, and KIRP. Our results 
pave the way for exploring new perspectives on the functions 
of neuroendocrine genes in these cancers. Among other genes, 
we show that SYP mRNA levels are increased in PRAD and 
SYP protein levels are enriched in PRAD patient plasma- 
derived sEVs, although absent in healthy donor sEVs.

We analyzed RNA-seq data from PRAD, BRCA, KICH, 
KIRC, and KIRP patient tissues compared to normal tissues 
to establish a consistent pattern of up- or downregulation of 
the twenty-two neuroendocrine genes to shed light on the 
heterogeneity of these genes’ dysregulation patterns across 
the cancer types. SYP, a well-established marker for neu-
roendocrine cancers,4,34,35 is upregulated in PRAD and 
BRCA, but downregulated in KIRC, KICH and KIRP. 
Studies have shown that the expression of SYP in PRAD 
patient tissues is rare since neuroendocrine markers are abun-
dant only when the disease advances to a highly aggressive 

neuroendocrine stage after androgen deprivation therapy.4,35,36 

However, our bioinformatic analysis indicates that SYP may 
support the pro-tumorigenic progression of non- 
neuroendocrine cancers, such as PRAD. Aligning with 
these results, although some sEVs did not express SYP, it 
appears that sEVs derived from one PRAD patient with 
a less aggressive pathological state (T2N0M0), grade group 
(2) or Gleason score (3 + 4) do not differ in SYP expression 
compared to plasma sEVs derived from one PRAD patient 
with more aggressive pathological state (T3BN0M0), grade 
group (4–5) or Gleason score (8–9). Our data suggest that 
SYP is highly enriched in sEVs derived from PRAD cells 
and that these sEVs circulate in the bloodstream. As 
a result, SYP expression in sEVs derived from PRAD 
patient plasma sEVs could be instrumental as a prognostic 
tool for the early detection of PRAD. There are no studies 
about SYP expression in cancer patient derived EVs. Few 
studies address the presence of SYP in EVs, but not in the 
context of cancer.37,38 A study investigating the 
N-glycoproteome of urine-derived EVs (isolated via differen-
tial ultracentrifugation) showed that SYP is expressed and 
N-glycosylated in urine-derived EVs.37 SYP has also been 
shown to be decreased in EVs (isolated by polymer precipita-
tion, ExoQuick) derived from Alzheimer’s disease or fronto-
temporal dementia compared to healthy controls.38 Additional 
studies screening for SYP in patient plasma-derived sEVs 
must be investigated in the future.

Furthermore, the discovery that twelve genes have signifi-
cantly increased expression in NEPC versus CRPC strengthens 

Figure 2. Differential expression patterns of known downregulated neuroendocrine cancer genes across cancer types reported in TCGA. Venn diagram depicting the 
neuroendocrine genes that are significantly downregulated (FDR <0.05) in different TCGA cancer types (PRAD, BRCA, KICH, KIRC, and KIRP) compared to normal 
samples. The table (right panel) indicates the genes that are significantly downregulated according to the cancer type.
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Figure 3. Neuroendocrine gene expression levels in NEPC compared to CRPC. Violin plots represent mRNA expression levels (Y-axis) of neuroendocrine genes (X-axis) 
that are significantly dysregulated (FDR <0.05) in NEPC compared to CRPC as reported in TCGA. NEPC: neuroendocrine prostate cancer, CRPC: castrate-resistant prostate 
cancer. P-value  < 0.05 are considered significant.

Table 1. Dysregulated proteins encoded by neuroendocrine cancer genes.

Gene Protein Encoded Protein PRAD BRCA KICH KIRC KIRP

SYP Synaptophysin

SCG2 Secretogranin 2

SCG3 Secretogranin 3

CHGA Chromogranin A

GFRA2 GDNF Family Receptor 
Alpha 2

MBP Myelin Basic Protein

CNTN1 Contactin-1

NEFL Neurofilament Light Chain

NEFM Neurofilament Medium 
Chain

NEFH Neurofilament Heavy 
Chain

TAGLN3 Transgelin 3

DDC Aromatic l-Amino acid 
Decarboxylase Cytosolic/Plasma membrane 

MAOA Monoamine Oxidase A#

HPN Hepsin

ITGA10 Integrin Subunit Alpha 10

PLXNA2 Plexin A2

CLDN4 Claudin-4
*

NCAM1 Neural Cell Adhesion 
Molecule 1

BEX1
Brain Expressed X-Linked 

1#

MYCN MYCN Proto-Oncogene

ENO2 Enolase 2

PRDX2 Peroxiredoxin 2

Cytoplasm/Nucleus

Synaptic Vesicles/ Secretory 
Granules

Plasma Membrane

Cytoskeleton

Transmembrane Enzymes

Transmembrane 

Heat map based on Venn diagrams from Figures 1a and 2. 
Red- Upregulated genes. 
Blue- Downregulated genes. 
Gray- Not significant. 
*Putative transmembrane protein. 
#Mitochondrial localization.
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the relationship of these genes to neuroendocrine transforma-
tion and pathogenesis. Overall, our bioinformatic analysis 
results show that the dysregulation of the neuroendocrine 
genes in cancer tissues could play a key role in treatment 
resistance and tumor progression in select cancer types.

Our data show that the classical sEV markers Alix, Syntenin 
as well as the tetraspanins CD9 and CD63 are enriched in sEVs 
derived from PRAD patient plasma compared to sEVs derived 
from healthy donor plasma. This result aligns with our pre-
vious studies showing that PRAD patient derived sEVs are 
enriched in CD9 compared to plasma sEVs from healthy 
donors.31 Furthermore, a study has demonstrated that plasma- 
derived EVs from pancreatic or lung cancer patients are 
enriched in classical sEV markers such as CD9, HSPA8, Alix 
and HSP90AB1 compared to the healthy control 
counterparts.30 Another publication revealed that Alix is 
enriched in plasma-derived EVs from pancreatic cancer, thus 
showing its potential to be a biomarker to distinguish early 
from advanced stage pancreatic cancer.39 Similarly, Alix is able 

to discriminate between plasma-derived EVs from melanoma 
patients compared to healthy donor plasma EVs.40 Moreover, 
another group has shown that Syntenin is important for 
increased secretion of sEVs derived from human lung cancer 
cells, which, in turn, positively regulates endothelial cell migra-
tion and tube formation.41 Additionally, CD63 has been shown 
to have increased expression in PRAD patient tissue (grade 
group 3–5) compared to patients with benign hyperplasia.42 

Since Alix and Syntenin are part of the molecular machinery 
responsible for sEV biogenesis,6 and the tetraspanins can 
modulate membrane curvature to enable sEV release,8 we 
can speculate that PRAD patient plasma-derived sEVs are 
released from prostate cancer cells at a higher degree com-
pared to healthy donor cells and that EV subpopulations may 
arise as PRAD progresses. These findings synergize with 
a recently published paper by the Beltran group,43 which 
showed that DNA methylation on specific genomic regions 
can distinguish NEPC patients from CRPC patients. Thus, 
they developed a neuroendocrine detection and monitoring 

Figure 4. PRAD patient plasma-derived sEVs are enriched in SYP and sEV classical markers. (a) Immunoblotting (IB) analysis of pooled plasma sEV fractions (Fractions 6– 
8) from healthy donor (4–13) or PRAD patients (M-Z); 20 μg of protein were loaded per sEV sample. Expression of synaptophysin (SYP), CD63, Syntenin, Alix, and CD9 
was analyzed. (b) Nanoparticle tracking analysis (NTA) of size and concentration of pooled sEVs (Fractions 6–8) from healthy donor plasma (7 + 8 + 9) or PRAD patient 
plasma (R+S+T).

Table 2. Synaptophysin and sEV marker expression in PRAD patient derived plasma sEVs.

Sample ID # PSA 
Pathological 

Stage 
Grade 
Group

Gleason 
Score

Metastasis

Plasma-
derived sEV 

SYP 
Expression

Plasma-
derived sEV 

Alix 
Expression

Plasma-
derived sEV 

Syntenin 
Expression

Plasma-
derived sEV 

CD63 
Expression

Plasma-
derived sEV 

CD9 
Expression

O 3.8
P 4.4
Q 7.3
R 4.4
S 5
T 4.6
W 8.4 T2N0M0 2 3+4 No - + - + +
U 16.4 T3BN0M0 3+4
V 16.6 T3AN0M0 4+3
M 1.1 T3AN0M0 2 3+4 No - - - + -
X 6.8 T3B 4 8
Y 7.5 T3B 5 9
Z - - - -

+ + +

+

+ + +

+ - +

4+3

3+4

+

+

+

-

Yes

No

No

No

+ +

+

+

-

-T2N0M0

T2N0M0

2

3

2

PSA- Prostate specific antigen. 
SYP-Synaptophysin.
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(NEMO) assay, in which they used a plasma cell-free DNA- 
targeted methylation panel that allowed them to stratify and 
differentiate CRPC from NEPC patients. As a result, it may be 
possible that cell-free DNA in plasma originates from plasma- 
derived sEVs, and thus, both represent valuable tools for non-
invasive liquid biopsies. Along the same lines, a study showed 
that BRCA patient plasma-derived EVs or cell-free DNA are 
both informative biomarker sources in BRCA, specifically for 
HER2 positive patients.44 Moreover, the data demonstrated 
that combining EV and cell-free DNA assessments increased 
detection performance.44 Therefore, we can speculate that 
aligning findings from plasma-derived EV content and cell- 
free DNA from PRAD and NEPC patients may increase the 
performance of liquid biopsies.

Our results also show that sEVs derived from PRAD 
patients with a less aggressive form of PRAD (grade 
group 2) do not significantly differ in sEV marker expres-
sion compared to sEVs derived from more advanced 
(grade group 3–5) PRAD patients; however, the presence 
of sEV markers vary among them. Therefore, we speculate 
that sEV marker expression starts in less aggressive forms 
of PRAD and increases as PRAD progresses. Overall, we 
provide novel evidence in which a neuroendocrine gene, 
such as SYP or patient plasma sEV content, can be used as 
markers for diagnostic purposes in PRAD. Future studies 
based on proteomic analysis of PRAD and NEPC patient 
tumors and sEVs will provide a comprehensive under-
standing of the role of PRAD derived sEVs in promoting 
cancer progression.

Materials and methods

Evaluation of differentially expressed neuroendocrine 
genes across cancer types

The expression levels of literature-curated neuroendocrine 
cancer marker genes were evaluated in Prostate adenocar-
cinoma (PRAD), Breast cancer (BRCA), Kidney chromo-
phobe (KICH), Kidney renal clear cell (KIRC) carcinoma, 
and Kidney renal papillary cell (KIRP) carcinoma patient 
samples compared to the normal samples. For this analysis, 
the RNA-seq expression profiling data were downloaded 
from the Cancer Genome Atlas (TCGA) database using the 
R/Bioconductor package TCGAbiolinks.45 The read counts 
were imported to the R package edgeR46 to normalize the 
data and determine differentially expressed genes. 
Neuroendocrine genes were identified with significant dif-
ferential expression in: PRAD (n = 502) compared to nor-
mal (n = 52) tissue samples, BRCA (n = 1118) compared to 
normal (n = 113) tissue samples, KICH (n = 66) compared 
to normal (n = 25) tissue samples, KIRC (n = 541) com-
pared to normal (n = 72) tissue samples, KIRP (n = 290) 
compared to normal (n = 32) tissue samples. The obtained 
differential expression P-values were further adjusted by 
the Benjamini-Hochberg (BH) method.47 Neuroendocrine 
genes with an adjusted p value < 0. 05 were considered 
significantly differentially expressed in the respective can-
cer type compared to its normal samples. Neuroendocrine 
genes were identified with significant differential 

expression in neuroendocrine prostate cancer (NEPC) 
(n = 13) compared to PRAD (n = 34) samples using the 
above edgeR analysis pipeline. For this analysis, the RNA- 
seq expression profiling data were obtained directly from 
the author upon request.48

Human samples

Blood samples for the isolation of plasma-derived sEVs were 
obtained from diagnosed PRAD patients (n = 13). Biological 
samples were obtained through a biorepository under an 
honest broker policy upon patient consent prior to any 
treatment. Specimens were de-identified in accordance 
with guidelines established by the Institutional Review 
Board (IRB), protocol 20D.826. Data collected included 
pathological stage, Gleason score, grade group, and metas-
tasis at the time of radical prostatectomy; prostate-specific 
antigen (PSA) was recorded pre-prostatectomy.

Blood samples for the isolation of plasma-derived sEVs 
were obtained from healthy donors (n = 10). Written consent 
was documented in accordance with the IRB approved proto-
col 19D.011.

Plasma isolation

Human blood was withdrawn via venipuncture. Coagulation 
was prevented by treatment with Acid Citrate Dextrose (ACD) 
[trisodium citrate (22.0 g/L), citric acid (8.0 g/L) and dextrose 
(24.5 g/L)]. Anticoagulated blood was centrifuged at 100 x g for 
20 minutes at room temperature with acceleration 1 and brake 
0 to separate plasma.

sEV isolation

EV isolation by differential ultracentrifugation of healthy 
donor and diagnosed PRAD patient plasma was performed 
as previously described.31,49,50

sEV isolation from the pellet obtained after ultracentrifuga-
tion was further processed by iodixanol density gradient (IDG) 
ultracentrifugation as previously described.49–51 All the data 
presented in this study were generated using IDG sEVs.

NTA

NTA was performed as previously described.50,51 Briefly, pooled 
plasma sEVs (fractions 6–8) were diluted in PBS and analyzed 
using NanoSight NS300. A total of three videos (30 seconds 
each) were captured. Data were collected at room temperature 
(25◦C). Data analysis was performed using NTA software ver-
sion 3.1.54.

IB analysis

IB analysis was performed as previously described.50–52 For IB, 
sEVs and cells were lysed using RIPA buffer (10 mM Tris-HCl, 
pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% NP-40, and 
1% sodium deoxycholate) and protease inhibitors were added. 
The following primary rabbit Ab was used: Syntenin (Abcam, 
ab133267). The following primary mouse Abs were used: SYP 
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(Invitrogen MA-1-213), Alix (BIO-RAD, MCA2493), CD63 
(Abcam, ab193349), or CD9 (Santa Cruz, sc13118).

The secondary HRP-linked Abs were: anti-rabbit IgG (Cell 
Signaling, 7074S) or anti-mouse IgG (Cell Signaling, 7076S). 
For protein visualization, WesternBrightTM ECL HRP (horse-
radish peroxidase) substrate kits (Advansta) were used.
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