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Abstract

Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and
imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to
inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity
ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In
this study, we identified a thiophosphate modified aptamer (thioaptamer, TA) against E-selectin (ESTA-1) by employing a
two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a
cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound
to E-selectin with nanomolar binding affinity (KD = 47 nM) while exhibiting minimal cross reactivity to P- and L-selectin.
Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition)
of sLex positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated
vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was
highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding
to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a
thioaptamer (ESTA-1) that binds to E-selectin with high affinity and specificity, thereby highlighting the potential
application of ESTA-1 for E-selectin targeted delivery.
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Introduction

Targeted delivery offers a significant advantage for the local

delivery of therapeutic payload and/or imaging contrast agents to

a specific target site and promises to improve the delivery efficacy

to the target tissue while minimizing the exposure to normal

tissues. Active targeting can be achieved through an interaction

between surface molecules on the cells at pathological sites and

their ligands conjugated to either the surface of delivery carriers

or drug molecules. Numerous delivery strategies have been

proposed for different target cell types via various cell surface

specific ligands [1]. Vasculature targeted delivery has become an

attractive strategy due to the phenotypic changes on the

endothelial cell surface associated with pathological conditions

such as inflammation and angiogenesis [2]. Therefore, identifi-

cation of novel ligands that recognize pathological vasculature is

of great interest.

The selectin proteins, E-, L-, and P-selectin, constitute a family

of calcium-dependent cell surface glycoproteins that play a critical

role in inflammation, mainly through recognition of specific

carbohydrate ligands, sialyl Lewis X (sLeX) and sialyl Lewis A

(sLeA) [3,4,5]. All three selectins share structural similarities and

mediate the initial tethering and rolling of leukocytes to the

endothelial wall [6]. Among the selectin family, E-selectin

(CD62E, ELAM-1 or LECAM-2) has been highlighted as a

potential therapeutic target based on its unique role in

inflammation [4,7,8]. E-selectin is not constitutively expressed in

endothelial cells, but is transcriptionally induced by NF-kB and

AP-1 in response to inflammatory cytokines such as IL-1b and

TNF-a [9]. Consequently, elevated E-selectin expression was
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reported in many types of inflammatory diseases including

diabetes, atherosclerosis, rheumatoid arthritis, and cancer

[10,11,12,13]. In addition to E-selectin-mediated inflammation,

many studies have suggested a potential involvement of E-selectin

in the attachment and transmigration of circulatory metastatic

cancer cells through the endothelium [14,15,16,17]. E-selectin

ligands including monoclonal antibodies, peptide, and carbohy-

drate ligand, have shown selective binding to the inflamed

vasculature in both experimental animal models and clinical trials

[18,19,20,21]. However, medical applications of these ligands

remain a challenge due to low affinity, low specificity, lack of

serum stability, and immunogenicity [19,22,23]. Therefore,

identification of a ligand with high affinity and specificity to E-

selectin and favorable in vivo characteristics holds potential for

effective inflamed vasculature targeted delivery.

Thiophosphate-modified oligo-nucleotide aptamers (thioapta-

mers; TA) are a new class of ligands that differ structurally from

RNA and DNA and bind target proteins with high affinity (Kd: ,
nM) and specificity [24,25]. In addition, TAs offer significant

advantages over conventional aptamers, peptides, small molecules

or antibodies due to their unique chemical and biological

properties: a) enhanced nuclease resistance [25]; b) easy synthesis

and chemical modification [26]; and c) lack of immunogenicity

[27]. Aptamers against P- and L- selectin have shown antagonistic

activities against their respective targets, due to high binding

affinities [28,29]. However, no aptamers have previously been

identified against E-selectin, despite its pivotal role in inflamma-

tion associated with multiple diseases. We have recently developed

methods for combinatorial selection of TA libraries consisting of

1014 random sequences and have identified TAs that bind to a

variety of target proteins [30,31,32]. In this study, we employed a

two-step aptamer selection strategy, comprised of a recombinant

protein-based selection from the library followed by a cell-based

binding screening for the selection of a thioaptamer to E-selectin.

Our data demonstrated that the E-selectin thioaptamer ESTA-1

binds to E-selectin with nanomolar affinity on cultured endothelial

cells and tumor-associated vasculature in human and mouse

carcinomas. These results suggest that ESTA-1 could be an

attractive ligand for site-selective delivery of drugs and imaging

agents to inflamed vasculature via E-selectin.

Materials and Methods

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by University of Texas Health Science Center

Institutional Animal Care and Use Committee, and all animal

work was approved by the committee (protocol # HSC-AWC-07-

099).

Reagents
Oligonucleotide primers were synthesized by Midland Certified

Reagents (Midland, TX). The extracellular domain of recombi-

nant human E-selectin (535 amino acid residues) was purchased

from R&D Systems (Minneapolis, MN). Streptavidin-coated

magnetic particles were purchased from Pure Biotech (Midlesex,

NJ). Human microvascular endothelial cells (HMVECs) were a

kind gift from Dr. Rong Shao (Biomedical Research Institute,

Baystate Medical Center/University of Massachusetts at Amherst,

Springfield, MA, USA). Anti-human CD31 antibody was

purchased from BD Pharmingen (San Jose, CA). Anti-E-selectin

antibody H18/7 was isolated from hybridoma purchased from

ATCC (Manassas, VA) and used as a competitor of TA binding to

endothelial cells. Anti-human E-selectin antibodies were pur-

chased from Sigma (St. Louis, MO) and Innovex (Richmond, CA)

and used for immunostaining for cultured cells and human

carcinoma paraffin sections, respectively. Human carcinoma tissue

array was purchased from US Biomax (Rockville, MD).

Synthesis and isolation of DNA thioaptamer library
The synthesis of the DNA thioaptamer (TA) combinatorial

library was described previously [24]. Briefly, a single-stranded

DNA library (,1014 different sequences) with a 30-nucleotide

random region (N30) flanked by 23 and 21 nucleotide primer

binding regions was chemically synthesized. The library (40 nM)

was PCR amplified in a reaction containing Sp dATP(aS), dCTP,

dGTP and dTTP (200 mM), MgCl2 (2 mM), biotinylated forward

primer (59biotin- CAGTGCTCTAGAGGATCCGTG-AC-39)

(300 nM), reverse primer (59-CGCTCGGATCGATAAGCT-

TCG-39) (300 nM) and AmpliTaq DNA polymerase (0.5 U).

Biotinylated double-stranded PCR products were incubated with

streptavidin-coated magnetic beads for the separation of the

ssDNA library.

Selection of thioaptamers
Screening of TAs that binds to recombinant E-selectin protein

was carried out using a solution-based filter binding method as

described previously [24]. Briefly, the recombinant human E-

selectin protein (240 pmoles) was incubated with TA library

(200 pmoles) in selection buffer (PBS with Ca2+ and Mg2+ and

5 mM MgCl2) at room temperature for 2 hours. The reaction

mixture was filtered through the nitrocellulose membrane and

washed 3 times with the selection buffer to remove unbound TAs.

The TA/E-selectin complex retained on the filter membrane was

eluted with 8 M urea solution. The eluent was used as the

template for PCR amplification and the integrity of the TAs was

analyzed by 15% polyacrylamide gel electrophoresis. This

selection cycle was repeated 10 times and the stringency of the

selection was elevated gradually. The TA libraries obtained after

rounds 5 and 10 were PCR amplified and subcloned into a

plasmid vector for DNA sequencing. The selected sequences were

analyzed using the ClustalW program (with DNA identity matrix,

gap open penalty of 15, gap extension penalty of 6.66, gap

separation penalty of 4 with no end gaps). Cyanine 3 (Cy3)-labeled

TAs were produced by PCR amplification of plasmids containing

TAs as a template with 59-terminal Cy3-labeled reverse primer.

Cell culture
Human Microvascular Endothelial cells (HMVEC) were a kind

gift from Dr. Rong Shao at the University of Massachusetts.

HMVEC were cultured according to the protocol described

previously [33]. HMVEC were grown in endothelial basal

medium-2 supplemented with 10% (v/v) Tet-approved fetal

bovine serum, 100 U/ml penicillin and 10 mg/ml streptomycin,

1 mg/ml epidermal growth factor and 50 mg/ml hydrocortisone.

All experiments were performed on 70–80% confluent cultures in

5% CO2 humid chambers at 37uC. The HMVECs were

genetically manipulated to generate Tet-on inducible system for

E-selectin expression (ES-Endo). E-selectin expression was induced

with doxycycline (2000 ng/ml) for 5 hours unless specified.

TA binding to endothelial cells
To examine TA binding to the ES-Endo, the cells were plated

onto a plastic dish and cultured overnight to allow them to attach.

After E-selectin induction with doxycycline, the cells were

incubated with cy3-labeled TAs at the indicated concentrations

(0–200 nM) for 20 minutes at 37 uC. The cells were washed with

E-Selectin Thioaptamer Ligand
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ice-cold PBS to remove unbound TA and subsequently fixed with

4% paraformaldehyde for 10 minutes. The nuclei were counter-

stained with 1.0 mg/ml Hoechst 33342 for 10 minutes. The extent

of TA binding to the cells was assessed by fluorescence microscopic

analysis (TE2000-E, Nikon, final magnification 60x). The relative

binding affinity of TAs was determined by the amount of

fluorescence detected on the cells based binding assay and the

specificity was determined by the extent of doxycycline dose

dependent effect seen on TA binding. For competition of TA

binding to the cells, the cells were pre-incubated with 10 mg or

25 mg of anti-E-selectin antibody (H18/7) for 2 hours prior to

incubation with TA. All images were acquired under the same

exposure conditions for the comparison of TA binding.

TA binding to tumor vasculature
Human tissues derived from epithelial ovarian cancer patients

were collected from surgical cases at The University of Texas

M.D. Anderson Cancer Center. Frozen tissue arrays derived from

human carcinomas (breast, ovarian, and skin) and their normal

counterparts were also used (US Biomax, MD). The tissue sections

were fixed with ice-cold acetone, incubated with 50 nM ESTA-1

for 1 hour at RT, and then stained with primary antibody against

anti-rat CD31 (1:1000). E-selectin expression was determined by

immunostaining with anti-E-selectin (1:20). For in vivo experiments

a total of 10 mg of chemically synthesized Cy3-labeled ESTA-1

was intravenously injected into mice bearing tumors derived from

mouse breast cancer 4T1 cells. The organs and tumors were

harvested 3 hours after the injection, and each organ was

embedded in OCT. 8 mm frozen section was fixed with acetone

and stained with Hoechst 33342 for assessment of ESTA-1 binding

to the vasculature.

Electrophoresis mobility shift assay
Equal amounts of ESTA-1 (4.6 pmoles) were incubated with

increasing concentrations of the recombinant selectin proteins (0–

19 pmoles) in a total volume of 10.5 ml of PBS supplemented with

Ca2+ and Mg2+, 5 mM MgCl2, and 1% NP40 at room

temperature for 45 minutes. The reaction mixtures were loaded

onto 6% polyacrylamide tris borate gels and run at 100 V for 90

minutes at 4uC. The gel was stained with SYBR Gold nucleic acid

staining dye and visualized using the FluorChem 8800 chemima-

ger (Alpha Innotech). Protein-bound TA and unbound TA were

quantified using ImageJ software. The binding curves were

generated assuming a single binding site curve fits using the

Graph Pad Prism software. For competition experiments, anti-E-

selectin antibody (H8/17) (3 mg, 9 ml) or for control experiment

human IgG antibody was mixed with recombinant E-selection

protein (19 pmoles) and 1% NP40 in PBS (3.7 ml) and incubated

for 30 minutes. To this mixture, ESTA-1 (4.6 pmoles) in PBS and

5 mM MgCl2 was added and incubated for another 10 minutes

and loaded onto 6% polyacrylamide gel and ran at 100 V for 80

minutes, stained with SYBR Gold stain and visualized using the

chemiimager.

Cell adhesion assay
To determine the effect of ESTA-1 on adhesion of sLex positive

cells to endothelial cells, confluent ES-Endo were incubated with

doxycycline for 5 hours followed by ESTA-1 (50 nM and 100 nM)

for 20 minutes. HL-60 cells (105 cells) suspended in RPMI

containing 1% FBS were added to ES-Endo and incubated at 4uC
for 30 minutes with mild agitation. The unbound cells were

washed off with RPMI containing 1% FBS. The number of cells

that adhered to the ES-Endo was counted on at least 3 random

areas using a light microscope (final magnification 100x) and

expressed as the mean of triplicate experiments.

Cell viability
ES-Endo were cultured on a 96-well plate at 10,000 cells per

well. The cells were incubated with doxycycline for 5 hours and

then incubated with ESTA-1 at the indicated concentrations for

48 hours. For the measurement of cell viability, 10 ml MTT

(5 mg/ml) were added to each well and incubated for 4 hours.

The formazan was dissolved in 150 ml of DMSO and the

absorbance at 490 nm was measured.

Statistical analysis
All experiments were carried out in triplicates and the data were

analyzed statistically to provide 80% power for a test at

significance level of 0.01. We validated the normality assumption,

and proceeded with a parametric test as appropriate. The Student-

T test was performed to compare the cell viability among different

groups.

Results

Screening of TA against E-selectin
We screened a thioaptamer (TA) library to select for those TAs

that demonstrated affinity for E-selectin. Each of the 1014 TAs in

the library consisted of a region of random sequence (N30 residues)

flanked by two primer regions common to all TAs, and all dA’s

contained 59-monothiophosphate substitutions with the exception

of the 59 primer region. A two-step E-selectin TA selection strategy

followed. First, a solution-based combinatorial selection method

was employed for the identification of thioaptamers that bind the

extracellular domain of recombinant human E-selectin protein.

The TA library was allowed to interact in solution with

glycosylated recombinant E-selectin protein. Then, the E-selec-

tin/TA complexes formed were isolated and PCR amplified to be

used in subsequent cycles of selection. After 10 iterative selection

cycles, 35 TA sequences were isolated. Sequences were aligned

using the ClustalW program based on their primary sequences (Fig

S1), and a cladogram tree was generated. Based on the alignment

and the cladogram, the 35 sequences were grouped into 14

families (Fig S2). A single sequence was selected from each family

based on the lowest predicted free energy of the secondary

structure. Several common sequence motifs were identified among

the selected 14 sequences (Fig S3). These 14 TA sequences were

synthesized by PCR with Cy3-labeled reverse primer for the

second step of cell-based selection.

A Tet-on inducible E-selectin endothelial cell line (ES-Endo)

was used to identify the TA sequences that specifically bind to E-

selectin on the surface of endothelial cells. First, to demonstrate the

doxycycline-dependent induction of E-selectin expression, ES-

Endo cells were incubated with increasing concentrations of

doxycycline (0–2000 ng/ml) for 5 hours, and the E-selectin

expression level on the plasma membrane was analyzed by

immunofluorescent staining using anti-E-selectin antibody. As a

reference for the physiological level of E-selectin expression, the

cells were also treated with TNF-a (10 ng/ml) for 5 hours.

Elevated expression of E-selectin was detected predominantly on

the cell membrane when treated with 500 ng/ml of doxycycline,

and its expression level was increased in a doxycycline concen-

tration dependent manner (Fig. 1A). In the absence of doxycycline,

the baseline level of E-selectin expression was slightly higher than

wild type cells, perhaps due to the leakiness of this inducible

system. The level of E-selectin expression with a doxycycline

concentration of 2000 ng/ml was equivalent to TNF-a treated

E-Selectin Thioaptamer Ligand
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cells, and thus, we used doxycycline at this concentration for

subsequent experiments, unless otherwise specified. For the

second-step selection of TAs that bind specifically to E-selectin,

ES-Endo were pre-incubated with doxycycline and then with each

of the 14 TAs (100 nM) selected in the first step for 20 minutes at

37uC. Fluorescent intensities associated with the cells were

compared using fluorescent microscopy, and the data was

evaluated for both binding and specificity. Interestingly, the

relative binding affinities and specificities of the TA sequences

were found to correlate with the energy of the structures predicted

by MFOLD [34] (Table S1). Among the 14 TAs tested, TA-1

exhibited high doxycycline-dependent binding to ES-Endo with

minimal binding to ES-Endo in the absence of doxycycline,

whereas the rest of the TAs showed weak doxycycline dependent

binding with high background (Table S1). The MFOLD

prediction exhibited a single secondary structure for TA-1 (with

an estimated free-energy of folding of 210.72 kcal/mol) contain-

ing two stable hairpin loops (Fig. 2B). In contrast MFOLD

predicted four secondary structures for both TA-20 (dG = 27.98

to 27.44 kcal/mol) and TA-31 (dG = 28.64 to 27.94 kcal/mol)

with comparable free energy values, and only a single stable

hairpin loop was predicted in each of these structures (Fig S4).

Interestingly, two highest binders (TA-1 and TA-20) share the

ACT(T/C)C(T/A)C(T/C)TCAC sequence motif in the loop

region of the hairpin stem-loop (Fig. S3), suggesting that this

region might be involved in binding to E-selectin. Presumably the

second hairpin loop in TA-1, but not in TA-20 contributes to its

increased binding affinity and specificity. Overall, TA-1 showed

the highest binding as well as specificity. Based on database search

(NCBI BLAST), the TA-1 sequence (Fig. 2A) did not show any

Figure 1. E-selectin dependent binding of ESTA-1. (A) ESTA-1 binding to ES-Endo. To determine the E-selectin dependent ESTA binding, ES-
Endo cells were treated with increasing concentration of doxycycline (250-2000 ng/ml) and analyzed for E-selectin expression and ESTA-1 binding. E-
selectin overexpressing ES-Endo cells were incubated with Cy3-labeled ESTA-1 (100 nM) for 20 minutes at 37uC. TNF-a (10 ng/ml) induced ES-Endo
was used as a positive control. (B) Blocking of ESTA-1 binding by E-selectin antibody. ES-Endo were pre-incubated with 25 mg of E-selectin antibody
for 2 hours and incubated with 100 nM of ESTA-1 for 20 minutes. Unbound ESTAs were washed away and slides were prepared for fluorescent
imaging to visualize the binding to ES-Endo cells. All images were captured at the same exposure condition for comparison. The final images shown
are representative images (at the final magnification: x600) from five random fields of at least three independent experiments. Blue, Hoescht 33342;
Red, Cy3-labeled ESTA-1; Green, E-selectin.
doi:10.1371/journal.pone.0013050.g001
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homology to existing genes. Together, we performed further

studies using E-selectin thioaptamer TA-1 (ESTA-1).

To provide further concrete evidence that ESTA-1 binding to

ES-Endo is E-selectin specific, we used three independent

approaches. First, the ES-Endo cells were treated with increasing

concentrations of doxycycline (up to 2000 ng/ml) for 5 hours to

induce different levels of E-selectin expression, and they were then

incubated with a fixed concentration of ESTA-1 (100 nM) for 20

minutes at 37uC. ESTA-1 was found to form a speckled binding

pattern. The number and brightness of the speckles increased

proportionally to the doxycycline concentration up to 2000 ng/ml

(Fig. 1A), suggesting E-selectin specific ESTA-1 binding. Treat-

ment of ES-Endo with TNF-a (10 ng/ml) yielded a similar

binding pattern and fluorescent intensity (Fig. 1A). In the second

approach, ES-Endo expressing E-selectin were first pre-treated

with two different concentrations of E-selectin monoclonal

antibody for 2 hours and then incubated with 100 nM of

ESTA-1. Pre- and co-incubation of the cells with E-selectin

monoclonal antibody caused a significant reduction of ESTA-1

binding as evidenced by the disappearance of the speckle pattern

(Fig. 1B), suggesting that ESTA-1 and E-selectin antibody share

the same epitope on E-selectin. Similar reduction in ESTA-1

binding was also observed by E-selectin antibody for TNF-a

treated ES-Endo (data not shown). In contrast, normal IgG pre-

treatment did not affect ESTA-1 binding to the cells (Fig. 1B).

Thirdly, immunostaining was performed using a monoclonal

antibody against E-selectin that does not compete with ESTA-1

binding to doxycycline induced ES-Endo (data not shown). This

data demonstrated that ESTA-1 (red fluorescence) partially

colocalized with E-selectin (green fluorescence) on the edge of

the cells as seen in yellow merge, supporting ESTA-1 binding to E-

selectin on the cell surface (Fig. S6). A possible explanation of a

partial colocalization of ESTA-1 and E-selectin might be either

ESTA-1 binding to other surface molecules on the endothelial cells

or intracellular uptake following the initial cell surface binding

since E-selectin undergoes internalization [34]. In conclusion, the

two-step screening strategy employed here led to the identification

of a TA sequence (ESTA-1) that binds specifically to E-selectin

expressed on endothelial cells.

ESTA-1 binding to tumor vasculature
Next, we tested ESTA-1 binding to the tumor vasculature using

histological sections derived from human carcinomas. First,

immunohistochemical analysis was performed to evaluate the

level of E-selectin expression on the tumor vasculature using

paraffin sections derived from three types of carcinomas including

breast, ovarian, and skin. Approximately 70-80% of tumors

showed E-selectin expression on the vasculature (Fig. 3A and C).

Unlike angiogenic factors such as integrins and vascular

endothelial growth factor receptor, E-selectin expression was

detected in both the existing mature vessels and the microvessels in

the tumor (Fig. 3A). To test ESTA-1 binding to the tumor

vasculature, the frozen sections were first incubated with a 50 nM

solution of Cy3-labeled ESTA-1 (red fluorescence), then immu-

nostained with CD31 (green fluorescence). Intense ESTA-1

binding was observed on the vessels in ovarian carcinomas as

evidenced by the co-localization with CD31 (Fig. 3B). In contrast,

ESTA-1 binding was not observed in the vessels in the normal

counterpart. Similarly, ESTA-1 bound to the tumor associated

vessels in breast (80%) and skin (100%) carcinomas (Fig. 3C).

Overall, ESTA-1 binding to the tumor associated vessels was

highly correlated with E-selectin expression as indicated by

ESTA/E-sel ratios for breast (ratio = 0.89), ovarian (ratio = 1)

and skin (ratio = 1) carcinomas (Fig. 3C). As opposed to the

binding to the tumor associated vessels, ESTA-1 binding was

almost absent in the normal human tissues, including the adrenal,

brain, temporal lobe, breast, cervix, heart, kidney, liver, lung,

pancreas, placenta, salivary gland, skeletal muscle, small intestine,

spleen, stomach, thyroid, and uterus, with the exception of minor

binding to the vessels of the skin (data not shown), where E-selectin

is constitutively expressed [35].

Next we tested ESTA-1 binding to E-selectin on tumor-

associated vasculature in vivo. We used a 4T1 breast tumor mouse

model in which high E-selectin expression was observed on the

endothelial cells of the tumor-associated vasculature (Supplemen-

tal Fig. S5). Intravenous administration of ESTA-1 into mice

bearing 4T1 tumor resulted in accumulation of ESTA-1 to the

endothelial cells of the tumor vasculature as evidenced by the

speckled red pattern on the tumor associated vasculature (Fig. 4).

No obvious binding of ESTA-1 to the vasculature of other organs

(liver, spleen, kidney, lung, and heart) was detected (data not

shown). To confirm E-selectin specific binding of ESTA-1 in vivo,

an E-selectin antibody was injected intravenously prior to ESTA-1

injection into mice bearing breast tumor xenograft. E-selectin

antibody pre-injection resulted in a significant reduction in ESTA-

1 binding to tumor vasculature as compared to untreated mice,

whereas pre-injection of control IgG did not cause any changes

Figure 2. ESTA-1 sequence and the MFOLD predicted second-
ary structure. (A) ESTA-1 DNA sequence. All of the deoxy adenosine
(dA) residues are modified monothio substituted with Rp configuration,
with the exception of the 59-primer binding region in the sequence. (B)
Mfold predicted secondary structure of ESTA-1.
doi:10.1371/journal.pone.0013050.g002
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(Fig. 4), suggesting that ESTA-1 binds to E-selectin on the tumor

vasculature.

Evaluation of binding affinity of ESTA-1 to E-selectin
We next evaluated the binding affinity of ESTA-1 to all selectins

using electrophoretic mobility shift assay (EMSA). To determine

the binding constant, fixed amounts of ESTA-1 was mixed with

increasing amounts of recombinant protein (E-, P-, and L-selectin).

Incubation of recombinant E-selectin protein and ESTA-1

resulted in the formation of a DNA/protein complex in

equilibrium with unbound states. An increment in ESTA-1/E-

selectin complexes was observed with increasing recombinant E-

selectin added to the reaction, accompanied by a corresponding

decrease in the free (unbound) ESTA-1 (data not shown). As

expected, the amounts of ESTA-1/E-selectin complexes reached

saturation at a molar ratio of 1:1, when both of the binding

molecules are at a concentration of 500 nM. Based on the

densitometric analysis, the binding constant calculated for the

ESTA-1 binding to E-selectin was 47 nM (Fig. 5A). The binding of

ESTA-1 to P-selectin showed significantly lower affinity (estimated

KD = 13 mM), suggesting a very weak interaction at the concen-

tration range measured (Fig. 5B). ESTA-1 binding to L-selectin

was not detectable under the same conditions. To validate ESTA-

1 binding to E-selectin, EMSA was performed by pre-incubating

the human E-selectin recombinant protein with E-selectin

antibody (H18/7) prior to addition of ESTA-1 to the reaction

mixture. The addition of E-selectin antibody (H18/7) resulted in

the disappearance of the band corresponding to the ESTA-1/E-

selectin complex (Fig. 5C). This data implies that ESTA-1 not only

binds to E-selectin, but also may share the same binding site with

E-selectin monoclonal antibody used for this experiment. To

further confirm the binding affinity of ESTA-1 under biological

conditions, different concentrations of ESTA-1 (50–200 nM) were

incubated with ES-Endo induced with doxycycline. ESTA-1

binding to the cells was detectable at 50 nM and increased in a

dose dependent manner (Fig. 5D). Together, these data support a

nanomolar affinity of ESTA-1 binding to E-selectin on the

endothelial cells.

ESTA-1 inhibits HL-60 cell adhesion to endothelial cells
On the basis of specific binding of ESTA-1 to E-selectin, we next

tested ESTA-1-mediated inhibition of leukocyte adhesion to

endothelial cells. For this study, we tested a human promyelomo-

nocytic cell line (HL-60) that expresses sLex, a natural ligand for E-

Figure 3. ESTA-1 binding to the tumor vasculature. Frozen sections derived from human ovarian carcinomas and normal ovaries were
examined for E-selectin expression and ESTA-1 binding. (A) Immunohistochemical analysis for E-selectin expression on the vasculature of ovarian
carcinoma. (B) ESTA-1 binding to tumor vasculature of ovarian carcinoma. At least five individual tumors were examined with five different fields per
slide and representative sections were shown at the final magnification of x200. Green, CD31; Red, Cy3-labeled ESTA-1; Blue, Hoescht 33342. (C)
Correlation of ESTA-1 binding to the tumor vasculature and E-selectin expression in human carcinomas derived from breast, ovary, and skin.
doi:10.1371/journal.pone.0013050.g003
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selectin. HL-60 cell adhesion to ES-Endo increased by 5-fold when

E-selectin expression was induced by doxycycline (Fig. 6A). E-

selectin expressing ES-Endo were pre-incubated with indicated

concentrations of ESTA-1 for 20 minutes and then the adhesion of

these cells to the ES-Endo was compared. Pretreatment of the E-

selectin expressing ES-Endo with ESTA-1 inhibited HL-60

adhesion by 80% at 100 nM ESTA-1 (Fig. 6A) (p,0.01). The

IC50 for the inhibition of this interaction was approximately 63 nM.

These data indicate that the ESTA-1 interaction to E-selectin occurs

through the sLex-binding site, further highlighting the potential

therapeutic utility of ESTA-1 as an antagonist of E-selectin

mediated adhesion. Lastly, we tested the cytotoxicity associated

with ESTA-1 treatment in ES-Endo. ES-Endo were first incubated

with doxycycline for 5 hours and then with increasing concentra-

tion of ESTA-1 (up to 200 nM) for 48 hours. MTT assay was

performed to test cell viability. Incubation with up to 200 nM of

ESTA-1 for 48 hours did not cause any visible morphological

changes or a reduction of cell viability in ES-Endo cells (Fig. 6B).

Discussion

In this study, we have identified a thioaptamer ligand against E-

selection (ESTA-1) with a 47 nM binding affinity to E-selectin,

and importantly, with minimum cross reactivity to P- or L-

selectin. We also demonstrated that ESTA-1 bound efficiently to

E-selectin expressing endothelium of human and mouse carcino-

mas. Furthermore, ESTA-1 effectively inhibited the adhesion of

sLex positive HL-60 cells on E-selectin expressing endothelial cells.

These data accentuate the versatile biomedical applications of

ESTA-1 for E-selectin targeted therapies and imaging of inflamed

tumor vasculature.

Inflamed vascular endothelium has been recognized as an

attractive site for targeted delivery of therapeutic and imaging

agents because of significant differences in the expression of

surface receptor proteins between normal and inflamed endothe-

lium. E-selectin expression on the vasculature is transcriptionally

induced in the presence of inflammatory stimuli, and subsequent-

ly, E-selectin expression is commonly observed in pathological

inflammation, including cancer [7]. Additionally, following

membrane sorting upon cytokine stimuli, E-selectin undergoes a

recycle phase, rapid internalization to endosomes and subsequent

partial lysosomal degradation. These characteristics, inflamma-

tion-dependent expression and internalization, make E-selectin an

attractive target for intracellular delivery of therapeutics to

inflamed vasculature. Many different types of E-selectin affinity

ligands, including a humanized monoclonal antibody, peptide and

Figure 4. In vivo distribution of ESTA-1 in mouse bearing xenograft tumor derived from breast cancer 4T1 cells. Frozen sections
derived from 4T1 xenograft model were examined for E-selectin expression and ESTA-1 binding. ESTA-1 (10 mg/100 ml saline) was injected to mice
(n = 3) via tail vein and organs, including liver, kidney, lung, heart, spleen, and tumor, were harvested 5 hours after the injection. Frozen sections
(5 mm) were prepared to assess distribution of ESTA-1. Red, Cy3-labeled ESTA-1; blue, Hoechst 33342.
doi:10.1371/journal.pone.0013050.g004
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carbohydrate mimetics, have been developed for biomedical

applications [19,20]. However, low affinity (mM range KD) and

unfavorable pharmacokinetics of these ligands limits their potential

application for targeted delivery, thus highlighting the need for a

high affinity E-selectin ligand with improved pharmacokinetics

and serum stability.

Aptamers are an emerging class of ligands that have several

advantages over antibodies or peptide-based ligands; lack of

immunogenicity and toxicity [36]. Since native oligonucleotides

are susceptible for hydrolysis by nucleases, stabilization of the

phosphate backbone has been one of the major focuses for

biomedical applications. Although modification with neutral

groups such as methyl phosphonate [37] and phosphoramidate

[38] have shown increased resistance to nucleases, these analogs

showed lower binding affinity than the unmodified oligonucleo-

tides. In contrast, sulfur substitution of the phosphoryl oxygens,

either one (monothio) or two (dithio) of the non-bridging oxygen

atoms, exhibit enhanced affinity to protein as well as resistance

against nucleases in both cellular and plasma environments [39].

Based on molecular dynamics and theoretical calculations, we and

others have suggested that increased affinity of thioaptamer may

be attributed to the decreased interaction of solvated cations with

the sulfur atoms, which act as softer Lewis bases on the

polyanionic backbone [40]. Our data demonstrated that mono-

thiophosphate substitution in ESTA-1 resulted in high affinity

binding to E-selectin (47 nM) and minimum cross reactivity

(Fig. 5). This is a significant improvement of 2,000-40,000 times

higher affinity as compared to the natural ligand sLex (KD = 100–

2000 mM) (13). Moreover, dithio-substituted DNA has been shown

to increase the binding affinity by 100–600 times higher than the

non-thioated or monothio analogue [30]. This suggests that dithio-

substitution can lead to further development of higher affinity of

ligands against E-selectin.

For the identification of E-selectin specific thioaptamer, we

utilized a two-step selection strategy. The first step involving 10

iterative cycles of combinatorial library screening using extracel-

lular domain of human E-selectin recombinant protein led to the

identification of 14 TA sequence families. In the second step cell

based screening, to our surprise, only one of the 14 selected TAs

exhibited highly doxycycline-dependent binding to endothelial

cells expressing E-selectin, despite the initial screening using

human recombinant E-selectin protein isolated from the mam-

malian system. These data indicated that in vitro selection with pure

biochemical entities (e.g., recombinant protein) in solution may

Figure 5. Evaluation of binding affinity of ESTA-1 to E-selectin. ESTA-1 (4.6 pmoles) and recombinant human E-selectin protein (up to
19 pmoles) were incubated and subjected to electrophoresis at 4 uC. The gels were stained with SYBR Gold nucleic acid stain and densitometric
analysis of the unbound ESTA-1 was plotted. (A) E-selectin recombinant protein. (B) P-selectin recombinant protein. (C) Competition of ESTA-1
binding to E-selectin protein. Human recombinant protein was pre-incubated with E-selectin antibody (3 mg) for 30 min prior to addition of ESTA-1
(4.6 pmoles). EMSA was carried out and gel was stained with SYBR Gold stain to analyze ESTA-1 binding. (D) ESTA-1 concentration dependent binding
to ES-Endo. ES-Endo were incubated with doxycycline (1000 ng/ml) for 5 hours and then with indicated concentrations of Cy3-labeled ESTA-1 for 20
minutes. ESTA-1 binding was analyzed by fluorescent imaging. Red, Cy3-labeled ESTA-1; blue, Hoechst 33342.
doi:10.1371/journal.pone.0013050.g005
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not readily translate into effective ligand binding in a complex

biological environment, particularly if the target protein is

significantly post-translationally modified. In fact, E-selectin is a

glycoprotein that is matured from 107 kDa to 115 kDa through

sequential post-translational modification with carbohydrates [8].

Screening of aptamer combinatorial libraries often utilizes either

full-length or fragments of recombinant proteins [41,42,43,44].

However, the structural differences that result from the lack of

post-translational modifications and possible misfolding of these

recombinant proteins may preclude the identification of aptamers

that would maintain their binding in a physiological environment.

Thus, the integration of biologically relevant conditions into the

screening process is essential for the identification of aptamers that

could show relevant biological activity. In fact, various screening

strategies that have incorporated cellular screening, rather than

single molecule based screening with recombinant proteins,

resulted in the identification of novel aptamers for specific target

molecules or even target cell type [45].

For the second step screening, we employed an E-selectin Tet-

on inducible system that allows for highly controllable and

selective E-selectin expression for identification of E-selectin

specific binders. The most widely accepted approach to induce

E-selectin expression relies on cytokine stimulation such as IL-1b
and TNF-a that mimics gross phenotypic changes on endothelial

cell surface (i.e., induction of surface receptors including E-

selectin, P-selectin, and cell adhesion molecules); however, such

approaches are unlikely to rule out the involvement of other cell

surface molecules. In fact most of the carbohydrate mimetics and

ligands identified against E-selectin have shown considerable cross

reactivity against L- and P- selectin due to their structural

similarities [23], thereby limiting the use of such for targeted

delivery due to the possible off-targeting effects. Overall, the two-

step screening strategy with integration of cell based binding using

Tet-on inducible ES-Endo cells allowed us to identify a novel E-

selectin thioaptamer (ESTA-1) that specifically binds to E-selectin

expressing on the endothelial cell surface (Fig. 1A). The major

pitfall of the cell-based approach might be a species difference

between origin of the cells for screening and experimental animal

model for in vivo validation of binding. The use of human cell or

cell lines for ligand screening can be well rationalized for eventual

biomedical application. However, ligand binding specificity and

affinity to the target molecule may not be well validated in

experimental animal models, disabling pre-clinical study. There-

fore, we tested ESTA-1 binding to E-selectin expressing vessels in

both human carcinoma pathology samples and 4T1 breast cancer

xenograft animal model. Despite species difference between

human and mouse, intravenously administered ESTA-1 was

found predominantly on the vessel surface of the tumor-associated

vasculature in mouse, (Fig. 4) possibly due to the sequence and

structural homology between human and mouse E-selectin [46].

This species independent binding of ESTA-1 to E-selectin, at least

in human and mouse, enables thorough characterization of this

ligand in a variety of mouse disease models for possible biomedical

application.

To determine the specificity of the ESTA-1 binding to E-

selectin, we carried out multiple approaches. First in vitro, pre-

incubation of an E-selectin monoclonal antibody with E-selectin

protein resulted in a disappearance of the band corresponding to

the ESTA-1/E-selectin complex in EMSA (Fig. 5C). In ex vivo, pre-

incubation of the E-selectin antibody with doxycycline induced

ES-Endo followed by addition of ESTA-1 showed reduction of

ESTA-1 binding in an antibody dose dependent manner (Fig. 1B).

Finally in vivo, pre-injection of E-selectin antibody prior to ESTA-1

injection lead to a reduction in ESTA-1 binding to tumor

vasculature in vivo (Fig. 4). Aside from antibody competition,

immunostaining of the cells treated with ESTA-1 with E-selectin

antibody that does not compete with the same binding site

demonstrated partial colocalization of ESTA-1 with E-selectin

(Fig. S6). Collectively, these results confirm the binding of ESTA-1

to E-selectin on the endothelial cells both in vitro and in vivo.

Although we focused on cancer in this study, versatile

application beyond cancer can be considered on the basis of

highly selective binding of ESTA-1 to E-selectin as well as a broad

array of diseases that are associated with pathological inflamma-

tion. Moreover, recent development of nanotechnology based

drug delivery and imaging would greatly benefit from selective,

high affinity, and less immunogenic ligands [47,48]. In fact,

nanoparticles conjugated with E-selectin ligands, both peptide and

monoclonal antibodies against E-selectin have shown efficient

imaging of inflammation in tumor and rheumatoid arthritis in

Figure 6. Effect of ESTA-1 binding on cell adhesion and cell
viability. ES-Endo were incubated with doxycycline (1000 ng/ml) for
5 hours followed by two concentrations of ESTA-1 (50 and 100 nM) for 30
minutes. sLex positive HL-60 cells were added to each well and incubated
at 4 uC for 30 minutes and cell adhesion was analyzed under 100x final
magnification (A). Error bars, mean 6 SEM; *,P,0.05, **, P,0.01 vs.
Dox+/ESTA-, Student’s t test. ES-Endo were induced with doxycycline
(2000 ng/ml) for 5 hours and incubated with culture media containing
ESTA-1 at indicated concentrations for 48 hours (B). The cells were
washed and incubated with MTT for 4 hours, and the absorbance at
570 nm was measured. The data was normalized by untreated cells
(without ESTA-1) as 100%. Experiments were repeated three times.
doi:10.1371/journal.pone.0013050.g006
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both an experimental animal model and humans [49,50,51]. Since

thioaptamers are virtually non-immunogenic and highly nuclease

resistant, the use of such a stable ligand for active targeting is likely

to enhance delivery efficacy of therapeutics to the target sites.

Together, to the best of our knowledge, this is the first report of an

aptamer ligand to demonstrate nanomolar affinity binding to E-

selectin, and presents a potential opportunity for broad application

of ESTA-1 for inflamed vessel targeting via E-selectin.

Supporting Information

Table S1 Comparison of TA binding to E-selectin expressing

endothelial cells. The table shows the calculated lowest free energy

for each 14 TA sequences, their relative binding, and relative

specificities to E-selectin expressing cells. The relative binding

affinity was determined by the amount of fluorescence detected

per field of view (final magnification 60x) in the cell based binding

assay and the relative specificity was defined by the degree of

doxycycline dose dependent effect on TA binding. + indicates the

binding specificity.

Found at: doi:10.1371/journal.pone.0013050.s001 (0.14 MB TIF)

Figure S1 ClustalW alignment of the selected sequences after

round 10. After the 10th round of selection, 35 clones were

selected and their sequences were identified. The PCR primer

regions in the sequences are underlined.

Found at: doi:10.1371/journal.pone.0013050.s002 (0.67 MB TIF)

Figure S2 Cladogram of the selected sequences after round 10.

The sequences from 10th round of selection were aligned by

ClustalW. Based on the Phylogeny of the sequences they were

grouped into 14 different families. A single sequence from each

family was taken for the 2nd step cell based screening.

Found at: doi:10.1371/journal.pone.0013050.s003 (0.21 MB TIF)

Figure S3 Common sequence motifs among 14 TA candidates

(A) The 14 sequences belonging to each family from the

cladogram are aligned by ClustalW program. (B) Common

sequence motifs identified among the 14 sequences.

Found at: doi:10.1371/journal.pone.0013050.s004 (0.47 MB TIF)

Figure S4 MFOLD predicted secondary structures of TA-20

and TA-31. The secondary structures of the selected sequences

were obtained using the MFOLD program (at ambient temper-

ature with ionic conditions of 150 mM Na+ and 5 mM Mg2+).

TA-20 and TA 31 show 4 secondary structures with free energy

values ranging between 27.98 to 27.44 kcal/mol and 28.64 to

27.94 kcal/mol respectively. Predicted structures of both TA-20

and TA-31 show a single stable stem loop in their structures.

Found at: doi:10.1371/journal.pone.0013050.s005 (0.49 MB TIF)

Figure S5 Immunohistochemical analysis for E-selectin expres-

sion on the vasculature of 4T1 tumor. Frozen sections (5 mm)

derived from 4T1 xenograft model were examined for E-selectin

expression.

Found at: doi:10.1371/journal.pone.0013050.s006 (1.31 MB TIF)

Figure S6 Colocalization of E-selectin expression and ESTA-1

binding to ES-Endo. ES-Endo cells were treated with doxycycline

(2000 ng/ml) and analyzed for ESTA-1 binding and E-selectin

expression using immunofluoroscence. Blue, Hoescht 33342; Red,

Cy3-labeled ESTA-1; Green, E-selectin.

Found at: doi:10.1371/journal.pone.0013050.s007 (0.60 MB TIF)
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