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Future	DirecFons	
	
•  Using	automated	tools	such	as	

CaPTk	to	extrapolate	ter>ary	tumor	
measurements	for	beOer	prognosis	
	
•  Apply	model	to	different	

ins>tu>ons'	cohorts	to	further	
validate	predic>on	accuracy		

•  Explore	other	radiomic	features	
that	more	accurately	predict	GBM	
outcomes	
		

Materials	
	
•  N=168	Jefferson	pa>ents		

	
•  Combined	with	Penn	

(n>300)	and	TCGA	(n=105)	

•  Selec>on	based	on	
availability	of:	

•  Pre-opera>ve	structural	
modali>es,	i.e.	T1,	T1-
Gd,	T2,	FLAIR	
•  Gene	expression	

(AgilentG4502A),	
•  miRNA	(Agilent	Human	

microRNA8x15K),	and	
•  DNA	methyla>on	

(Illumina	Infinium	
Human	Methyla>on	
BeadChip	27)	

•  Median	age	=	60	years	
(range	17-84)	

•  Median	post-resec>on	
survival	=	420	days		
(range	7-1731)	

•  Low	survival	group:	35	
pa>ents	with	survival	below	
the	33rd	percen>le	(<210	
days)	

•  High	survival	group:	35	
pa>ents	with	survival	above	
the	67th	percen>le	(>470	
days).	

Conclusions	
	
•  Combina>on	of	data	allows	for	

beOer	predic>on	of	survival	as	
compared	to	using	any	one	type	of	
dataset	individually.	

•  Combining	data	increases	the	
complexity	of	the	analysis.	

•  However,	the	boost	in	the	signal	
outweighs	the	increase	in	noise,	
while	predic>ng	survival.	
	
•  More	accurate	predic>on	models	

will	beOer	guide	treatment	op>ons	
	

Radiomic	Features	From	MulF-InsFtuFonal	Glioblastoma	MRI	Offers	
AddiFve	PrognosFc	Value	to	Clinical	and	Genomic	Markers	

Synergies	between	clinical,	genomic,	and	radiomic	features	should	improve	the	predic>ve	value	of	each	group	of	features	and	their	
combina>ons	through	a	prognos>c	classifier	based	on	machine	learning	in	pa>ents	with	glioblastoma.	

MulFmodal	Tumor	SegmentaFon	using	GLISTRboost 	
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ObjecFve	
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Label	Map	

GLISTRboost		[3]	
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•  10-fold	CV	to	test	the	predic>ve	
models	on	new	pa>ent	data.	

•  Accuracy	
•  Highest	when	using	

combina>on	of	all	data	
•  Lowest	with	clinical	data	

alone	
•  Highest	SVM	weights	

associated	with	radiomic	
data	

SVM	10-fold	CV	between	survival	groups	
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