
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Cardeza Foundation for Hematologic Research Sidney Kimmel Medical College 

3-2000 

The Pl(A2) polymorphism of integrin beta(3) enhances outside-in The Pl(A2) polymorphism of integrin beta(3) enhances outside-in 

signaling and adhesive functions. signaling and adhesive functions. 

K Vinod Vijayan 
Johns Hopkins University School of Medicine 

Pascal J. Goldschmidt-Clermont 
The Ohio State University 

Christine Roos 
The Ohio State University 

Paul F. Bray 
Thomas Jefferson University 

Follow this and additional works at: https://jdc.jefferson.edu/cardeza_foundation 

 Part of the Hematology Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 
Vijayan, K Vinod; Goldschmidt-Clermont, Pascal J.; Roos, Christine; and Bray, Paul F., "The Pl(A2) 
polymorphism of integrin beta(3) enhances outside-in signaling and adhesive functions." (2000). Cardeza 
Foundation for Hematologic Research. Paper 23. 
https://jdc.jefferson.edu/cardeza_foundation/23 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Cardeza Foundation for Hematologic Research by an authorized administrator of the 
Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/cardeza_foundation
https://jdc.jefferson.edu/jmc
https://jdc.jefferson.edu/cardeza_foundation?utm_source=jdc.jefferson.edu%2Fcardeza_foundation%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1059?utm_source=jdc.jefferson.edu%2Fcardeza_foundation%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Introduction
With few exceptions, defects in single genes do not
cause ischemic coronary disease, and it is likely that
contributions of multiple inherited and environmen-
tal influences culminate in the event recognized as a
myocardial infarction. Platelet aggregation mediated
by integrin αIIbβ3 (glycoprotein IIb-IIIa) plays a key role
in unstable ischemic coronary syndromes (1), and the
possibility that the PlA2 polymorphism of integrin β3

might contribute to the genetic component of ischemic
vascular disease has been given credence by some (2–5)
but not other (6, 7) clinical epidemiology studies (for
review, see ref. 8). Platelet studies on donors of known
PlA status have suggested a possible effect on platelet
function. For example, most anti-PlA1 antibodies com-
pletely inhibit the aggregation of PlA1/A1 platelets and
only retard or partially inhibit aggregation of PlA1/A2

platelets (9, 10). Feng et al. found that the PlA2 poly-
morphism was associated with a lower threshold of
platelet aggregation (11), and we have observed that
compared with PlA2-negative individuals, PlA2-positive
platelets have a lower threshold for αIIbβ3 activation
and α granule release (12).

Using platelets in formal studies of the consequences
of the PlA2 polymorphism on αIIbβ3 function presents
several challenges. First, the marked heterogeneity in in
vitro functional assays among ostensibly normal donors
presents difficulties in the detection of small differences.
An example of this heterogeneity comes from estimates
of the Kd for fibrinogen binding to αIIbβ3, which have var-

ied by 2 orders of magnitude (13–15). Secondly, age,
medications, gender, cigarette smoking, co-morbid con-
ditions, or other unknown variables affect platelet func-
tion and limit both the interpretation of the data
obtained and the pool of potential donors. Lastly, PlA2-
homozygous individuals represent less than 2% of the
population (16), making these platelets difficult to
obtain. Stable cell lines overexpressing the αIIbβ3 have
been used to elucidate many of the kinetic and signaling
properties of αIIbβ3 receptor function (17, 18). The aim
of the current study was to determine whether the PlA2

polymorphism could influence functions relevant to the
process of thrombosis by using Chinese hamster ovary
(CHO) and 293 cell lines overexpressing the 2 PlA forms
of αIibβ3. We found that PlA2-expressing cells demon-
strated increased adhesive functions compared with
their PlA1-expressing counterparts, and these differences
appear to be the result of a differential dependency on
outside-in signaling pathways. These functional differ-
ences provide physiologic support for the epidemiolog-
ic association between the genetic and platelet compo-
nents of coronary artery disease.

Methods
Materials. The CHO cell line CHO–K1 (CCL-61) and
human embryonal kidney cell line 293 (CRL 1573) were
obtained from the American Type Culture Collection
(Rockville, Maryland, USA). All reagents that do not
specify the name of the manufacturers were from
Sigma Chemical Co. (St. Louis, Missouri, USA).
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naling mechanism sensitive to receptor occupancy. Thus, the PlA2 polymorphism altered integrin-
mediated functions of adhesion, spreading, actin cytoskeleton rearrangement, and clot retraction.
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Generation of cell lines. The cDNA for β3 (19) corre-
sponding to the PlA1 polymorphism was mutated to
code for the PlA2 polymorphism using the Altered Sites
II in vitro Mutagenesis Kit (Promega Corp., Madison,
Wisconsin, USA) as described previously (20) and
sequenced to confirm authenticity. The cDNAs for αIIb

(21) and for β3 (either PlA1 or PlA2) were engineered into
the LK444 vector (22) and used to transfect CHO cells.
In addition, the cDNA for αIIb was engineered into the
pZeoSV2 vector (Invitrogen Corp., Carlsbad, Califor-
nia, USA) and the cDNA for β3 (either PlA1 or PlA2) engi-
neered into the pcDNA3.1 vector (Invitrogen Corp.)
and used to transfect 293 cells. Both CHO and 293 cells
were transfected using lipofectin (Life Technologies
Inc., Gaithersburg, Maryland, USA) (23) with the
respective plasmids for both αIIb and β3 subunits. Con-
trol CHO cells (designated LK444) were transfected
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Figure 1
Characterization of stable αIIbβ3–expressing CHO cell lines. (a) Flow
cytometric analysis. LK444, A1, and A2 cell lines were labeled with 3
µg/mL isotype-matched control IgG (upper panel), 3 µg/mL α IIbβ3

complex–specific mAb P2 (middle panel), or 2 µg/mL SZ21 mAb that
distinguishes PlA1 from PlA2 (lower panel). LK444, solid line; A1, heavy
dotted line; A2, fine dotted line. (b) Western immunoblotting. Fifteen
micrograms of CHO cell lysates or 2 µg of platelet lysates were sepa-
rated by nonreduced SDS-PAGE, transferred to nitrocellulose, and
probed with either 132.1 (α IIb-specific) or AP3 (β3-specific) mAbs.

Figure 2
Binding to soluble fibrinogen. LK444 (open squares), A1 (open dia-
monds), and A2 (open circles) cells were incubated with 5 µM LIBS-
6 to activate α IIbβ3 and varying concentrations of FITC-labeled fib-
rinogen, then analyzed by flow cytometry. The graph is expressed as
SEM of 4 experiments. Best-fit curves for LK444, A1, and A2 cells
were generated using the logarithmic mode in CA Cricket Graph III
version 1.5.2. The inset shows an expanded view of the fibrinogen
concentrations between 0 and 1 µg/mL.

with the LK444 parental vector whereas the control 293
cells (designated Pc/Z) were transfected with empty
pcDNA3.1 and pZeoSV2 vectors. Stable CHO cell lines
expressing the neomycin resistance gene were selected
in the presence of 250 µg/mL G418 (Life Technologies)
and cultured in αMEM (Life Technologies) containing
10% FBS (Gemini Bio-Products, Calabasas, California,
USA.), and antibiotics (penicillin, streptomycin,
amphotericin; Life Technologies). Stable 293 cell lines
expressing the neomycin and zeocin resistance genes
were selected in the presence of 300 µg/mL G418 and
100 µg/mL zeocin (Invitrogen Corp.) and cultured in
DMEM (Life Technologies) containing 10% FBS con-
taining the same antibiotics as above. αIIbβ3-expressing
cells were sorted by flow cytometry using the αIIbβ3

complex-specific mAb, P2 (Immunotech, Marseilles,
France) to select for high and equivalent expression.
These cells were pooled and used for the study.

Flow cytometry. CHO and 293 cells were grown to
70–80% confluency and detached using 0.05% trypsin
(Life Technologies). After neutralization with complete
media, the cells were suspended in PBS (pH = 7.4; 0.137
M NaCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, 2.7 mM
KCl) with 2% BSA and incubated with either 3 µg/mL
P2, 2 µg/mL anti-β3 mAb (clone SZ21; Immunotech),
or 3 µg/mL control mouse IgG (Pierce Chemical Co.,
Rockford, Illinois, USA) for 1 hour on ice. The cells
were washed, incubated with a secondary goat anti-
mouse FITC-labeled antibody, and analyzed on a 
FACScalibur flow cytometer (Becton Dickinson, San
Jose, California, USA), with fluorescence data acquired
in the logarithmic mode and light scattering data
acquired in the linear mode (24). The mean channel



number, which corresponded to cell-fluorescence
intensity, was used as the measure of surface-expressed
αIIbβ3 for the whole population.

Western blot analysis. Cells were lysed in 15 mM
HEPES, pH 7.0, 145 mM NaCl, 0.1 mM MgCl2, 10
mM EGTA, 1% Triton X-100, 1 mM NaVO4, 250
µg/mL 4-2-aminoethyl-benzene sulfonylfluoride, 15
µg/mL of protease inhibitors chymostatin, antipain,
and pepstatin, and 55 µg/mL of the protease
inhibitor leupeptin. Fifteen micrograms of cell lysate
or 2 µg platelet lysate were separated in 7% SDS poly-
acrylamide gels under nonreducing conditions,
transferred to nitrocellulose, and then subjected to
Western blotting using a 1:500 dilution of mono-
clonal anti-α IIb (132.1) and monoclonal anti-β3 (AP-
3) (gifts from Peter Newman, Blood Research Insti-
tute, Milwaukee, Wisconsin, USA) or 1:1000 dilution
of SZ21 antibody. After the addition of horseradish
peroxidase–labeled goat anti-mouse (1:3000 dilu-
tion), blots were developed using enhanced chemilu-
minescence (ECL; Amersham Life Science, Piscat-
away, New Jersey, USA) (25).

Binding to soluble fibrinogen. CHO cells were
trypsinized and rinsed as above, and 5 × 105 cells were
resuspended in 50 µL Tyrode’s buffer (138 mM NaCl,
2.9 mM KCl, 12 mM NaHCO3, 0.36 mM Na2HPO4, 5.5
mM glucose, pH 7.4) containing 1 mg/mL BSA, 1 mM
MgCl2, 0.1 mM CaCl2, and 20 mM HEPES, pH 7.4. The
cells were incubated with varying concentrations of
FITC-conjugated fibrinogen (0–100 µg/mL) in the
presence or absence of 0.5 µM α IIbβ3-activating mAb
LIBS-6 (gift of Mark Ginsberg, The Scripps Research
Institute, La Jolla, California, USA) for 30 minutes at
22°C. Cells were analyzed for FITC fluorescence by
flow cytometry. Specific fibrinogen binding was
defined as the difference in mean fluorescence
between LIBS-6–activated and nonactivated cells.

Adhesion to immobilized ligands. Cells were trypsinized
and rinsed as above, suspended in 0.01% BSA in
Tyrode’s buffer for adhesion studies to fibrinogen
(Enzyme Research Laboratories Inc., South Bend, Indi-
ana, USA) or in 0.01% BSA in HBSS (136 mM NaCl, 5.3
mM KCl, 0.33 mM Na2HPO4, 0.44 mM KH2PO4, 5.5
mM glucose, pH 7.4) for adhesion studies to fibronectin
(Life Technologies). Cells were further labeled with
51chromium (51Cr; Amersham) by incubating in 25
µCi/200 µL at 37°C for 1 hour with gentle shaking.
Cells were washed 3 times with Tyrode’s buffer or HBSS
and resuspended at a concentration of 3.5 × 105

cells/mL in Tyrode’s buffer or HBSS with 1.8 mM CaCl2

and 0.49 mM MgCl2. Adhesion to immobilized fibrino-
gen and fibronectin were performed as described previ-
ously (26). Twenty-four–well tissue culture plates (Fal-
con, Lincoln Park, New Jersey, USA) were coated with
varying concentrations (2.5, 5, 12.5, and 20 µg/mL) of
fibrinogen or fibronectin in Tyrode’s buffer or HBSS,
respectively, for 2 hours at 22°C. Wells were washed
twice with Tyrode’s buffer or HBSS and incubated with
500 µL of 5 mg/mL of heat-inactivated BSA for 2 hours
at 22°C, with constant shaking on a platform shaker to
block nonspecific binding to the plates. Control wells
were coated only with 500 µL of 5 mg/mL heat-inacti-
vated BSA. Before the adhesion assay the wells were
washed twice with Tyrode’s buffer or HBSS. For adhe-
sion studies 0.7 × 105 51Cr-labeled cells in 0.2 mL were
added to each well and incubated at 37°C for 5 minutes.
Unbound cells were removed by inverting the plates.
Each well was washed 3 times with 200 µL of Tyrode’s
buffer or HBSS by briskly tilting the plate 10 times at an
angle of 90° along an axis parallel to that of the length
of the plate, followed by 10 times along an axis perpen-
dicular to that of the length of the plate. The buffer was
removed by inverting the plate, and the excess liquid was
dabbed on a filter paper. Note that each of the cell lines
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Figure 3
Adhesion of CHO cell lines to immobilized ligands. The 51Cr-labeled LK444 (open squares), A1 (open diamonds), and A2 (open circles) cells
were allowed to adhere to immobilized fibrinogen (a) or fibronectin (b) for 5 minutes. The results are expressed as ± SEM for 5–21 obser-
vations. Compared with A1 cells, A2 cells demonstrated 80% greater adhesion at 2.5 µg/mL (P < 0.001), 60% greater adhesion at 5 µg/mL
(P < 0.001), 31% greater adhesion at 12.5 µg/mL (P < 0.001), and 61% greater adhesion at 20 µg/mL (P = 0.001). There was no difference
in adhesion between A1 and A2 cells at any concentration of fibronectin (P ≥ 0.22). (c) Mean fluorescence intensity of P2 binding (αIIb-spe-
cific) to the 3 CHO cell lines determined within 24 hours of the adhesion assay.



under comparison was present on the same plate and
hence exposed to identical adhesion and washing con-
ditions. The bound cells were lysed with 0.1% SDS, and
the lysate was counted on a gamma counter. The spe-
cific percent of cells bound to fibrinogen in each well
was calculated as: (cpm from fibrinogen/fibronectin-
coated wells) – (cpm from BSA-coated wells) × 100/total
cpm added to each well.

Specificity of adhesion to fibrinogen was investigated
by incubating the 51Cr-labeled cells for 10 minutes with
1 of the following inhibitors: 2.1 µg/mL 10E5, a block-
ing mAb against αIIbβ3 (gift from Barry Coller, Mt. Sinai
Hospital, New York, New York, USA); 5 µM integrelin,
a blocking cyclic peptide specific for αIIbβ3 (gift from
COR Therapeutics Inc. South San Francisco, California,

USA); 200 µM RGD peptide; 10 µg/mL anti-αvβ3 mAb
LM609 (Chemicon International Inc., Temecula, Cali-
fornia, USA); 200 µM RGE peptide; or 10 µg/mL mouse
IgG. In certain experiments 51Cr-labeled cells were incu-
bated for 30 minutes with either 10 µM cytochalasin D,
12 µM bisindolylmaleimide, or control DMSO. A 5-
minute adhesion assay was then performed as described
above. In certain experiments 10- or 15-minute adhe-
sion assays were also performed.

Confocal microscopy. Glass coverslips were coated with
12.5 µg/mL fibrinogen in Tyrode’s buffer for 2 hours at
22°C. Fibrinogen-coated coverslips were incubated with
105 CHO cells in 100 µL for 5 minutes at 37°C.
Unbound cells were removed and cells fixed with 3.5%
paraformaldehyde for 8 minutes, permeabilized with
0.1% NP-40 for 15 minutes, and transferred to PBS con-
taining 10% FCS for 20 minutes at 22°C. Cells were
stained for actin with 0.6 µM rhodamine-conjugated
phalloidin (Molecular Probes, Eugene, Oregon, USA)
for 30 minutes at 22°C. The coverslips were washed
twice and mounted in permafluor (Lipshaw Immunon,
Pittsburgh, Pennsylvania, USA). Fluorescent images
were obtained with Zeiss LSM 410 confocal imaging
system attached to a Zeiss C-apo ×40 water immersion
lens microscope (Carl Zeiss Inc., Thornwood, New York,
USA). The degree of fluorescence and the area of cell
spreading were quantitated by scoring for individual
cells using the Metamorph image analysis system (Uni-
versal Imaging Corp., Westchester, Pennsylvania, USA).

Clot retraction assay. CHO cells grown to confluence
were harvested as described above and resuspended in
αMEM containing 28 mM CaCl2 and 25 mM HEPES,
pH 7.4. A total of 4 × 106 cells in 300 µL were mixed
with 200 µL of fibronectin-depleted plasma, 250 µg of
fibrinogen, 5 µg of aprotinin in a 75 × 100-mm glass
tube (Fisher Scientific, Pittsburgh, Pennsylvania, USA).
Clot formation was initiated by the addition of 2.5 U
thrombin (Sigma). After incubation at 37°C for vary-
ing time periods, clot retraction was quantitated by
measuring the volume of liquid not incorporated into
the clot, as described (27). The percentage of clot retrac-
tion was calculated as: (amount of liquid collected)/
(the total amount of liquid before the clot) × 100. Per-
centage of clot retraction was normalized for CHO cell
αIIbβ3-receptor density by dividing by the mean fluo-
rescence intensity (clot retraction units). In certain
experiments, cells were pretreated for 15 minutes with
10 µg/mL of LM609 or 5 µM of integrelin.

Tyrosine phosphorylation of pp125FAK. Twenty-four–well
tissue culture plates were coated with either 12.5
µg/mL of fibrinogen or 2.5 mg/mL heat-treated BSA.
Two hundred microliters of 3.5 × 105 CHO cells/mL
were added to each well and incubated for 5 minutes at
37°C in 5% CO2. The adherent cells were lysed with ice-
cold lysis buffer (described above), and the lysate was
incubated for 30 minutes on ice, clarified by centrifu-
gation at 14,000 g for 20 minutes, and the protein con-
tent determined using then Bio-Rad protein assay kit
(Bio-Rad Laboratories, Inc., Hercules, California, USA).
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Figure 4
Adhesion of A1 and A2 CHO cells is αIIbβ3 specific. Adhesion was as
in Figure 3, except that A1 and A2 cells were first incubated for 10
minutes with buffer or 2.1 µg/mL 10E5, 10 µg/mL LM609, 5 µM
integrelin, 200 µM RGD peptide, or 200 µM RGE peptide. Cells were
allowed to bind for 5 minutes before washing. Binding without
inhibitors is displayed as 100%. The experiment was performed 3
times; error bars were too narrow to be seen with the 10E5, integre-
lin, and RGD inhibition. Binding of A1 and A2 cells after inhibition
with 10E5, integrelin, and RGD was equivalent to basal binding of
the LK444 control line.



One hundred fifty microliters of proteins from each
lysate were precleared with protein A-Sepharose (Phar-
macia Biotech, Piscataway, New Jersey, USA) and incu-
bated with 2 µg of anti-pp125FAK antibody (Upstate
Biotechnology Inc., Lake Placid, New York, USA) for 16
hours at 4°C and precipitated using protein A-
Sepharose beads. After washing the beads 3 times with
ice-cold lysis buffer, proteins were eluted in boiling
Laemmli sample buffer containing 1 mM orthovana-
date. Proteins were separated on a 7.5% SDS-polyacry-
lamide gel, transferred to nitrocellulose, probed with
antiphosphotyrosine 4G10 antibody (Upstate Biotech-
nology) or anti-pp125FAK antibody, and developed as
described above. The signals were scanned using Pho-
toShop 5 software and the densitometric quantitation
performed using NIH Image software [developed at the
Research Services Branch of the National Institute 
of Mental Health in Bethesda, Maryland, USA
(http://rsb.info.aov/nih-image/default.html)].

Results
Overexpression of the PlA1 and PlA2 isoforms of αIIbβ3 in CHO
cells. Wild-type CHO cells were stably transfected with
expression plasmids containing the cDNAs for αIIb and
β3 (either the PlA1 or Pl A2 forms) or the empty parental
LK444 vector. Flow cytometric analysis with a mAb spe-
cific for the αIIbβ3 complex revealed equivalent levels of
receptor expression on the cell lines generated with the
PlA1 and PlA2 isoforms, designated as lines A1 and A2,
respectively (Figure 1a). The neomycin-resistant con-
trol CHO cells, designated LK444, did not express
detectable αIIbβ3. The mAb SZ21 was used to distin-
guish the 2 forms of β3 because it binds the PlA2 iso-
form of β3 with a much lower affinity than the PlA1 iso-
form (25). In addition, Western immunoblot analysis
demonstrated the presence of αIIb and β3 in cell lysates
of A1 and A2 cells, but not LK444 cells, (Figure 1b). As
with the flow cytometry, the PlA1 form, but not PlA2

form, of β3 could be immunodetected using SZ21 anti-
body (not shown).

Binding to soluble fibrinogen. We assessed initially
whether the PlA2 isoform was in a conformation favor-
ing soluble ligand binding. Similar to previous studies
where αIIbβ3-expressing CHO cells did not bind soluble
fibrinogen in response to physiologic agonists (18), we
observed no binding of soluble fibrinogen or the mAb
PAC-1 (specific for the activated conformation of
αIIbβ3) to the “resting” states of either the A1 and A2
cell lines (data not shown). In addition, neither the
thrombin receptor-activating peptide (100 µM) nor
epinephrine (20 µM) caused fibrinogen binding to
either cell line. However, the αIIbβ3-activating mAb
LIBS-6 induced equivalent fibrinogen binding to both
the PlA1 and PlA2 CHO cell lines, both at subsaturating
(Figure 2) and saturating (20–100 µg/mL; data not
shown) fibrinogen concentrations. The concentration
of fibrinogen producing half-maximal binding
appeared to be no different for A1 cells and A2 cells.
Thus, although both isoforms were functional in CHO

cells, neither the resting nor activated conformation of
PlA2 resulted in greater soluble fibrinogen binding com-
pared with PlA1, and we conclude that there is no sig-
nificant difference in the binding kinetics of soluble
fibrinogen to the 2 isoforms of β3.

Adhesion to immobilized ligands. Because in vivo throm-
bus growth requires platelet adhesion to fibrinogen, we
next examined the ability of αIIbβ3-expressing CHO
cells to bind immobilized ligands. Both A1- and A2-
expressing cells bound in significantly greater numbers
than did the LK444 to immobilized fibrinogen, sug-
gesting αIIbβ3 mediated adhesion (Figure 3a). Whereas
there was a slight trend toward greater binding to sol-
uble fibrinogen in A2 cells compared with A1 (Figure
2), significantly greater A2 cell adhesion was observed
over a range of immobilized fibrinogen concentrations
(P ≤ 0.001). In contrast, there was equivalent adhesion
of A1 and A2 cells to fibronectin (a ligand for endoge-
neous CHO cell α5β1) (Figure 3b), suggesting that the
differential adhesion due to the PlA polymorphism was
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Figure 5
Characterization of stable α IIbβ3-expressing 293 cell lines. (a) Flow
cytometric analysis. Pc/Z, A1.2, and A2.2 cell lines were labeled with
3 µg/mL isotype-matched control IgG (upper panel), 3 µg/mL αIIbβ3

complex–specific mAb P2 (lower panel). Pc/Z, solid line; A1.2, heavy
dotted line; A2.2, fine dotted line. (b) Western immunoblotting of
the 293 cell lines. Fifteen micrograms of 293 cell lysates or 2 µg of
platelet lysates were separated by nonreduced SDS-PAGE, trans-
ferred to nitrocellulose, and probed with 132.1 (α IIb-specific), AP3
(β3-specific), or SZ21 (PlA1-specific) mAbs.



ligand specific. Similarly, no difference in adhesion to
an immobilized anti-β3 antibody (AP3) was observed
between A1 and A2 cells (data not shown). Surface
expression of αIIbβ3 was not detectably different
between the A1 and A2 cell lines and could not account
for the observed difference in adhesion (Figure 3c).
Specificity of binding to fibrinogen by both the A1 and
A2 cell lines was further demonstrated by more than
90% inhibition with αIIbβ3-specific blocking antibody
10E5, integrelin, and RGD peptides (Figure 4). RGE
peptides showed no inhibition, and the LM609 mAb,
which recognizes the chimeric hamster-human αvβ3

receptor, inhibited little of the A1 and A2 cell adhesion
to fibrinogen (Figure 4), indicating adhesion was medi-
ated primarily through αIIbβ3. In addition, these assays
were performed in the presence of 1.8 mM calcium and
no manganese, conditions not permissive for the
αvβ3–mediated adhesion to fibrinogen (28).

Studies in 293 cells. Although CHO cell lines were gen-
erated by cell sorting and should not have been subject
to clonal variation, we generated a second set of cell
lines to confirm the functional difference associated
with the PlA2 polymorphism. Wild-type 293 cells were
stably transfected as described in Methods. Equivalent
levels of receptor expression on the cell lines generated
with the PlA1 (called A1.2) and PlA2 (called A2.2) iso-
forms were seen by flow cytometry (Figure 5a). Both
A1.2 and A2.2 cells, but not the vector-only control
(called Pc/Z) cells, showed αIIb and β3 with Western blot
analysis. SZ21 antibody was used to distinguish the 2
forms of β3 (Figure 5b).

Both the A1.2 and A2.2 cells bound in significantly
greater numbers than the Pc/Z to immobilized fib-
rinogen (Figure 6). A2.2 cells exhibited greater binding
over A1.2 cells after 5 minutes over a range of immobi-
lized fibrinogen concentrations. (Figure 6a). The

observed difference in adhesion between A1.2 and A2.2
cells was not because of difference in their surface
expression of αIIbβ3 (Figure 6b). Furthermore, this
adhesion was abolished by the 10E5 antibody but not
by LM609 antibody or mouse IgG (Figure 6c). Thus, 2
independent sets of cell lines from 2 different parental
strains yielded similar data regarding greater adhesion
of PlA2-expressing cells compared with PlA1-expressing
cells. This makes clonal variation a highly unlikely
explanation for these data and greatly strengthens the
conclusion that the different adhesive properties are
intrinsic to the PlA polymorphism.

Role of actin cytoskeleton in the differential adhesion to fib-
rinogen. During the course of these studies, it appeared
that the bound A2 cells exhibited a different morphol-
ogy than the bound A1 cells. The actin cytoskeleton
plays an important role in a large number of cellular
functions, including cell adhesion, shape, and motility
(29) and is rapidly remodeled in response to external
stimuli. We used confocal microscopy of rhodamine-
phalloidin–stained actin and observed more F actin in
the periphery of A2 cells compared with A1 cells (Fig-
ure 7a, upper row). With additional time for adhesion,
substantially greater cell spreading was observed in the
A2 cells compared with the A1 cells (Figure 7a, lower
row). Quantitative image analysis revealed a greater
actin staining (P < 0.001; Figure 7b) and greater surface
area (P = 0.01; Figure 7b) for A2 cells adhered to fib-
rinogen compared with A1 cells. Figure 8a shows how
cytochalasin D abolishes the difference in adhesion
between the A1 and A2 cell lines over a range of fib-
rinogen concentrations at the 5-minute time point.
Cytochalasin D inhibited both A1 and A2 cell adhesion,
but the overall percent of inhibition was greater in the
A2 cells. The inhibitory effects of cytochalasin D on
both cell lines was time dependent and largely lost after

798 The Journal of Clinical Investigation | March 2000 | Volume 105 | Number 6

Figure 6
Adhesion of 293 cell lines to immobilized fibrinogen. (a) Pc/Z (open squares), A1.2 (open diamonds), and A2.2 (open circles) cell adhesion
was performed as in Figure 3. The results are expressed as ±SEM of 9 observations for all concentrations. Compared to A1 cells, A2 cells
demonstrated 26% greater adhesion for 2.5 µg/mL, 25% greater adhesion for 5 µg/mL, 23% greater adhesion for 12.5 µg/mL, and 37%
greater adhesion for 20 µg/mL. The increased adhesion of A2 over A1 was significant at P = 0.005 for 2.5 µg/mL, P = 0.05 for 5 µg /mL, P
= 0.006 for 12.5 µg/mL. (b) Mean fluorescence intensity of P2 binding to the three 293 cell lines, determined within 24 hours of the adhe-
sion assay. (c) Inhibition of A1.2 and A2.2 cell lines. A1.2 and A2.2 cells were first incubated for 10 minutes with buffer or 2.1 µg/mL 10E5,
10 µg/mL LM609, 10 µg/mL mouse IgG. Cells were allowed to bind for 5 minutes before washing. Binding without inhibitors is displayed
as 100%. Results are expressed as ± SEM of 3 observations. Error bars were too narrow to be seen with the 10E5 inhibition.



the 5-minute time point (Figure 8b), perhaps because
of the recruitment of other noncytoskeletal mecha-
nisms that stabilize cell adhesion. However, the ability
of cytochalasin D to eliminate the adhesion difference
between A1 and A2 cells persisted at these later time
points. Surface expression of αIIbβ3 was not detectably
different between the A1 and A2 cell lines in these
experiments (Figure 8c). These findings indicate that

an intact cytoskeletal architecture is required for the
rapid stable adhesion of both A1 and A2 cells to fib-
rinogen, but the PlA2 isoform of β3 demonstrates a
more robust and brisk actin reorganization.

Analysis of signaling pathways that influence adhesion. We
investigated postreceptor occupancy signaling path-
ways that might affect reorganization of the actin
cytoskeleton and hence, cell adhesion. Focal adhesion
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Figure 7
(a) Confocal microscopy of the actin cytoskeleton in CHO cells adhered to fibrinogen. Cells adherent to coverslips coated with fibrinogen were
stained with rhodamine phalloidin to detect F actin. A greater actin polymerization was seen for A2 cells bound to fibrinogen for 5 minutes com-
pared with A1 cells (upper row). After 15 minutes of incubation, greater spreading was seen for A2 compared with A1 cells (lower row). (b) The
morphometric analysis of actin staining and cell spreading is shown to the right in the upper and the lower graphs, respectively. At 5 minutes F-actin
staining of A2 compared with A1 cells was significantly greater (P < 0.001). Actin staining is shown as arbitrary units of fluorescence defined by
Metamorph software. Results are expressed as ± SEM of values obtained from 50 cells. At 15 minutes the greater surface area for A2 cells compared
with A1 cells adhered to fibrinogen was significant at P = 0.01. Surface area is shown as arbitrary units of cell area. Results are expressed as ± SEM
of values obtained from 35 cells.

Figure 8
Effect of cytochalasin D on CHO cell adhesion. Cells were treated with either DMSO or 10 µg/mL of cytochalasin D for 30 minutes, washed
twice, and adhesion assays performed as above. (a) Adhesion for 5 minutes to different concentrations of fibrinogen. *P ≤ 0.008 for A1 vs. A2;
†P > 0.46 for A1 vs. A2; #P < 0.03 for A1 (DMSO vs. cyto-D), and P < 0.001 for A2 (DMSO vs. cyto-D). The results are expressed as ± SEM of 6
observations. (b) Adhesion to 12.5 µg/mL fibrinogen for different time points. *P ≤ 0.007 for A1 vs. A2; †P ≤ 0.08 for A1 vs. A2; #P ≤ 0.0008
for A1 and A2 (DMSO vs. cyto-D at 5 minutes), and P > 0.19 for A1 (DMSO vs. cyto-D at 10 and 15 minutes), and P = 0.06 for A2 (DMSO vs.
cyto-D at 10 and 15 minutes). (c) Mean fluorescence intensity of P2 binding to the 3 CHO cell lines. Error bars are too narrow to be seen.



kinase, pp125FAK, a cytoplasmic tyrosine kinase, is an
important regulator of signaling in focal contacts. Cell
spreading and focal contact is dictated partly by the
tyrosine phosphorylation status of this protein, which
in turn is regulated by protein kinase C (PKC) (30). Incu-
bation of the A1 and A2 cells with the PKC inhibitor,
bisindolylmaleimide, caused a greater inhibition in
adhesion of A2 cells (83.3%; P = 0.02) than A1 cells
(32.7%; P = 0.173) (data not shown), so we assessed
pp125FAK phosphorylation in the CHO cell lines (Figure
9a). A small but consistent increase in pp125FAK phos-
phorylation was observed in the A2 cells compared with
the A1 cells that had adhered to fibrinogen (Figure 9a,
lane 7 versus lane 8). This difference depended upon
adhesion to fibrinogen because it was not observed in
suspension cells (Figure 9a, lanes 1–3) or in cells incu-
bated on albumin (Figure 9a, lanes 4–6). In most exper-
iments LK444 cells showed little pp125FAK phosphory-
lation. Figure 9b shows the ratio of phosphorylated
pp125FAK to immunoprecipitated pp125FAK in 4 experi-
ments. Although the difference in signals between A1
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Figure 9
pp125FAK tyrosine phosphorylation of CHO cells. (a) Immunoblot
showing tyrosine phosphorylation of pp125FAK (P-FAK). LK444, A1,
and A2 cells either in suspension (lanes 1–3), or adhered to BSA
(lanes 4–6) or fibrinogen (lanes 7–9) were solubilized. P-FAK was
immunoprecipitated, separated by SDS-PAGE, and blotted with an
antiphosphotyrosine antibody (upper panel). The lower panel shows
the same filter stripped and reprobed with an anti–P-FAK antibody.
(b) Densitometric quantitation of the P-FAK phosphorylation (ratio
of tyrosine phosphorylation P-FAK to total P-FAK immunoprecipi-
tated in arbitrary units) in 4 different experiments. FAK phosphory-
lation in panel a is experiment 1 displayed in b.

and A2 cells was modest, this data raised the possibility
that downstream αIIbβ3 signaling might be different in
A2 cells compared with A1 cells.

Fibrin clot retraction represents another outside-in
signaling (downstream) cellular function involving
αIIbβ3 that also depends on actin cytoskeletal rearrange-
ment. We found that both A1 and A2 cells, but not
LK444 cells, could retract a fibrin clot (Figure 10a).
Compared with A1 cells, A2 cells exhibited a small but
significant increase in fibrin clot retraction at all time
points. This clot retraction could be inhibited by an
αIIbβ3-specific peptide, but not by a blocking anti-αvβ3

antibody (Figure 10, b and c). These clot retraction
studies provided additional evidence for functional dif-
ferences in A1 and A2 cells that was downstream of
receptor occupancy.

Discussion
In this work we have studied the adhesive and signal-
ing properties of cell lines expressing the PlA1 or PlA2

polymorphism of integrin β3. Compared with PlA1-
expressing cells, the PlA2-expressing cells exhibited
increased adhesion to immobilized fibrinogen with
greater cell spreading and F-actin content and
increased clot retraction, all of which suggest differ-
ences in outside-in signaling events. Should similar
properties hold true in platelets, this genetic alteration
of integrin β3 might account for some component of
the reported associations between PlA2 and acute coro-
nary thrombotic syndromes.

We used a CHO and 293 cell system to address func-
tional differences between the PlA1 and PlA2 forms of
αIIbβ3 to overcome some of the limitations of platelets,
and several issues related to our experimental condi-
tions should be mentioned. First, because cell lines
derived from single-cell clones can acquire properties
that might affect function beyond that induced by the
exogenously expressed cDNAs, we generated stable
populations of overexpressing CHO and 293 cells by
cell sorting. These “pools” of clones make genetic drift
a much less likely explanation for the differences we
observed. Through cell sorting, we maintained the
equivalent expression of αIIbβ3 receptors and did not
perform studies if there was a greater than 10% differ-
ence in surface density of αIIbβ3 between the A1 and A2
cell lines. Importantly, we always observed greater A2
cell binding even when the surface density of αIIbβ3 was
greater on A1 compared with A2 cells (data not shown),
further substantiating a qualitative rather than quan-
titative difference in the 2 β3 isoforms. Second, the low
levels of chimeric hamster-human αvβ3, expressed in
our cell lines had little contribution to cell adhesion, as
demonstrated by the minor degree of inhibition by
LM609. The use of a calcium-containing buffer, which
does not support αvβ3-fibrinogen binding (28), may
have contributed to the αIIbβ3 specificity of our studies.
Lastly, although these studies were performed under
static conditions, shear was applied during the wash-
ing procedure. Indeed, in complementary studies (31),



shear was found to augment the difference in A2 cell
binding to fibrinogen relative to A1 cells.

The Leu→Pro substitution at amino acid 33 of inte-
grin β3 results in a conformation change in the extra-
cellular domain (32). With respect to soluble fibrinogen
at subsaturating concentrations, we found this change
in conformation had no effect on binding in either the
resting or activated state of the receptor (Figure 2). This
argues against any difference in the apparent Kd

between the 2 forms of β3 for fibrinogen. This was con-
sistent with findings by Bennett et al., who found no
difference in soluble fibrinogen-binding kinetics to
platelets from donors of PlA1/A1 and PlA1/A2 genotype
(33). Because thrombus formation involves platelet
binding to both soluble and immobilized fibrinogen, we
studied this latter process and found significantly
greater αIIbβ3-mediated binding of A2 cells compared
with A1 cells, regardless of the concentration of immo-
bilized fibrinogen used or the time of incubation. Adhe-
sion data (Figure 6a) from a second set of cell lines gen-
erated in a different parental strain further confirmed
the functional differences between the 2 forms of β3. In
contrast, adhesion of CHO cells to fibronectin (a ligand
for endogeneous α5β1) showed no difference by PlA

genotype. Immobilization of fibrinogen at the densities
used in these experiments is known to result in a con-
formation that differs significantly from that of soluble
fibrinogen (34), and this might explain the difference
we observed in binding between the soluble and immo-
bilized forms (Figures 2 and 3).

Our findings indicated that the increased adhesion
of A2 cells was due to a greater reorganization of the
actin cytoskeleton. This conclusion is based on: (a)
greater F-actin content seen in the periphery of A2 cells
adhered to fibrinogen for 5 minutes compared with A1
cells (Figure 7); (b) greater spreading of A2 cells com-
pared with A1 cells after 15 minutes (Figure 7); and (c)
the difference in adhesion between A1 and A2 cells was

abolished in the presence of cytochalasin D (Figure 8).
Rapid remodeling of cytoskeletal machinery in A2 cells
compared with A1 could also explain the greater clot
retraction seen in A2 cells. Certain lines of evidence
suggested the greater reorganization of the actin
cytoskeleton seen in the A2 cell line was because of dif-
ferences in postreceptor occupancy signaling. A small
increase in pp125FAK phosphorylation was consistent-
ly observed in A2 cells adhered to fibrinogen compared
with A1 cells (Figure 9, a and b). This difference
occurred only after ligand binding and required inte-
grin αIIbβ3. Tyrosine phosphorylation of pp125FAK rep-
resents one of the early-recognized events during out-
side-in signaling, and our findings are consistent with
evidence that tyrosine phosphorylation of pp125FAK

correlates with cell spreading, focal adhesion plaque
formation, and stress fiber assembly (35). In addition,
A2 cells demonstrated greater reduction in adhesion
after PKC inhibition with bisindolylmaleimide.
Because PKC regulates tyrosine phosphorylation of
pp125FAK and spreading in platelets (30), a theoretical
mechanism to explain these data would be as follows:
compared with A1 cells, adhesion of A2 cells to fib-
rinogen induces greater activation of PKC with subse-
quent activation of MAPK, which influences rapid
cytoskeletal changes that favor stronger and sustained
adhesion of A2 cells compared with A1 cells. Further
studies are underway to address this hypothesis.

In summary, cells overexpressing the PlA2 form of the
αIIbβ3 exhibited several functional differences compared
with its PlA1 counterpart: greater adhesion to immobi-
lized fibrinogen, greater spreading and actin reorgani-
zation, and greater clot retraction. It remains unclear
how these pathways are linked to the Leu → Pro substi-
tution at amino acid 33 of β3. Perhaps the conforma-
tional change in the β3 extracellular domain favors the
interaction with an associated activation molecule, such
as one containing an immunoreceptor tyrosine–based
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Figure 10
Fibrin clot retraction. (a) Clot retraction of LK444 (open squares), A1 (open diamonds), or A2 (open circles) cells was performed as described
in Methods. The increased fibrin clot retraction of A2 over A1 was significant at P = 0.002, P = 0.003, P = 0.004, P = 0.03 for 30, 60, 90,
and 120 minutes, respectively. The results are ± SEM of 6 experiments performed. Error bars were too small to be displayed. (b) A1 cells and
(c) A2 cells demonstrate that clot retraction is mediated through αIIbβ3. Cells were incubated with buffer (open squares), 10 µg/mL anti αvβ3

LM609 (open circles), or 5 µM integrelin (open diamonds), and clot retraction was performed as above. The results are ± SEM of 3 experi-
ments performed. Error bars are too small to be displayed.



activation motif. Our findings support a prothrombot-
ic feature of the PlA2 isoform of β3 that provides biolog-
ic plausibility to the clinical associations that have been
described. Given the prevalence of PlA2 in the population,
it should not be too surprising that the functional dif-
ferences between the PlA1 and PlA2 forms of β3 are mod-
est. More substantial changes may have produced a phe-
notype that would not have survived negative
evolutionary pressure. Considering both the central role
of αIIbβ3 in thrombus formation and its abundance on
platelets, even a modest functional alteration could have
profound effects over an individual’s lifetime.
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