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Summary

Human immunodeficiency virus-1 (HIV-1) infection in the central nervous system (CNS) may lead to

neuronal loss and progressively deteriorating CNS function: HIV-1 gene products, especially gp120,

induce free radical-mediated apoptosis. Reactive oxygen species (ROS), are among the potential

mediators of these effects. Neurons readily form ROS after gp120 exposure, and so might be protected

from ROS-mediated injury by antioxidant enzymes such as Cu/Zn-superoxide dismutase (SOD1)

and/or glutathione peroxidase (GPx1). Both enzymes detoxify oxygen free radicals. Because they are

highly efficient gene delivery vehicles for neurons, recombinant SV40-derived vectors were used for

these studies. Cultured mature neurons derived from NT2 cells and primary fetal neurons were

transduced with rSV40 vectors carrying human SOD1 and/or GPx1 cDNAs, then exposed to gp120.

Apoptosis was measured by TUNEL assay. Transduction efficiency of both neuron populations was

>95%, as assayed by immunostaining. Transgene expression was also ascertained by Western blotting

and direct assays of enzyme activity. Gp120 induced apoptosis in a high percentage of unprotected

NT2-N. Transduction with SV(SOD1) and SV(GPx1) before gp120 challenge reduced neuronal apoptosis

by >90%. Even greater protection was seen in cells treated with both vectors in sequence. Given singly

or in combination, they protect neuronal cells from HIV-1-gp120 induced apoptosis. We tested whether

rSV40s can deliver antioxidant enzymes to the CNS in vivo: intracerebral injection of SV(SOD1) or

SV(GPx1) into the caudate putamen of rat brain yielded excellent transgene expression in neurons. In

vivo transduction using SV(SOD1) also protected neurons from subsequent gp120-induced apoptosis

after injection of both into the caudate putamen of rat brain. Thus, SOD1 and GPx1 can be delivered by

SV40 vectors in vitro or in vivo. This approach may merit consideration for therapies in HIV-1 induced

encephalopathy.

Keywords: superoxide dismutase, glutathione peroxidase, SV40
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Introduction:

HIV encephalopathy covers a range of HIV-related CNS dysfunction. The most severe is HIV-

associated Dementia (HAD) 1. The prevalence of HAD was estimated to be as high as 30% in

patients with advanced AIDS 2, but HAD has become less common since the introduction of

Highly Active Antiretroviral Therapy (HAART), 3,4. This reduction probably reflects better

control of HIV in the periphery, since antiretroviral drugs penetrate the CNS poorly. A less

fulminant form of HIV-related neurological dysfunction, minor cognitive/motor disorder

(MCMD), has become more prevalent and remains a significant independent risk factor for

AIDS mortality 5,6.

Soluble gp120 can induce apoptosis in a wide variety of cells including lymphocytes 7,

cardiomyocytes 8 and neurons 9-11. In the brain, HIV mainly replicates in microglial cells and

minimally, if at all, in neurons 12-14. At high concentrations, HIV gp120 may be directly

neurotoxic 15. That gp120 induces apoptosis has been shown by studies in cortical cell cultures,

in rat hippocampal slices and by intracerebral injections in vivo 16. HIV gp120 binds neuron cell

membrane coreceptors (CCR3, CCR5 and CXCR4) and elicits apoptosis, apparently via G-

protein coupled pathways 17-20. Soluble gp120 also increases glial cell release of arachidonate,

which impairs neuron and astrocyte reuptake of glutamate 21 causing prolonged activation of

N-methyl-D-aspartate (NMDA) receptor which disrupts cellular Ca2+ homeostasis and leads to

neuron cell death 22-24. In addition NMDA receptor activation induces formation of inducible

nitric oxide synthase (iNOS). Proinflammatory cytokines, TNF-α and TGF-β, also upregulate
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iNOS 25,26. Superoxide anion (O2
.- ), a byproduct of electron transport is produced by myeloid

and monocytic cells upon HIV-1 infection 27. Superoxide dismutase (SOD) scavenges O2
.- and

converts it to peroxide (H2O2)
28. Peroxide is then further detoxified by catalase or glutathione

peroxidase. The later oxidizes glutathione.

2H+ + O2
.- → O2 + H2O2 → 2H2O

HIV-infected individuals have impaired antioxidant defenses 29. Poor SOD activity leads to

elevated levels of reactive oxygen species (ROS), 30 which in turn leads to depletion of

intracellular antioxidants such as glutathione (GSH) 31. Cellular vulnerability to oxidant-related

injury is made worse by the fact that nitric oxide (NO) generated by NMDA-R-activated iNOS

readily binds superoxide anion to form the highly reactive species, peroxynitrite (ONOO) (O2
-

+ NO → ONOO) 21,32-34. Peroxynitrite reacts with, and damages lipids, proteins and DNA 35,36.

Here we describe protection of central nervous system neurons from HIV-1 gp120 oxidant-

related toxicity by gene delivery of anti-oxidant enzymes SOD1 and GPx1 using recombinant

SV-40 derived vectors. These vectors readily transduce neurons in vitro and in vivo, and have

been effective in studying gene transfer as protection from HIV-1 in experimental systems 37-42.

We found that rSV40 gene delivery of transgenes SOD1 and GPx1, singly or in combination,

significantly mitigated neuronal apoptosis mediated by gp120. The effectiveness and degree of

protection of these vectors in delivering these antioxidant enzymes was also verified in vivo.

Antioxidant gene delivery may thus be a future therapeutic adjunct in treating CNS AIDS.

Results:

Characterization of Neurons:

SOD1 GPx1
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Neurons were prepared from NT-2 cells (NT2-N) as described in Methods, by differentiation

using retinoic acid and mitotic inhibitors. NT2-N could be seen with refractile small cell bodies

and were interconnected with neuritic processes. The cells grew on a feeder layer of large

adherent flat cells, which represent immature neurons (Fig. 1a). The differentiated mature

neurons were further characterized by immunohistochemical and Western analyses using

antibodies vs. the neuron-specific markers, MAP-2 and Neu-N (Fig. 1b). These NT-2-N were

positive for MAP-2 and NeuN, whereas undifferentiated NT-2 cells were not. Western analysis

demonstrated predominant protein bands at 280 and 70 kDa (High and low molecular weight

isoforms) for MAP-2, and at 50 kDa for Neu-N (Fig. 1c). Again, undifferentiated NT-2 cells

were negative for both.

Dose response of gp120 in neurons:

The optimal concentration of HIV-1 Ba-L gp120 to elicit apoptosis in neurons was determined

using NT2-N. Cells were incubated with 0 ng/ml, 0.1 ng/ml, 1 ng/ml, 10 ng/ml and 100

ng/ml of recombinant soluble gp120 (Figs. 2a and 2b). Apoptotic bodies were analyzed using

terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL). The intensity and

frequency of TUNEL+ cells increased with increasing gp120 dose, up to 100 ng/ml. Higher

concentrations of gp120 caused cells to detach and so were not further studied (data not

shown). Thus 100 ng/ml of gp120 was used in all subsequent studies.

Effectiveness of recombinant SV(SOD1) and SV(GPx1) in transducing NT2-N cells:

Terminally differentiated NT2-N were transduced with MOI 10 of SV(SOD1) and SV(GPx1) on

day 0, then again at MOI of 3 on days 3 and 5 , for a cumulative MOI of 16. Alternatively cells
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were transduced on the same schedule but with MOI=100, then 30 and again 30. For simplicity

10-3-3 regimen is referred to as MOI=10 and the latter regimen is referred to as MOI=100. The

transduced neurons were analyzed for transgene expression after two weeks. Western analysis

showed a predominant band at 22 kDa for SOD1 (Fig. 3a) and 24 kDa for GPx1 (Fig. 3b)

respectively, both of which were more abundant in transduced, as opposed to control, groups.

Transduction at 100 MOI did not increase expression beyond what was observed with 10 MOI.

The activity of enzymes delivered by these vectors was studied using kinetic assays for SOD1

and GPx1. There is a low background level of enzyme activity, since SOD1 and GPx1 are

normal cellular enzymes. However transduced cultures showed markedly and significantly

increased activities of their respective enzymes, compared to control cultures (Figures 3c and

3d). Again, increasing transduction MOI from 10 to 100 did not further increase enzyme

activity. Therefore in all subsequent experiments, transduction was done at MOI = 10.

Protection of NT2-N from gp120 apoptosis by transduction with SV(SOD1) and SV(GPx1):

Having established that 100 ng/ml gp120 produced maximal apoptosis in cultured neurons,

we tested whether delivery of antioxidant enzymes SOD1 or GPx1, singly or in combination,

would protect NT2-N from gp120-induced programmed cell death. Control NT2-N were also

transduced with SV(HBS) and were challenged with gp120 [100 ng/ml (0.9 nM)]. Apoptosis

was scored by counting total number of TUNEL positive cells in six different 10x fields. In

control cultures mock or SV(HBS)-transduced cells, this resulted in 90-100 % apoptosis. NT2-N

transduced with SV(SOD1) and/or SV(GPx1) expressed substantially more of the antioxidant

enzymes than did control cells, as analyzed by immunostaining and western blotting (Fig.4)

and were 80% protected from apoptosis (p<0.005) as compared to mock transduced neurons
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(Fig 4). The background level of apoptosis in these cells was less than 2-5% and was

comparable among all experimental and control groups. (data not shown). The fluorescence

intensity in the TUNEL assay was measured using IP lab software. Following gp120 exposure:

for SV(HBS) transduced NT2-N, it was 9897 ± 124 (arbitrary units); for SV(SOD1)-treated NT2-

N, it was 1565 ± 57; for SV(GPx1)-treated NT2-N, it was 1032 ± 43. Differences between

antioxidant-treated and control cultures were highly significant (p<0.005).

When very low MOI (1,0.3,0.3) were used to transduce the neurons, less protection was

observed (data not shown). Combination transduction with both viruses (SOD1 and GPx1),

provided ~90% protection from gp120-induced apoptosis, which was slightly, but not

significantly, better than either alone.

SV(SOD1) and SV(GPx1) protect primary fetal neurons from gp120 apoptosis:

Having established that gp120-induced apoptosis could be prevented by transduction with

SV(SOD1) and SV(GPx1) in cultured neurons derived from NT-2 cells, we tested whether

primary human neurons responded similarly. That is, would transduction of primary neurons

with SV(SOD1) or SV(GPx1) protect them from apoptosis induced by gp120? The cell

populations used for the present studies were prepared from human fetal brain as described

in Methods and were >98% neurons, as indicated by positive staining for MAP-2 (Fig. 5a).

Transduction efficiency was comparable to NT2-N when assayed by immunostaining: >90%

of these neurons were efficiently transduced with the vectors, either alone or in combination

(data not shown). Test and cultured-transduced cells were then treated with recombinant

gp120 and apoptosis was measured by TUNEL assay. Transduction with SV(SOD1) and/or

SV(GPx1) largely (>80%) and significantly (p<0.005) protected primary neurons from gp120-
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induced apoptosis (Fig. 5b) as compared to neurons transduced with the control vector,

SV(HBS). Combination transduction with SV(SOD1) plus SV(GPx1) provided protection from

gp120-induced apoptosis comparable to that afforded by either antioxidant transgene singly.

As with NT2-N, levels of apoptosis in transduced and control cultures that were not

challenged with gp120 were comparable (data not shown).

Transgene expression and protection from gp120-induced apoptosis after injection of

SV(SOD1)/SV(GPx1) in vivo:

We then asked whether SV(SOD1) and SV(GPx1) were capable of delivering their antioxidant

enzymes to brain cells in vivo. SV(SOD1) and SV(GPx1) were injected stereotaxically into the

rat caudate putamen. The distribution of transgene expression was studied by

immunocytochemistry (Fig.6) and Western analysis (Fig. 7a and 7b). Numerous transgene-

positive cells were observed one week after injection of SV(SOD1) (Fig. 6). The number of cells

expressing the transgenes detectably was somewhat higher when tested 14 days after vector

injection as compared to 7-days (Fig. 7) When analyzed by Western blotting, high levels of

transgene expression was detected both 7 and 14 days post-injection. Levels detected at the

later time point were somewhat higher than at 7 days, possibly because the increased time

elapsed allowed for greater protein accumulation (Fig. 7a and 7b). Very few or no cells on the

uninjected side were immunopositive for the transgenes. Also rats that were mock-transduced,

or transduced with SV(BugT), showed minimal immunopositivity for SOD1. Most cells that

were transduced in vivo were neurons, as shown by immunostaining with Neuro Trace (Nissl)

which was used as marker for neurons (Fig. 6). Similar results were observed after injection

into the CP with SV(GPx1) constructs in rat brain (Data not shown).
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To test the effectiveness of SOD1 in protecting from HIV-1 gp120 induced apoptosis, we

injected 100 ng of gp120 into the CP 2 weeks following injection of SV(SOD1). Intracerebral

injection SV(SOD1) provided significant protection (>80%) from gp120-induced apoptosis

when measured by TUNEL as compared to control vector SV(BugT) (Fig. 7c). The majority of

cells that were protected were found to be neurons (Fig. 7c and 7d).

Discussion:

Neuron apoptosis is one of the mechanisms by which HIV causes CNS injury in AIDS patients

43,44. Many reports suggest that HIV-induced neuron injury involves free radicals, beginning

with a series of reactions initiated at the cell membrane by gp120 to generate ROS culminating

in neuronal apoptosis. There is no accepted therapy for HIV-induced neuron apoptosis and

our approach, involving gene delivery, is unique to the best of our knowledge. Accordingly,

we hypothesized that gene transfer for ROS detoxifying enzymes and other free radical

scavengers may protect CNS cells from gp120-induced apoptosis. We thus asked whether HIV

gp120 elicited apoptosis in neurons and, if so, whether the antioxidant enzymes SOD1 and

GPx1 delivered by recombinant SV40 vectors could protect neurons.

We used two types of cells for these studies: NTera-2 cells, a human teratocarcinoma cell line

that could be induced to differentiate into NT2-Neurons 45,46, and primary neurons derived

from human fetal brain 47. In both, mature neurons comprised >98% of the cultured cells as

assessed by MAP-2 and Neu-N staining. These cells predominantly express HIV-coreceptors

CCR5 with lesser amounts of CXCR4 and CCR 48.
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When exposed to HIV-BaL-gp120, both primary neurons and NT2-derived neurons underwent

apoptosis in a dose-dependent manner, with maximal effect at 100 ng/ml gp120 (0.9 nM) This

concentration of gp120 is consistent with doses of gp120 used in studies repeated by others

examining HIV-1 induced neuronal apoptosis 11,15,17. rSV40 gene delivery increased intracellular

SOD1 and GPx1 and largely protected neurons from the effects of gp120. Cotransduction with

SV(SOD1) and SV(GPx1) improved protection, slightly, but not statistically significantly

compared to either transgene alone.

These data are in agreement with previous reports that superoxide generated as a result of

HIV infection of macrophages may be scavenged by SOD1 in a dose-dependent manner and

detoxified by very high concentrations of recombinant SOD1 49. It is also possible that

transduction with SOD1 might also mitigate the effects of HIV on microglial cells, which are

the primary CNS targets for HIV infection and which produce increased superoxide when

exposed to HIV 49 .

The role of antioxidants has been studied in a variety of neurological disorders using several

viral gene transfer vectors. Adenovirus containing Cu/Zn SOD-1 in cerebral vessels has

shown to prevent cerebral blood flow autoregulation 50 and cerebral vasopasm 51 during acute

stage of subarchnoid hemorrhage. Lentiviral vectors have also been used in targeting several

genes involved in neurological disorders for efficient therapeutic intervention 52.

Overexpression of GPX in rat embryonic cortical neurons using adenoviral vector (Ad-GPX)

increases resistance of neuronal cells to amyloid β-peptide (Aβ) mediated neurotoxicity and
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has potential implications for gene therapy of Alzheimer’s disease 53. Overexpression of GPX

using lentivirus vectors in nigral dopaminergic neurons in vivo has also been shown to be

neuroprotective in murine models of Parkinsons disease 54. Herpes Simplex viral vectors

expressing GPX inhibit release of cytochrome c and proapoptotic mediators, and protect

neurons exposed to experimental stroke and necrotic insults 55-57.

Generation of ROS in response to HIV infection leads to shifts in intracellular redox balance.

This causes depletion of antioxidant species such as glutathione 31, and increases propensity to

undergo apoptosis 58. ONOO can cause cell death by several mechanisms, including nitration

of tyrosine residues. Nitration of neurofilaments, actin and other structural proteins may

disrupt filament assembly and impair cytoskeletal stability 32. Our preliminary studies also

indicate that gp120 may lead to increased protein nitration in neurons as well (Agrawal and

Strayer , unpublished)

To determine whether the effectiveness of rSV40 vectors in antioxidant gene delivery to

neurons in vitro might also be applicable in vivo, we also tested SV(SOD1) and SV(GPx1)

delivery of antioxidant genes directly into the brain. Efficient transgene expression in the rat

brain was noted after single injection into the CP: numerous cells, mostly neurons, expressed

the transgene. We have previously reported that these vectors are effective transducing agents

by intracerebral injection 59. Numbers of transgene-expressing cells may be further increased

using multiple inoculations 60,61. We also investigated neuronal apoptosis caused in vivo by

recombinant gp120, preparatory to attempting to assess protection using these antioxidant

transgene SV(SOD1).



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

12

In vivo transduction with SV(SOD1) substantially protected neurons from gp120-induced

apoptosis, compared to in vivo injection of the control vector SV(BugT).

This is the first study to demonstrate that neurons can be protected from gp120-induced

apoptosis by antioxidant gene transfer using SV40 vectors. We used rSV40s here since they are

excellent delivery vehicles for neurons, both in vivo and in vitro 59,62-64. Because of their

transduction efficiency and effectiveness in mitigating gp120-induced apoptosis, these vectors

may serve as investigative tools to elucidate mechanisms of neuron damage in HIV infection

of CNS. Thus, detoxification of ROS by SV(GPx1) or SV(SOD1) protects from HIV-induced

apoptosis and may serve as a potential gene therapy strategy for people with HIV

encephalopathy.

Materials and Methods:

Plasmids and viral expression constructs:

SOD1 and GPx1 transgenes were subcloned in to pT7[RSVLTR]. Transgene expression is

controlled by the Rous Sarcoma Virus long terminal repeat (RSV-LTR) as a promoter. SV-HBS

was used as negative control recombinant virus for in vitro experiments, which encodes

Hepatitis B surface antigen 42. SV(HBS) cannot be used for in vivo experiments because

immunity to the expressed hepatitis surface antigen transgene leads to elimination of

transduced cells in immunocompetent rats. SV(BugT) was used as negative control vector for

in vivo studies. SV(BugT) carries the cDNA for human bilurubin-uridine 5’-diphosphate-

glucuronysyl transferase (BugT), driven by two tandem SV40 early promoters (SV40-EP) 65.

Generation of recombinant SV40 viruses has been reported in detail 41. Briefly, recombinant



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

13

viral genomes were transfected into COS-7 cells. We use COS-7 cells as a packaging cell line

because they supply all SV-40 genes needed for virus packaging. Recombinant viral stocks

were prepared as cell lysates and were purified using sucrose cushion. Virus stocks were

titered by Q-PCR 66.

Cell lines: COS-7 cell line was obtained from American Type Culture Collection (ATCC) and

was maintained in Dulbecco’s modified eagle’s medium (DMEM) supplemented with 10% calf

serum (Hyclone, Logan, UT), 2 mM L-glutamine and containing 1.5 g/l sodium bicarbonate,

4.5 g/l glucose, 1.0 mM sodium pyruvate, penicillin (200 U/ml) and streptomycin (100 µg/ml).

Human N-tera2/cloneD1 (NT-2), derived from a teratocarcinoma was obtained from

Stratagene (La Jolla, CA) and induced to differentiate into NT2-Neurons (NT2-N) according to

manufacturer’s instructions. The cells were propogated in DMEM with nutrient mixture F-12

(DMEM/F-12) supplemented with glutamine and 10% (v/v) calf serum. Differentiation to

neurons was induced by adding 10 µM retinoic acid (Sigma Chemicals,MO, USA). After the

first replating, the cells were treated with mitotic inhibitors: cytosine β-D-arabinofuranoside

(ara C) (1 µM), uridine (1-β-D-ribofuranosyluracyl) (Urd) (10 µM) and 5-fluoro-2’-

deoxyuridine) (FUDR) (10 µM) for three weeks. After further enrichment and selective

trypsinization, highly enriched neurons were harvested two-three weeks later. The neurons

culture obtained were >95% pure neurons and were plated on poly-D-Lysine (Sigma

Chemicals) and matrigel coated (BD Biosciences, Bedford, MA) 4-chamber slides or 24 well

tissue culture plates. The neurons were characterized using MAP-2 and Neu-N antibodies by

immunostaining (Chemicon International Inc., Temecula, CA) 45.
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Primary human fetal Neuronal cells: Neurons were isolated from the fetal brain as described

previously 47. Briefly, the fetal brain (obtained from the Human Fetal Tissue Bank, Albert

Einstein College of Medicine, Bronx, NY) was homogenized in Hanks Balanced Salt Solution

(HBSS) Ca2+ and Mg2+ free containing 0.05% Trypsin and 100 U of DNAse. Mixed brain cultures

were passed through 170 µm Nylon mesh, then plated in Poly-D-Lysine coated 24 well Plates

or 4-chamber slides. Non-adherent cells were removed by washing with DMEM/F-12

(Invitrogen, CA). Adherent neuronal cultures were treated with cytosine arabinoside (ara C -1

µM) for two weeks. The enriched neurons were subsequently immunostained with MAP-2

antibody.

Animals: Female Sprague-Dawley rats (200-250g) were purchased from Charles River

Laboratories (Wilmington, MA). Protocols for injecting, and sacrificing animals were approved

by the Thomas Jefferson University Institutional Animal Care and Use Committee, and were

consistent with AAALAC standards.

Transduction and challenge studies in vitro: COS-7 cells, NT-2 precursors or NT2-neurons

were transduced with SV40-derived viruses SV(SOD1) and SV(GPx1) either singly or in

combination on days 0, 3 and 5 with MOI of 10, 3 and 3 respectively. The cells were tested for

transgene expression by Western analysis and immunostaining. The cells were maintained for

5 days in DMEM supplemented with 2% fetal bovine serum. The transduced and mock-

trasnduced cells showed the same degree of viability (>95%). Recombinant HIV-1-Ba-L-gp120

(AIDS Reagent Program,NIH) (100 ng/ml)(0.9 nM) was then added to the cultures for two

days. The cells were washed and cultured for another 3 days before performing TUNEL assay
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(Roche, Indianapolis, IN). The mean sum fluorescence intensity of TUNEL positive cells was

calculated using IP Lab software and analyzed on fluorescence imaging/microscope

(Olympus IX70).

In vivo transduction studies: The rats were anesthetized with isofluorane UPS gas

(BaxterHealthcare Corp., Deerfield, IL) (1.0 unit isofluorane/1.5 liters O2 per minute) and

placed in a stereotaxic apparatus (Stoelting Corp., Wood Dale, IL) for cranial surgery. Body

temperature was monitored throughout the surgical procedure and maintained at 37oC by

using a feedback-controlled heating device (Harvard Apparatus, Boston, MA). Glass

micropipettes (1.2 •

m
oute

da ete;Wodecsosstu

men
ts,
Inc.
,
Sa

a
s
ot

a,
F

)t

m outer diameter; World Precisions Instruments, Inc., Sarasota, FL) with 

tip diameters of 15 µm were backfilled with 10 µl of viral vector; SV(SOD1), SV(GPx1) or

SV(BugT) which contains approximately 107 particles. 100 ng of gp120 was also injected using

micropipettes in to the caudate putamen two weeks post transduction. The vector/gp120-filled

micropipettes were placed into the caudate putamen (CP) using coordinates obtained from the

rat brain atlas. For the injection into the CP, the burr hole was placed +0.48 mm anterior to

bregma and -3.0 mm lateral to the sagittal suture. Once centered, the micropipette was placed

6.0 mm ventral from the top of the brain. The SV40 vectors were administered by a

Picospritzer II (General Valve Corp., Fairfield, NJ) pulse of compressed N2 duration 10 ms at

20 psi until the 1 or 10 µl was completely ejected from the pipette. Following the surgery,

animals were housed individually with free access to water and food. After a survival period

of 7 or 14 days, animals were anesthetized via intraperitoneal injection of sodium

pentobarbital (Abbott Laboratories, North Chicago, IL) (at 60 mg/kg) and perfused

transcardially through the ascending aorta with 10 ml heparanized saline and 1000 ml of 4%
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paraformaldehyde (Electron Microscopy Sciences, Fort Washington, PA) in 0.1M phosphate

buffer (pH 7.4). The animals were analyzed for apoptosis post 24 hrs after injecting gp120 9100

ng). Immediately following perfusion-fixation, the rat brains were dissected out, placed in 4%

paraformaldehyde for 24 h, then in a 30% sucrose solution for 24 h, then frozen in methyl

butane cooled in liquid nitrogen. The samples were cut on a cryostat (10 µm sections). General

morphology of the brain was assessed by neutral red (NR) staining performed on cryostat

sections. Transduction was assessed for each injected brain CP injections by serial cryo-

sectioning (10 µm thick coronal sections) and immunostaining of every 10th section for SOD1 or

GPx1. For each rat, the numbers of transduced or apoptotic cells in one hemisphere were

counted and summed. The longitudinal diffusion of the transgene away from the injection site

was assessed as the distance comprised between the most distant sections anterior and

posterior to the injection site demonstrating transgene expression. General morphology of the

brain was assessed by neutral red (NR) staining performed on cryostat sections.

Immunostaining: Cells were grown either on 24 well plates or 4-chamber slides treated with

poly-D-Lysine and matrigel. At the indicated times post-transduction, cells were fixed with 1%

paraformaldehyde for 30 min on ice, permeabilized with 0.1% Triton X-100 in sodium citrate

buffer. Nonnspecific binding was blocked by treating cells with normal serum from the animal

species in which the secondary antibody was raised, then immunostained with either anti-

SOD1 (Stressgen,Victoria, B.C., Canada) (1:100) or anti-GPx1 (Stressgen) (1:50) and anti-MAP-2

(1:50), anti-Neu-N(1:100) (Molecular Probes Invitrogen , Carlsbad, CA) for 1 hr on ice. After

extensive washes in PBS containing 1% BSA, secondaries antibodies conjugated with Alexa
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Fluor 488 (Molecular Probes, Oregon, CA) or TRITC (Sigma Chemicals) were added. The cells

were washed and analyzed on fluorescence imaging/microscope (Olympus IX70).

Immunocytochemistry in vivo: For immunofluorescence, the coronal cryostat sections (10 µm

thick) were processed for immunocytochemistry with an indirect immunofluorescence

technique. After redydradation in 0.1 M PBS, pH 7.2, sections were permeabilized in PBS plus

0.1 % Triton X-100 during 10 minutes, washed twice for 5 minutes in PBS, then stained by

Neuro Trace (1:100) for 20 minutes at room temperature. The sections were washed in PBS

plus 0.1 % Triton X-100 then two times with PBS, then let stand for 2 hours at room

temperature in PBS. Combination NeuroTrace- antibody staining, was performed using (anti-

SOD1) staining first followed by staining with the fluorescent Nissl stain. Incubation with

primary antibody was performed for 1 h and followed by incubation for 1 h with a secondary

antibody diluted 1/100. Each incubation was followed by extensive washing with PBS. In

order to stain the nuclei, the mounting medium contained DAPI (Vector Laboratories,

Burlingame, CA). Specimens were finally examined under a Leica DMRBE microscope (Leica

Microsystems, Wetzlar, Germany). Negative controls consisted of preincubation with PBS and

0.1% BSA, substitution of non-immune isotype-matched control antibody for primary

antibody, and/or omission of the primary antibody.

Western analysis: Cells were grown on either 24 well plates or 4-chamber slides treated with

poly-D-Lysine and matrigel. At the indicated times post transduction, the mock-transduced

cells were harvested by trypsinization and counted. The cells were lyzed by lysis buffer

containing approtonin and Phenyl Methyl Sulfonyl Fluoride (PMSF). For in vivo protein
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analysis, brain sections were homogenized in buffer containing protease inhibitors and DNAse

and cell lysates were prepared. Total protein was estimated using BCA protein assay kit

(Pierce, Rockford, IL). Total cell proteins (100 µg) were loaded in each well, then transferred to

Immobilon-P Poly Vinylidine difluoride (PVDF) membrane (Millipore, Inc. USA). Equal lane

loading was assesed in the using anti-glyceraldehyde-3-Phosphate-Dehydrogenase (GAPDH)

antibody (1:5000). The blot was executed according to manufacturer’s instructions (Roche).

Anti-SOD1 and anti-GPx1 were used at dilutions of 1:500 and 1:100, respectively and anti-

mouse/anti-rabbit Horseradish peroxidase (HRP) was used at a dilution of 1:5000 before

addition of chemiluminiscence substrate (Roche).

Kinetic assays for SOD1 and GPx1:

SOD1 activity:

SOD1 activity was measured using SOD1 kit (R&D Systems, MN, USA) according to

manufacturer’s instructions. Superoxide ions (O2
-) were generated by the action of xanthine

oxidase (XOD) on xanthine. O2
- ions convert NBT to NBT-diformazan, which absorbs light at

560 nm. Briefly, cell lysates were assayed for their ability to inhibit NBT-diformazan , which

was converted to relative SOD activity. A standard curve for SOD1 was also generated in a

range from 1 U to 10 U activity points. The rate of increase in absorbance units (A) per minute

was calculated as:

A560 nm at 5:30 – A560 nm at 0:30 = D A560nm/minute
5 Minutes

The % Inhibition for the test sample was calculated as;

[(D A560nm/minute) (Negative control) – (D A560nm/minute)test] x100 = %inhibition
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(D A560nm/minute) (Negative control)

SOD activity was expressed as U/L from the SOD standard activity points. Unit of SOD was

defined as amount of SOD which inhibits the rate of increase in absorbance due to NBT-

diformazan formation by 50%.

GPx1 activity: GPx1 assay was performed following the manufacturer’s instructions using a

total GPx1 assay kit (Zeptometrix, NY, USA). Here, cumene hydroperoxide was used as the

peroxide substrate (ROOH). Glutathione reductase (GSSG-R) and (β-Nicotinamide Adenine

Dinucleotide Phosphate) NADPH were included in the reaction mixture. The change in A340

due to NADPH oxidation was monitored which indicated GPx1 activity. Since all other

reagents were present in excess, the amount of GPx1 was the rate limiting factor. The change

in A340nm was monitored for 1 min, after a 40 s lag period.

Net Rate A 340nm/min= (Sample Rate A340nm/min) – (Blank Rate A340nm/min)

GPx1 activity was calculated as:

GPx1 activity (U/L) = [A340nm/min/E] x d x TV/SV

Abbreviations:

E, extinction coefficient for NADPH (0.00622 µM-1 cm-1 at 340 nm)

d, cuvette path length

TV, Total volume

SV, Sample Volume

Statistical Analysis:
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Statistical analysis was performed using using Student’s paired t-test for comparison between

different groups.
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Titles and Legends to Figures:

Figure 1: Characterization of neurons derived from NT-2 precursor cells. Morphology of

undifferentiated (NT-2) and differentiated neurons (NT2-N) (a). The cells were treated for 6-

weeks with 10 µM retinoic acid, then with mitotic inhibitors, (5-fluoro-2’-deoxyuridine,

uridine, (1-β-D-ribofuranosyluracyl) and cytosine-β-D-arabinofuranoside were added for 3

weeks. The differentiated neurons were further characterized using imunofluorescence (b)

where NT2 progenitors and NT2-neurons were stained with antibodies vs the neuron-specific

markers, MAP-2 and Neu-N. Immunostaining with an isotype-matched immunoglobulin is

shown as a negative control. Western analysis (c) was also performed for MAP-2 and Neu-N

using GAPDH was used as an internal loading control.

Figure 2: Apoptosis induced by HIV-gp120-Ba-L and dose response analysis with NT2-N.

Recombinant gp120 was added to neuronal cultures for two days at different concentrations

from 0.1 ng/ml to 100 ng/ml. The cells were washed and cultured for another 3 days before

TUNEL assay. Panel (a) shows the phase contrast and corresponding MAP-2 and TUNEL

fluroscence pictures. Panel (b) represents the average of total number of TUNEL positive cells

as counted in six different independent fields per experiment, for 3 different independent

experiments.

Figure 3: Western and kinetic analysis of SOD1 and GPx1. Western analysis of transduced

differentiated neurons is shown in Fig 4a and 4b for SV(SOD1) and SV(GPx1) respectively.

Transduction using both SV(SOD1) and SV(GPx1) virus constructs yielded a predominant

band at 22 kDa for SOD1 and 24 kDa band for GPx1. GAPDH was used as an internal loading
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control. For kinetic analysis NT-2N were transduced with SV(SOD1) and SV(GPx1) viruses on

days 0, 3 and 5 with MOI 10,3,3 respectively or MOI of 100,30,30. They were analyzed for

activities of SOD1(4c) and GPx1(4d) 10 days later, using kinetic assays. Kinetic analysis was

done using SOD1 and GPx1 kits according to manufacturer instructutions on Genesys 2

spectrophotometer (see Materials and Methods).

Figure 4: Neuroprotection by rSV40-delivered SOD1 and GPx1. Cells were transduced with

SV(SOD1) and SV(GPx1) at MOI 10, as described in Methods. Expression of SOD1 and GPx1

in SV(HBS)-transduced and SV(SOD1)- or SV(GPx1)-transduced post-mitotic neurons as

detected by immunostaining is shown in panels (a). Both transgene expression and TUNEL

fluorescence intensity were quantified by image analysis software (IP Labs). SOD1 expression

in SV(SOD1)-transduced cultures was 22400 ± 250 (arbitrary units), while in SV(HBS)

transduced cultures, SOD1 expression was 4796 ± 198. Similarly, GPx1 expression in SV(GPx1)

and SV(HBS)-transduced cultures were 23131 ± 233 and 5874 ± 125 respectively. TUNEL

fluorescence intensity in SV(HBS)-transduced cultures was 9897 ± 124. In SV(SOD1)-and

SV(GPx1)-treated cultures, TUNEL fluorescence intensities were 1565 ± 57 and 1032 ± 43. The

ability of prior transduction with SV(SOD1) and/or SV(GPx1) to protect NT2-N from gp120

apoptosis is illustrated in the TUNEL panel of (a), and was generated from 3 independent

experiments in (b). At the time of assay, cells were tested for expression of transgenes by

Western analysis (see insets). Inset panels show expression of SOD1 and GPx1 transgenes with

single (above) and double (below) transduction. GAPDH was used as internal loading control.

The cells were maintained for 5 days in DMEM supplemented with 2% fetal bovine serum
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before addition of recombinant gp120 [100 ng/ml (0.9 nM)] to the cultures for two days. The

cells were washed and cultured for another three days before TUNEL assay.

Figure 5: Characterization and expression of transgenes SOD1 and GPx1 in human primary

fetal neurons. Neurons were prepared from 14-16 week human fetal brain as described in

Materials and Methods. (a) neuronal staining with MAP-2 (green) and DAPI (blue). (b)

protection of primary neurons from gp120-mediated apoptosis. Primary neurons were

transduced with SV(SOD1) and SV(GPx1) at MOI=10, as described in Methods or mock

transduced. They were exposed to gp120 according to the same protocol we used for NT2-N.

Apoptosis was analyzed using TUNEL assay. Results represent the averages of three

independent experiments.

Figure 6: Expression of SOD1 following injection of SV(SOD1) into the caudate-putamen (CP).

SV(SOD1) was injected into the CP, while the contralateral CP was untreated. Seven days (left

panels or 14 days (right panels) after administering SV(SOD1) into the CP, sections were

immunostained for SOD1 (shown in red) and for Nissl a neuron marker (shown in green).

Basal endogenous levels of SOD1 are shown in lane marked control rat. The uninjected side of

SOD1 transduced rats and a unrelated SV(BugT) vector were used as negative controls. Cells

that are positive for both neurotrace and SOD1 are in the overlay micrographs. Nuclei were

also stained by DAPI.

Figure 7: Western analysis of SV(SOD1), transduction of rat brain caudate putamen and

protection from gp120 induced apoptosis in vivo. After injection with vector SV(SOD1) at day 7
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and 14 days earlier, rat brains were sectioned (uninjected and injected sides) and

homogenized. (a) Western analysis of transduction with SV(SOD1). SOD1 was seen as a

predominant band at 22 kDa, comparing injected and control uninjected sides at 7 and 14 days.

GAPDH was used as an internal loading control. (b) Densitometric analysis of the intensity of

SOD1 protein bands, correcting for GAPDH band intensity. Panel (c) represents TUNEL

fluorescence (shown in red) as observed in brain of SV(SOD1) transduced rat when compared

to control SV(BugT) transduction. The majority of cells that were TUNEL positive were found

to be neurons (stained with neurotrace in green). Nuclei were also stained with DAPI. Total

number of TUNEL positive cells were found to be significantly reduced in rats transduced

with SV(SOD1) as compared to SV(BugT) (d).



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

33



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

34



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

35



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

36



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

37



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

38



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

39



Authors’ final version prior to publication in Gene Therapy 13(23):1645-1656, December 2006. The published version is
available at http://dx.doi.org/10.1038/sj.gt.3302821; copyright (c) 2006 by Nature Publishing Group.

40


	Antioxidant enzyme gene delivery to protect from HIV-1 gp120-induced neuronal apoptosis
	Let us know how access to this document benefits you
	Recommended Citation

	Microsoft Word - 95337-text.native.1190223979

