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The spread of metastatic tumors to different organs is associated with poor prognosis. The metastatic process requires
migration and cellular invasion. The protooncogene c-jun encodes the founding member of the activator protein-1 family
and is required for cellular proliferation and DNA synthesis in response to oncogenic signals and plays an essential role
in chemical carcinogenesis. The role of c-Jun in cellular invasion remains to be defined. Genetic deletion of c-Jun in
transgenic mice is embryonic lethal; therefore, transgenic mice encoding a c-Jun gene flanked by LoxP sites (c-junf/f) were
used. c-jun gene deletion reduced c-Src expression, hyperactivated ROCK II signaling, and reduced cellular polarity,
migration, and invasiveness. c-Jun increased c-Src mRNA abundance and c-Src promoter activity involving an AP-1 site
in the c-Src promoter. Transduction of c-jun�/� cells with either c-Jun or c-Src retroviral expression systems restored the
defective cellular migration of c-jun�/� cells. As c-Src is a critical component of pathways regulating proliferation,
survival, and metastasis, the induction of c-Src abundance, by c-Jun, provides a novel mechanism of cooperative signaling
in cellular invasion.

INTRODUCTION

The protooncogene, c-jun, encodes the founding member of
the activator protein 1 (AP-1) transcription factor family
(Eferl and Wagner, 2003). Heterodimeric transcription fac-
tors of the basic region leucine zipper family, including Jun,
Fos, ATF, and Maf subfamilies, bind to and regulate a broad
array of target genes through conserved DNA sequences
(Karin et al., 1997). The c-jun gene encodes a protein with
multiple functional domains, including an amino terminal
transactivation domain, a regulatory domain, a carboxyl
terminal basic DNA-binding domain and a leucine zipper
protein dimerization domain. Members of the AP-1 family
convey distinct functions in growth and development. c-Jun
and JunB play nonredundant roles in placentation, hepato-
genesis, and heart development (Eferl and Wagner, 2003).

Molecular analysis of the interface between AP-1 tran-
scription factors and cell cycle control has demonstrated
tightly regulated, temporally coordinated interactions be-
tween AP-1 proteins and the G1 phase cyclins, cyclins D1
and E (Pestell et al., 1999; Fu et al., 2004). Immunoneutraliz-
ing antibodies to c-Fos or c-Jun demonstrated a requirement
for AP-1 proteins in promoting G1/S-phase transition
(Riabowol et al., 1988). c-fos�/�, fosB�/� mice are small, and
fibroblasts derived from these mice demonstrate a defect in
cellular proliferation and a failure to induce cyclin D1 upon
serum stimulation (Brown et al., 1998). Similarly, c-jun�/�

fibroblasts show a defect in cellular proliferation and a de-
fect in apoptosis in response to genotoxic stress (Kolbus et
al., 2000).

In addition to cellular proliferation, c-Jun and JNK con-
tribute to cellular migration (Xia and Karin, 2004). The JNK
pathway is conserved and in Drosophila promotes dorsal
closure through inducing epithelial cell migration. The Dro-
sophila mutant hemipterous displays a large hole in the dorsal
cuticle due to failed movement of the lateral dorsal epithe-
lium toward the dorsal midline. The HEP protein is a ho-
molog of the JNK-activating mitogen-activated protein ki-
nase (DJNKK). The dorsal open phenotype is also displayed
by the DJNK homolog basket (Bsk). Mice with a single jnk2
allele and no jnk1 alleles fail to close the neural tube and
eyelids. DJNK activity is detected at the leading edge of
epithelial cells and upon dorsal closure promotes ongoing
expression of the transforming growth factor (TGF)-� ho-
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molog developing dorsal decapentaplegic (DPP; Sluss and
Davis, 1997). c-Jun promotes fibroblast migration, and both
c-Jun and JunB regulate migration of the mature epidermis
(Eferl and Wagner, 2003; Maeda and Karin, 2003; Katiyar et
al., 2007). The role of c-Jun in cellular invasion and the
downstream targets contributing to cellular invasiveness are
poorly understood.

Cellular invasion occurs in normal developmental pro-
cesses including trophoblast implantation, organogenesis,
and angiogenesis. Tumor progression requires the acquisi-
tion of invasiveness through a basement membrane (Ege-
blad and Werb, 2002). Multiple individual cellular behaviors
are required for cellular invasion, including attachment to
the cellular substratum, degradation of matrix components,
and migration toward diffusible chemoattractants (Balkwill,
2004). The nonreceptor tyrosine kinase c-Src contributes to
cellular migration (Ishizawar and Parsons, 2004). v-Src or
c-Src expression leads to disruption of intercellular adhesion
and induction of in vitro invasion (Qi et al., 2006). Src activity
is reduced in cells in suspension, and increases, upon adhe-
sion. Integrin ligation at the early stages of cell-matrix ad-
hesion induces Src activity and is required for cell spreading,
migration, and focal adhesion turnover (Lakkakorpi et al.,
2001). Src activation during the early stage of cell-matrix
adhesion, corresponds to the initial deactivation of RhoA
(Playford and Schaller, 2004). Conversely stable adhesive
large integrin clusters are associated with suppression of Src
kinase and induction of RhoA/ROCK signaling (Lin et al.,
2004; Janiak et al., 2006). c-Src interacts with cell surface
receptors (EGF family, CSF, PDGF, FGF), Shc, integrins, and
FAK to promote focal adhesion turnover and promote cel-
lular migration (Bowden and Alper, 2005).

The molecular mechanisms regulating cell motility reveal
a key role for the RhoA family of small monomeric GTPases
to coordinate the effects of cellular cytoskeletal adhesion.
The assembly of stress fibers and their associated focal ad-
hesions by RhoA involve downstream effectors including
mouse diaphanous (mDia) and the RhoA-activated kinase
ROCK. Key ROCK substrates regulating migration include
the actin-depolymerizing protein cofilin, myosin light chain
kinase (MLCK), and LIM kinase (LIMK; Ridley and Hall,
1992; Sahai and Marshall, 2002). ROCK activity regulates
cellular migration in a cell-type–specific manner. The selec-
tive inhibitor of ROCK activity, Y27632, may either promote
or inhibit cell migration depending on cellular context (Rid-
ley and Hall, 1992; Totsukawa et al., 2004). ROCK II inhibi-
tion of cells often induces a fibroblastoid morphology and
increased cellular migration (Mammoto et al., 2004). The
increased motility of Ras-transformed cells has been attrib-
uted to a reduction in RhoA/ROCK signaling (Sahai et al.,
2001).

The current studies were undertaken to examine and
identify the molecular mechanisms by which c-Jun regulates
cellular invasiveness. Recent studies have demonstrated that
cells derived from mice deleted of a target gene in ES cells
may convey changes in molecular circuitry that differ from
cells that are deleted of the same target gene somatically
using Cre recombinase. For this reason, mice in which the
c-jun gene was flanked by LoxP sites were used in the
current studies. Excision of the c-jun gene by Cre recombi-
nase demonstrated a key role for c-Jun in promoting cellular
invasiveness and migratory velocity. Reintroduction of c-Jun
expression rescued the defect in cellular morphology, adhe-
sion, and migration. c-Jun inhibited ROCK and was both
necessary and sufficient for the migratory phenotype. c-Jun–
deficient cells demonstrated increased ROCK activity, and
addition of a ROCK kinase inhibitor reversed the defect in

both cellular velocity and invasiveness of c-jun�/� cells.
Analysis of molecular targets for c-Jun regulating cellular
migration demonstrated a reduction of c-Src abundance and
an increase in ROCK II activity in c-jun�/� cells. c-Jun in-
duced c-Src mRNA abundance and c-Src promoter activity,
involving an AP-1 site in the c-Src promoter. Transduction of
c-jun�/� cells with either c-Jun or c-Src expression systems
reversed the defect of cellular migration in c-jun�/� cells.
Collectively these studies identify a novel mechanism by
which c-Jun induces c-Src expression to promote cellular
migration.

MATERIALS AND METHODS

Transgenic Mice, Cells, and Reagents
Transgenic mice carrying a floxed c-jun allele, c-junf/f, were maintained as
previously described (Eferl et al., 2003). Experimental procedures with trans-
genic mice were approved by the ethics committee of Georgetown and
Thomas Jefferson Universities. Mouse embryo fibroblasts (MEFs) were iso-
lated from c-junf/f mice as previously described (Albanese et al., 1999). 3T3
cells were derived from c-junf/f MEFs (Li et al., 2006b) by standard protocol.
Excision of the c-junf/f allele was monitored by identification of the recombi-
nant 600 bp per fragment as previously described (Katiyar et al., 2007). A
retroviral expression plasmid encoding Cre was cloned through the insertion
of the cDNA from the vector pMC-Cre-PGK-Hyg (from Dr. P. Stanley, Albert
Einstein College of Medicine, Bronx, NY) as an EcoRI fragment into the
retroviral expression plasmid pMSCV-IRES-GFP (Neumeister et al., 2003).
Expression of Cre from pMSCV-IRES-GFP vector was confirmed by Western
blot using an antibody directed to Cre (MMS-106). The c-Jun cDNA from
pGEM c-Jun was inserted as an EcoRI fragment into the pMSCV-IRES-DsRed.

The chemical inhibitor for ROCK (Y27632) was from Calbiochem (La Jolla,
CA). Rhodamine-phalloidin, AlexaFluor-488 phalloidin, and DAPI (4�,6�-dia-
midino-2-phenylindole) were from Sigma (St. Louis, MO). Antibodies detect-
ing cyclin D1 (DSC-6), FAK (A-17), c-Jun (H-79), paxillin (H-114), ROCK-II
(H-85), and phospho-cofilin were from Santa Cruz Biotechnology (Santa Cruz,
CA). Paxillin (5H11, 05-417) and phospho-paxillin (Y31; MAB1146) mouse
mAb were from Upstate Biotechnology (Charlottesville, VA). Phospho-pax-
illin (Y118; 44-722G) rabbit polyclonal antibody was from Biosource (Cama-
rillo, CA). Phospho-paxillin (S178; BL854, A300-100A) was from Bethyl Lab-
oratories (Montgomery, TX). v-Src mouse mAb (Ab-1, OP07-100UG) was
from Calbiochem. AlexaFluor-488 goat anti-mouse, AlexaFluor-633 goat anti-
mouse, and AlexaFluor-568 goat anti-rabbit antibodies were from Invitrogen
(Carlsbad, CA). Rhodamine-X goat anti-rabbit antibody was from Jackson
ImmunoResearch (West Grove, PA). Fluorescein isothiocyanate (FITC) goat
anti-rabbit antibody was from Santa Cruz Biotechnology.

Cell Culture, Virus Production, and Reporter Gene Assays
Retroviral vectors directed expression of green fluorescent protein (GFP) from
the internal ribosomal entry site (IRES) of the MSCV vector and directed the
expression of either Cre recombinase or GFP from the MSCV promoter.
Recombinant retrovirus was produced as previously described (Li et al.,
2006b). MSCV retroviruses were prepared by transient cotransfection with
helper virus into 293T cells, using calcium phosphate precipitation. The
retroviral supernatants were harvested 48 h after transfection and filtered
through a 0.45-�m filter. c-junf/f 3T3 cells were incubated with fresh retroviral
supernatants in the presence of 8 �g/ml polybrene for 24 h, cultured for a
further 4 d, and subjected to fluorescence-activated cell sorting (FACS; FAC-
Star Plus; BD Biosciences, San Jose, CA) to select for cells expressing GFP.
c-junf/f 3T3 cells expressing either MSCV-IREF-GFP or MSCV-Cre-IRES-GFP
were subsequently subcloned. Analyses were conducted with at least three
separate colonies of each line. Cells were maintained in DMEM supplemented
with 5% FBS, 100 �g/ml penicillin and streptomycin and were cultured in 5%
CO2 at 37°C. For c-Jun rescue experiments, c-jun�/� 3T3 cells were infected
with ether MSCV-c-Jun-DsRed or its control vector as described above. The
cells with red fluorescence were sorted by FACS and subsequently used for
analysis. Fluorescence phase-contrast imaging was carried out using the 10�
objectives of an Olympus IX microscope (Melville, NY).

Luciferase reporter gene assays were conducted using the 1.9-kb murine
c-Src wild-type (wt) and AP-1 point mutant luciferase reporter genes (Kuma-
gai et al., 2004). Luciferase activity was determined upon normalization of
transfection efficiency using a cotransfected �-galactosidase reporter gene
(Katiyar et al., 2007).

Primary mammary epithelial cell (MEC) culture was based on the reference
(Wulf et al., 2004) with modification. Mammary glands from 8- to 12-wk-old
virgin mice were dissociated by chopping and then digested with 0.4 mg/ml
collagenase in MEC culture media (Ham’s F12 with 10% FBS, 1� MEM
nonessential amino acids, 100 �g/ml penicillin and streptomycin, 50 �g/ml
gentamicin, 4 �g/ml insulin, 1 �g/ml hydrocortisone, 10 ng/ml EGF, 10
ng/ml cholera toxin) in 5% CO2 at 37°C for 18 h. The digested material was
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homogenized by pipetting up and down and then was washed with PBS with
50 �g/ml gentamicin three times. The pellet was resuspended in MEC culture
in a 10-cm plate and then cultured for 4 h to remove fibroblasts. The suspen-
sion was divided into several plates according to the requirement of the
experiments. After 3–5 d culture, the MECs were treated with ether control
adenovirus or adeno-Cre1 (2 � 108 PFU/ml) for 24 h, washed with fresh MEC
culture media, and then continually cultured for another 4 d.

Phalloidin Staining and Quantification and Cell Diameter
Assessment
Phalloidin staining was conducted as previously described (Neumeister et al.,
2003). The image of phalloidin staining and quantification was conducted
using ether confocal microscopy or FACS analysis. Clones of primary trans-
duced 3T3 cells were harvested and washed in PBS. The cell pellets were fixed
with 4% paraformaldehyde and permeabilized with 0.05% NP-40. Subsequent
to PBS washing, cells were stained with rhodamine-phalloidin and DAPI. Cell
diameter was assessed using a Multisizer 3 instrument (Beckman Coulter,
Miami, FL).

Western Blotting and RT-PCR
Whole cell lysates (60 �g) were separated by 10% SDS (SDS-PAGE), and the
proteins were transferred to nitrocellulose membranes for Western blotting as
previously described (Li et al., 2006b). Western blotting was used to assess
protein stability in the presence of cycloheximide as previously described (Li
et al., 2006a). mRNA abundance was determined by RT-PCR using primers
directed to murine c-Src mRNA ordered from Qiagen (Chatsworth, CA;
QT00103691, Mm_Src_1_SG QuantiTect Primer Assay). The primer directed
to 18S mRNA from Qiagen (QT01036875, Mm_Rn18s_2_SG QuantiTect
Primer Assay) was used as control.

Cellular Migration Assays
Cells were seeded in a 12-well plate 24 h before being placed in an incubator
on the microscope to maintain the temperature at 37°C and CO2 at 5%. The
cell movement videos were taken at 5-min intervals using a Nikon Eclipse
TE-300 inverted microscope system (Melville, NY). The cell movement veloc-
ity was determined by tracing the single cells at different time points using

Figure 1. c-Jun reduces cellular diameter. (A)
c-junf/f 3T3 cells were transduced either with
retrovirus encoding GFP or Cre-GFP. Cellular
diameter was determined by FACS and the
cellular diameter is shown. (B and C) c-junf/f

3T3 cells transduced with Cre and deficient in
c-Jun were transduced with either retrovirus
encoding DsRed protein or c-Jun-DsRed.
Phase-contrast and fluorescent microcopy was
conducted. (D and E) Cellular diameter of c-
junf/f 3T3 cells transduced with either the
retro-IRES-DsRed or c-Jun IRES-DsRed. (F)
The mean cellular diameter is shown in �M.
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MetaMorph software (Molecular Devices, Downingtown, PA). To observe the
effect of ROCK or c-Src inhibition, cells were treated with 10 �M Y27632 or 2
�M SU6656 (Calbiochem) for 30 min before and during the course of time-
lapse recording. Transwell migration assays were conducted using a trans-
well chamber, and cells were counted after 3 h of treatment for cell migration
(Li et al., 2006b).

The migration of MECs was assessed by wound healing assay. Cells were
grown to confluence on six-well plates, and the monolayers were wounded
with a P10 micropipette tip. MEC culture media was changed immediately
after wounding. The wound-healing videos were taken at 20-min intervals for
24 h using a Nikon Eclipse TE-300 inverted microscope system (Melville, NY).
The cell movement velocity was also determined by MetaMorph.

Immunofluorescence
c-junf/f and c-jun�/� 3T3 cells grown in four-well chambers, and slides were
fixed with 4% paraformaldehyde in PBS for 20 min at room temperature. The
slides were rinsed with PBS and permeated with 0.05% NP-40 in PBS. The
primary antibodies used were mouse monoclonal anti-paxillin (clone 5H11;
Upstate Biotechnology; 1/100) and rabbit polyclonal anti-phospho-paxillin
(pY118; Biosource; 1/100). The secondary antibodies used were Alexa Fluor
633–conjugated F(ab�)2 fragment of goat anti-mouse immunoglobulin G (IgG;
Molecular Probes, Eugene, OR; 1/250) and rhodamine red X–conjugated goat
anti-rabbit IgG (Jackson ImmunoResearch Laboratories; 1/50). Fluorescence
confocal imaging was acquired with either a 60� objective of an Olympus
IX70 laser confocal microscope (Georgetown University) or a 63� objective of
a Zeiss LSM510/META laser confocal microscope (Thomas Jefferson Univer-
sity). The images were processed with MetaMorph (Molecular Devices).

Interferential Reflection Microscopy
Interferential reflection microscopy (IRM) images were collected using an
Olympus Fluoview FV300 laser scanning microscope outfitted with a 60�/1.4
NA oil immersion lens. Cells were cultured on dishes with number 1.5
coverslips affixed to the bottom and then transferred to a heated stage (37°C)
in complete medium with 10 mM HEPES, pH 7.4, added to maintain constant
pH (Li et al., 2006b). The samples were illuminated with 488-nm argon laser
light, and reflected light images were collected from channel 2 in the absence
of emission filters. During live imaging, rapid and local changes in interfer-
ence patterns or “flickering” occur. To better visualize longer-lived focal
adhesion formation and changes that take place in their number and shape
over time (minutes), images were averaged over time (seconds) to eliminate
short-lived fluctuations. Focal adhesions appear as dark streaks, whereas
close contacts or membrane distances that are greater appear lighter. At even
greater distances, evidence of cell contact is not apparent. Each focal adhesion
was tracked using MetaMorph and the life of focal adhesion was calculated
based on the frames of focal adhesion existence.

Fluorescent-Gelatin Degradation Assay
AlexaFluor-568–conjugated gelatin matrix degradation experiments were
carried out on triplicate coverslips with analysis of at least 25 fields per
coverslip (100 cells minimum and at least three iterations of each experiment).
Dark spots on the bright, fluorescent gelatin matrix were thresholded. For
each field (0.01 mm2), the area of the degraded zones (�m2) and the area of
cells (�m2; determined by FITC-phalloidin staining) were summed, and the
total area of degraded zones per cell area was calculated for each field of view.
Matrix degradation is reported as area degraded per cell area.

ROCK Activity Assay
Rho-associated protein kinase (ROCK) activity was assessed by the Rho-
kinase Assay Kit from Cclex Co. (Nagano, Japan) according to the manufac-
turer’s protocol. The phospho-specific mAb used in this kit recognizes the
phospho-threonine 697 residue in MBS/MYPT1, which is phosphorylated by
ROCK. For each sample, 10 �l of 1 mg/ml cell lysate was used. The absor-
bance value obtained from ROCK inhibitor (Y27632)-treated lysates was
subtracted from total absorbance to exclude the influence of other kinases.

c-Src Kinase Activity Assay
c-Src kinase activity was assessed by combination of immunoprecipitation
(IP) activity Src Kit (Calbiochem) and HTScan Src Kinase Assay Kit (Cell
Signaling, Beverly, MA). c-Src from cell lysate (400 �g protein) was immu-
noprecipitated by IP activity Src Kit according to the manufacturer’s manual.
The kinase activity of immunoprecipitated c-Src was measured with HTScan
Src Kinase Kit based on the manufacturer’s manual.

Statistical Analysis
Statistical significance was determined by Student’s t test.

RESULTS

c-Jun Deletion Induces Cellular Spreading and F-Actin
To examine the role of c-Jun in cellular migration, fibroblasts
were derived from mice carrying a floxed c-jun allele (Sup-
plement 1A). c-junf/f 3T3 cells were derived and transduced
with retroviral expression plasmids encoding either GFP or
Cre recombinase. GFP-expressing clones were selected for
subsequent analysis. The excision of the c-jun allele resulted
in the formation of a 600-base pair PCR product (Supple-
ment 1A). Deletion of the c-jun allele resulted in a complete
loss of c-Jun by Western blot analysis (see Figure 3C) or by
FACS analysis (Supplement 1B) and immunostaining (Sup-
plement 1D). Cells deleted of c-jun exhibited a flattened
morphology in culture compared with the polarized fibro-
blastoid morphology of c-junf/f 3T3 cells transduced with a
GFP expression vector (Figure 1A).

In view of the apparent increase in cellular diameter of the
c-jun�/� cells, cellular circumference was assessed in cellular
suspension using a Multisizer 3 (Beckman Coulter). Cellular
diameter was increased 22% (p � 0.05; Figure 1, B and C). To
determine whether the change in cellular morphology was
due to c-Jun rather than a secondary event, the c-jun�/� cells
were transduced with a retrovirus expressing c-Jun. Rein-
troduction of c-Jun expression into c-jun�/� cells was suffi-
cient for the rescue of the fibroblastoid-polarized morphol-
ogy and cellular diameters by FACS analysis (Figure 1, D–F).

A flattened nonpolarized morphology frequently corre-
lates with reduced cellular migration. To determine whether
c-Jun regulated cellular migration, transwell migration as-
says were conducted using a Boyden chamber. Comparison
was made between c-junf/f 3T3 cells, cells deleted of c-jun
using retroviral Cre, and cells retransduced with a retroviral
vector encoding c-Jun tagged through an internal ribosomal
entry site to red fluorescent protein (DsRed). The deletion of
c-Jun reduced cellular transmigration by 60% (Figure 2A).
Reintroduction of c-Jun into c-jun�/� cells restored the mi-
gratory phenotype (Figure 2A) and restored c-Jun abun-
dance, as assessed by Western blot analysis (Figure 2B).

Figure 2. c-Jun induces cellular migration. (A) Transwell migra-
tion assays were conducted using c-junf/f 3T3 cells transduced with
either GFP, Cre-GFP, DsRed, or c-Jun-DsRed. The data are shown as
the mean number of cells migrated. (B) Western blot analysis for
c-Jun demonstrating transduction of c-jun�/� cells with the c-Jun
expressing retrovirus.
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To assess whether c-Jun regulated altered cellular mor-
phology and migration through changes in actin stress fiber
formation, phalloidin staining was conducted (Figure 3). 3T3
wt cells demonstrated peripheral F-actin staining (Figure
3A). In c-Jun–deficient cells, F-actin staining was disorga-
nized with a perinuclear distribution, with increased F-actin
throughout the cytoplasm (Figure 3A). Quantitation of F-
actin by FACS demonstrated an increase in total F-actin in
c-jun�/� cells compared with c-junf/f (Figure 3B). Western
blot analysis of the cells demonstrated a reduction in the
abundance of c-Jun, normalized to the control proteins, �-ac-
tin or �-tubulin (Figure 3C).

c-Jun Governs Paxillin Tyrosine 31, 118, and serine 178
Phosphorylation within Focal Contacts
To determine whether the increase in F-actin was associated
with increased focal contacts, immunohistochemistry was
conducted of focal contacts. The coronal view of the c-jun wt
and c-jun�/� 3T3 cells demonstrated the flattened and
spread morphology of the c-jun�/� cells (Figure 4A). The
distribution of paxillin, marking focal contacts, evidenced
the centripetal distribution of focal contacts at the periphery
of the c-jun�/� cells. Focal contacts were identified at the
distal aspect of the F-actin cables in the higher magnification
images (Figure 4B). Analysis of focal contacts was conducted
using FAK and phosphorylated paxillin as markers for focal
contacts (Figure 5). Consistent with previous studies, 3T3
cells showed a diffuse distribution of cytoplasmic paxillin,
with relatively few focal contacts at the polar ends of the cell
as determined by FAK (Figure 5A) and by costaining of
paxillin with tyrosine-phosphorylated paxillin (Figure 5B).
In contrast, the c-jun�/� cells demonstrated increased focal
contacts with FAK (Figure 5A) and tyrosine-phosphorylated

Figure 3. c-Jun induction of F-actin. (A) F-actin staining with
phalloidin and nuclear staining with DAPI, demonstrates the fibro-
blastoid morphology of c-junf/f (wt) cells, and the epitheliod mor-
phology of c-jun�/� cells. (B) Quantitation of F-actin staining by
FACS analysis demonstrates a 2.5-fold increase in F-actin in c-jun�/�

cells. (C) Western blot analysis shows deletion of c-Jun protein,
compared with control proteins �-tubulin and �-actin.

Figure 4. c-jun excision induces formation of paxillin at F-actin tips. (A) coronal section of cells stained for F-actin and paxillin demonstrates
flattened spread morphology of c-jun�/� cells with paxillin marking focal contacts throughout the cell base, (B) seen distributed centripetally
around the cells circumference.

X. Jiao et al.
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paxillin, forming multiple small, peripherally organized fo-
cal contacts, distributed circumferentially around the cell
(Figure 5B). Association between c-Src and FAK results in
c-Src activation and the sequential association with paxillin
(Brown and Turner, 2004; Schlaepfer et al., 2004). In addition
to permitting recruitment of multiple binding proteins to
focal contacts, paxillin is phosphorylated at specific tyrosine
and serine residues in response to growth factors and cyto-
kines and upon association of c-Src. Confocal microscopy
was undertaken using phospho-specific antibodies directed
to specific paxillin phosphorylation sites to investigate al-
tered extracellular signaling pathways of c-jun�/� cells
(Brown and Turner, 2004). Activated c-Src and FAK induces
tyrosine phosphorylation at tyrosine residue 118 and resi-
due 31. Multiple centripetally distributed tyrosine 118 phos-
phorylated foci were observed in c-jun�/� cells (Figure 5B).
Adhesion induced phosphorylation by FAK, induces paxil-
lin tyrosine phosphorylation at amino acid residue 31. Wild-
type 3T3 cells exhibited little activation of paxillin at Y31.
However, increased phosphorylation was observed in focal
contacts of the c-jun�/� cells (Figure 5C). Serine 178 of pax-
illin serves as a substrate for JNK phosphorylation. In-

creased phosphorylation of paxillin at serine 178 was ob-
served in a perinuclear distribution of c-jun�/� cells (Figure
5D). Thus, c-jun�/� cells demonstrate hyperactivation of
paxillin phosphorylation, and the phosphorylated paxillin is
located circumferentially associated with increased F-actin
stress fiber formation.

The focal adhesions of c-jun�/� cells are large. Large focal
adhesions normally do not undergo rapid turnover, tending
to be involved passively in anchorage, whereas fast-moving
cells usually do not form focal adhesions (Beningo et al.,
2001). In view of the increased spreading and reduced mi-
gration of c-jun�/� cells, we assessed focal adhesion stability
by examining the relative contact of the cell to its substratum
using IRM with time-lapse videomicroscopy. IRM measures
the appositional proximity of cells with their substratum.
The areas of contact between the cell and its substratum,
such as focal adhesions, are displayed as dark structures.
Less closely opposed areas of the cell exhibit gradients of
gray to white (Neumeister et al., 2003). The number and
surface area of contact points between the cell and its sub-
stratum was dramatically enhanced in c-jun�/� cells at 0 min
(Figure 6A). Serial images of the cells were obtained by IRM

Figure 5. c-jun excision induces large focal
contacts in a centripetal distribution. (A) c-
junf/f 3T3 cells were transduced either with
control vector GFP or Cre expression vector
(pMSCV-Cre-IRES-GFP). Immunostaining was
conducted for FAK (A) and for (B–D) paxillin
and phosphopaxillin Y118 (B), Y31 (C), and
S178 (D). The merged image of paxillin and
phosphopaxillin are enlarged in the fourth
image of each series. Note the formation of
large focal contacts at the cell periphery, and
in D note the perinuclear distribution of phos-
phorylated paxillin (Serine 118).
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to determine the stability of the focal adhesion (Li et al.,
2006b). Focal adhesion dynamics were analyzed by video-
microscopy to determine the stability of focal adhesions.
Focal contacts turned over rapidly in 3T3 wt control cells. In
contrast focal adhesions turned over poorly in c-jun�/� cells,
with prominent static wedge-like IRM density observed in
c-jun�/� cells (Figure 6B). The rate of turnover of focal
adhesions correlates with cellular motility. Focal contacts
that are remodeled rapidly are associated with enhanced
rates of cellular migration. To determine whether c-Jun reg-
ulates the rate of focal contact turnover quantitative video-
microscopy studies were conducted as previously described
(Smilenov et al., 1999; Ren et al., 2000). The mean life of focal
contacts in c-junf/f cells was �10 min, whereas the focal

contact of c-jun�/� cells was �45 min (Figure 6, C and D).
Thus, the rate of turnover of focal adhesions correlated with
cellular motility (Figure 2). Focal adhesions that were re-
modeled rapidly were associated with enhanced rates of
cellular migration, whereas the loss of c-Jun increased their
lifetime and slowed migration.

c-Jun Inhibits ROCK II
Increased F-actin formation, as seen in c-jun�/� cells, is
observed with increased ROCK II and Rho activity (Amano
et al., 1997). ROCK is known to activate JNK. As JNK phos-
phorylates paxillin at serine 178, the increased phosphory-
lation of paxillin S178 in c-jun�/� cells also raised the pos-
sibility that ROCK activity was increased in c-jun�/� cells.

Figure 6. c-Jun regulates cellular adhesion
stability. (A) Interferential refraction micros-
copy conducted with time-lapse microscopy
was used to monitor the stability of focal con-
tacts. Deletion of c-Jun induces large stable
focal contacts seen at high magnification in B.
(C) Quantitation of the life of focal adhesions
from videomicroscopy with (D) Mean data �
SEM for the life of focal adhesions as de-
scribed in Materials and Methods.
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Our studies of transwell cell migration demonstrated re-
duced migration in c-jun�/� cells and the induction of mi-
gration by c-Jun reintroduction. Cellular migration involves
several components including migratory velocity and per-
sistence of migratory directionality. To examine further the
mechanisms by which c-Jun regulated migration, time-lapse
videomicroscopy was used to characterize the defect in mi-
gration of c-jun�/� cells. c-jun�/� cells showed a 40% de-
crease in cellular migration velocity (p � 0.05; Figure 7, A
and B). Addition of the ROCK II kinase inhibitor Y27632
eliminated the difference in migration velocity between the
c-Jun–expressing and c-jun�/� cells, suggesting hyperactive
ROCK II kinase contributed to the defect in cellular migra-
tory velocity. ROCK II kinase inhibition of 3T3 cells in-
creased migratory velocity consistent with the known role of
ROCK II in basal migratory velocity of 3T3 cells (Figure 7B).
To confirm that ROCK II kinase activity is increased after
loss of c-jun and that it is restored after reintroduction of
c-jun, the effect of c-Jun on ROCK II kinase activity was
assessed in c-jun�/� cells using the myosin-binding subunit
of myosin phosphatase as substrate. ROCK II kinase activity
was increased in c-jun�/� cells (Figure 7C). Reintroduction

of c-Jun to physiological levels restored ROCK II activity
(Figure 7C). As an additional assay of ROCK II activity the
phosphorylation of the ROCK II substrate cofilin was deter-
mined. The actin-depolymerizing protein cofilin is phos-
phorylated by ROCK and LIM kinase, inhibiting its actin-
depolymerizing activity, thereby stabilizing actin stress
fibers. Consistent with the increase in ROCK II kinase activ-
ity, phosphorylation of cofilin was increased in c-jun�/� cells
(Figure 7D). To determine whether the increased stress fiber
formation in c-jun�/� cells was in part dependent on ROCK
hyperactivation, phalloidin staining was conducted (Figure
7E). c-Jun�/� cells demonstrated increased stress fiber for-
mation. Costaining with paxillin identified focal adhesions
at the centripetal end of F-actin cables, seen more clearly
with fivefold magnification (bottom panels, Figure 7E). Ad-
dition of the ROCK inhibitor Y27632 had little effect on
distribution of phalloidin in wt cells, but reduced the ap-
pearance of stress fibers and paxillin-containing focal adhe-
sions in c-jun�/� (Figure 7E). These findings are consistent
with a role for hyperactivated ROCK in the increased stress
fiber formation of c-jun�/� cells.

Figure 7. c-Jun induction of cellular veloc-
ity involves ROCK kinase. (A) The cellular
velocity was determined by videomicros-
copy. (B) c-jun�/� cells show reduced veloc-
ity (p � 0.005) compared with c-junf/f cells,
which is restored �25% by treatment with
the ROCK kinase inhibitor (Y27632, 10 �M).
(C) The ROCK activity is increased upon
deletion of c-Jun (p � 0.05). Reintroduction
of c-Jun inhibits ROCK activity to that of
c-junf/f cells (D). Western blot analysis of
phosphorylated cofilin, a marker of ROCK
activation with FAK used as a loading con-
trol. (E) Phalloidin staining of cells at
(600�) and (3000�) treated with vehicle or
10 �M Y27632.
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c-Jun Induces Cellular Invadopodia and c-Src Expression
Invasive cells extend lamellipodial protrusions and invade
extracellular matrix. The abundance of matrix degradation
associated with this protrusive activity correlates with inva-
sive potential. Invadopodia can be assessed through extra-
cellular matrix degradation (Bowden et al., 2001). The ability
of 3T3 cells to proteolyze gelatin matrix was assessed using
an AlexFluor 568 coupled to ECM substrate (gelatin; Alex-
Fluor 568). The presence of invadopodia, evidenced by ma-
trix degradation, results in dark areas and fluorescence (Fig-
ure 8A). The deletion of c-jun abrogated by 80% the amount
of ECM substrate degraded by invadopodia (Figure 8B).

The role of ROCK II in invadopodia formation was next
assessed (Figure 8A). The breast cancer cell line MDA-MB-
231 transformed with v-Src increased invadopodia activity
(data not shown). 3T3 cells treated with the ROCK inhibitor
reduced invasiveness, but this reduction was not statistically
significant. Consistent with a model in which c-Jun inhibi-
tion of ROCK kinase promoted invadopodia, c-jun�/� cells
treated with ROCK inhibitor increased invadopodia forma-
tion threefold (Figure 8B). To determine the role of c-jun and
c-jun–mediated repression of ROCK II kinase in migration
across a membrane, transwell migration assays were con-
ducted in a Boyden chamber (Figure 8C). The ROCK II
inhibitor did not fully restore cell invasiveness, indicating

ROCK II–independent pathways are also involved. To-
gether, these studies demonstrate the abundance of c-Jun
regulates ROCK II activity. Increased ROCK II activity in
c-jun�/� cells contributes to both reduced cellular migration
and reduced cellular invasion.

c-Jun Induction of Migration Is Dependent on ROCK and
Src Kinase
To examine further the mechanism by which c-Jun may
inhibit ROCK activity, we considered upstream regulators of
ROCK activity as potential targets of c-Jun. c-Src inhibits
ROCK II activity (Pawlak and Helfman, 2002). We therefore
examined the relative abundance of c-Src, in c-jun�/� and wt
3T3 cells. c-Src abundance as well as src kinase activity was
reduced in c-jun�/� cells (Figure 9, A and G). Reintroduction
of c-Jun into c-jun�/� cells restored c-Src abundance, indi-
cating that c-Src is induced by c-Jun (Figure 9A, lanes 3 vs. 4).

To determine the mechanisms by which c-Jun induced
c-Src abundance, the mRNA levels of c-src were determined
by RT-PCR in c-junf/f versus c-jun�/� cells (Figure 9B). Com-
pared with 18S mRNA, c-src mRNA were 2.5-fold greater in
c-junf/f than in c-jun�/� cells. To determine whether c-jun
was capable of enhancing the activity of the c-src promoter,
a 1.9-kb c-Src promoter luciferase reporter was assessed
(Figure 9C). Comparison of relative promoter activity was
conducted in c-junf/f versus c-jun�/� cells, with normaliza-
tion of transfection efficiency conducted using a �-galacto-
sidase, control reporter gene. The activity of the c-src pro-
moter was reduced �80% upon deletion of the c-jun gene
(Figure 9C). To determine the role of the c-src promoter
putative AP-1 site, comparison was made between wt c-src
promoter and the activity of a c-src promoter construction
encoding a point mutation within the c-src promoter AP-1
site. Mutation of the AP-1 site reduced c-src promoter activ-
ity �90% (Figure 9C). Together these studies demonstrate
endogenous c-jun abundance regulates activity of the c-src
promoter through its AP-1 site.

Consistent with a model in which increased c-Src activity
contributes to increased migratory velocity mediated by en-
dogenous c-Jun, addition of the Src kinase inhibitor SU6656
reduced migratory velocity of wt cells to that of c-jun�/�

cells (Figure 9, D and E). To determine whether the reduc-
tion in c-Src abundance in c-jun�/� cells was responsible for
the hyperactive ROCK activity, ROCK kinase assays were
conducted (Figure 9F). Addition of SU6656 inhibited src
kinase activity (Figure 9G) and enhanced ROCK activity
�2.5-fold (Figure 9F), consistent with a model in which c-Src
inhibits ROCK kinase activity. The reduction of c-Src abun-
dance in c-jun�/� cells correlated with increased ROCK ac-
tivity. The presence of hyperactive ROCK in c-jun�/� cells
was characterized by increased stress fiber formation with
paxillin at the terminal ends of F-actin bundles (Figure 4B).
To determine the role of hyperactive c-Src activity in this
phenotype, paxillin and F-actin staining was conducted of
either wt or c-jun�/� cells treated with Src inhibitor. F-actin
staining demonstrated that the addition of Src kinase inhib-
itor to wt cells induced F-actin stress fiber staining associ-
ated with formation of focal paxillin staining at the F-actin
ends resembling c-jun�/� cells (Figure 9H).

These studies demonstrated that c-jun deletion reduced
c-Src abundance and cellular motility. To determine whether
restoration of c-Src abundance could restore cellular motil-
ity, a retroviral expression vector encoding c-src was used to
transduce c-jun�/� cells, and cellular motility was assessed.
Transduction of c-jun�/� with a c-Src expression vector in-
creased c-Src abundance to a level similar to that of c-junf/f

cells (Figure 10A). Associated with the transduction of

Figure 8. c-Jun induction of invasion involves ROCK kinase. (A)
Invadopodia assays were conducted of c-junf/f 3T3 cells in the pres-
ence of either GFP or Cre plus GFP. Holes indicating active inva-
dopodia are shown in black. Cells were treated either with control
or the ROCK kinase inhibitor Y27632 for 12 h. The top series of
panels are shown with magnification in the inset of each panel at
bottom left of the region enclosed within the white frame. (B) The
c-junf/f or c-jun�/� cells were assessed for the number of holes. Data
are mean � SEM of n � 20 separate frames. c-Jun deletion reduces
invadopodia (p � 0.05). Treatment with Y27632 increases the invasion
of c-jun�/� cells threefold (p � 0.05). (C) Transwell invasion assays
conducted in a Boyden chamber showed similar results as in B.
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c-jun�/� cells with the c-Src expression vector, the cellular
morphology by phase-contrast microscopy demonstrated
the restoration of the polarized morphology of c-junf/f cells
(Figure 10B). Single-cell videomicroscopy was conducted on
c-jun�/� cells transduced with either control or c-Src expres-
sion vector (Figure 10C). c-jun�/� cellular velocity was
enhanced two-fold upon transduction with a retrovirus
encoding c-Src (Figure 10C). c-Src expression increased
Src kinase activity, reduced the enhanced F-actin staining
of c-jun�/� cells, and reduced ROCK kinase activity (Fig-
ure 10, D and E).

To determine whether endogenous c-jun regulated the
morphology and cellular migratory velocity of epithelial
cells, primary MEC cultures were made from c-junf/f mice.
Cells were transduced with adenoviral expression vectors
encoding either Cre or control empty virus. PCR analysis
identified the presence of the �600-bp c-jun fragment cre-
ated through excision of the floxed c-jun allele (Figure 11A).
Western blot analysis demonstrated a dramatic reduction in
c-Jun abundance and a �50% reduction in c-Src abundance
(Figure 11B). Wounding assays were conducted, and single-
cell migration analysis was conducted by videomicroscopy
(Figure 11, C and D). The cellular velocity of MEC was
reduced �25% upon deletion of c-jun. The magnitude of the
difference in velocity gradually decreased as cells filled the
wound with maximal difference at the initial time point
analyzed 4 h after wounding (Figure 11E). Thus endogenous
c-jun promotes cellular migratory velocity in both fibroblasts
and epithelial cells.

Collectively these studies suggest endogenous c-Jun in-
duces c-Src abundance, thereby inhibiting ROCK activity,

reducing phosphorylation of cofilin and stress fiber forma-
tion to promote a more motile phenotype (Figure 12).

DISCUSSION

The c-jun protooncogene encodes the founding member of
the AP-1 family (Angel and Karin, 1991). c-Jun overexpres-
sion is common in human tumors and promotes cellular
proliferation and DNA synthesis (Angel and Karin, 1991).
Disruption of the c-jun gene in murine hepatocytes prevents
the emergence of hepatocellular carcinoma (Eferl et al.,
2003), and c-Jun is sufficient for the induction of anchorage-
independent growth of Rat1a cells (Kinoshita et al., 2003).
The mechanisms by which c-Jun contributes to tumor pro-
gression through regulation of cellular apoptosis is known
to involve p53 and p21CIP1 (Eferl et al., 2003). c-Jun is known
to promote cellular migration; however, the role of endog-
enous c-Jun in cellular invasion and the intracellular signal-
ing pathway involved was previously unknown. The cur-
rent studies demonstrate c-Jun promotes cellular invasion
and migration through the induction of c-Src and at least in
part the inhibition of ROCK II kinase (Figure 10). Endoge-
nous c-Jun functions to attenuate hyperactive ROCK-medi-
ated induction of large, stable centripetally distributed focal
contacts, to enhance focal contact turnover and promote
cellular migration and invasion (Figure 10).

The current studies demonstrate c-Jun induces c-Src abun-
dance, raising the possibility that the induction of AP-1
activity and c-Jun expression in tumors may contribute to
increased cellular invasiveness. Consistent with this model,
reintroduction of c-Src into c-jun�/� cells by retroviral trans-

Figure 9. c-jun induces Src expression and
signaling. (A) Western blot analysis of c-
junf/f or c-jun�/� cells for abundance of c-Src
with FAK or guanine dissociation inhibitor
(GDI; not shown) used as a loading control
for protein abundance. c-jun�/� cells were
transduced with either a control vector (Retro-
IRES-GFP) or c-Jun expression vector (Retro-c-
Jun-IRES-DsRed) and examined for c-Src abun-
dance by Western blot. (B) c-Src mRNA
abundance determined by RT-PCR. (C) Sche-
matic representation of the human c-src pro-
moter or AP-1 site point mutant c-src promoter
luciferase reporter. Relative luciferase activity
was determined by transient transfection of
c-jun�/� or c-jun�/� cells. Cellular migration
(D), migratory velocity (E), ROCK activity (F),
Src kinase activity (G). (H) Costaining with F-
actin (rhodamine phalloidin in red) and paxillin
(in white). Treatment of c-jun�/� cells with c-Src
kinase inhibitor reduces cellular migration and
velocity (D and E), Src kinase activity (G), in-
duces ROCK activity (F), and induces formation
of stable focal contacts characterized by paxillin
staining at the end of large F-actin cables (H).
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duction, reverted the spread morphology to the polar fibro-
blastoid morphology, associated with the induction of c-Src
abundance by Western blot (data not shown). The cellular
homologue of the transforming v-Src, c-Src, is widely ex-
pressed in mammalian cells, is rarely mutated, but is com-
monly increased in abundance or catalytic activity in human
cancer (Ishizawar and Parsons, 2004). The Src family ty-
rosine kinases (SFK) have been implicated in cellular adhe-
sion during animal development. SRC-1, the Caenorhabditis
elegans SFK orthologue, is required for cell migration (Itoh et
al., 2005). c-Src phosphorylation promotes cell migration
through phosphorylating distinct substrates including En-
dophilin A2, Crk-associated substrate (Cas), ZRP-1 (Zyxin-
related protein1) and altering the spatial regulation of �-ac-
tin translation through ZBP1. The mechanism responsible
for the induction of c-Src abundance in human cancer is not
well understood, but elevated abundance has been found in
human cancers including lung, skin, colon, breast, endome-
trial, and head and neck malignancies.

c-Jun induced c-Src (Figure 9A) and repressed ROCK II
expression and activity, evidenced by a reduction in phos-
phorylation of cofilin and the myosin-binding subunit of
myosin phosphatase. ROCK activates LIMK which phos-
phorylates cofilin, inhibiting its actin-depolymerizing activ-
ity, thereby stabilizing actin stress fibers. Consistent with
our findings, v-Src inhibited cofilin phosphorylation and the
mechanism involved a MEK-dependent and PI3 kinase-in-
dependent pathway (Pawlak and Helfman, 2002). Rho mu-
tants restore stress fiber formation in v-Src–transformed
cells (Mayer et al., 1999), consistent with a model in which
Rho proteins serve as downstream targets of v-Src. In our

studies, c-Jun reintroduction into c-jun�/� cells inhibited
Rho kinase activity and induced cellular migration. Silenc-

Figure 10. c-Src rescues the morphological abnormality and mi-
gration defect of c-jun�/� cells. (A) Western blot of c-jun�/� cells
transduced with control vector or c-Src retroviral expression vector.
(B) Phase-contrast and (C) single-cell video analysis (left) and mi-
gration velocity (right) of c-jun�/� cells transduced with pLNCX-c-
Src. (D) F-actin staining and Src-kinase assays demonstrating induc-
tion of c-Src kinase activity by c-Jun. (E) Restoration of c-Src reduced
ROCK kinase activity of c-jun�/� cells.

Figure 11. c-Jun deletion reduces migration of primary murine mam-
mary epithelial cells. Primary murine mammary epithelial cells of
c-Junf/f mice transduced with adenoviral-IRES-GFP vectors expressing
either GFP or Cre and GFP were examined by genomic analysis for the
presence of a 600-base pair band indicative of c-jun excision using PCR
(A) and Western blot (B). (C and D) Cellular migration into a wound.
(E) Single-cell migratory behavior quantification for cellular velocity.
Deletion of endogenous c-jun reduced cellular velocity from 0.185 �
0.011 to 0.135 � 0.012 �m/min in the first 4 h (p � 0.01).

Figure 12. Proposed model by which endogenous c-Jun regulates
cellular migration. c-Jun induces c-Src expression and activity. c-Src
activity inhibits ROCK activity, consequently reducing phosphory-
lation of cofilin, reducing hyperactive stress fiber formation, and
promoting cellular migration and invasion. ROCK induces c-Jun
expression (Marinissen et al., 2004). Endogenous c-Jun–mediated
inhibition of c-Src expression would be predicted to function in a
homeostatic feedback to normalize c-Jun induction by ROCK.
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ing of the c-jun heterodimeric partner Fra1 also reduces cell
motility and hyperactivates Rho-ROCK, leading to increased
stress fiber formation and stabilization of focal adhesion
(Vial et al., 2003). Fra1 promoted cell motility by inhibiting
RhoA. The reduction in RhoA activity in Ras-transformed
cells is necessary for the increased motility of Ras-trans-
formed cells (Sahai et al., 2001). In Ras-transformed cells the
reduction in Rho kinase activity is associated with a trans-
location of ROCK and Rho kinase from the triton-soluble to
the Triton X-100–insoluble fraction through an unknown
mechanism, further contributing to the reduction in ROCK
activity (Sahai et al., 2001). Although speculative, caveolae
are located in the X-100 membrane-insoluble fraction and
c-Src within caveolae is thought to be inactive. It will be of
interest to determine whether the peripherally located phos-
phorylated paxillin colocalizes with caveolae.

The inhibition of RhoA by c-Src is known to contribute to
remodeling of focal contacts. The increased migratory veloc-
ity of c-Jun–expressing cells is consistent with the finding
that ROCK kinase inhibitors enhance migratory velocity
(Totsukawa et al., 2004). The enhancement of migratory ve-
locity of ROCK kinase inhibited cells correlated with a re-
duction in stable mature focal adhesions, which probably
function as a “brake” on the cell migration machinery. Inte-
grin aggregation, for example, via tissue transglutaminase
(tTG) inhibits Src kinase-elevating RhoA (Janiak et al., 2006).
Cells treated with tTG, like c-jun�/� cells, display elevated
RhoA/ROCK II, activity, reduced c-Src activity, and prom-
inent stress fibers, with increased focal adhesions (Janiak et
al., 2006). Thus, c-Jun by regulating c-Src, may in turn mod-
ulate the cooperative interaction between integrins and sur-
face tTG.

The inhibition of ROCK activity by endogenous c-Jun may
function as an important homeostatic feedback mechanism.
ROCK activates JNK, which phosphorylates c-Jun and
ATF2, to induce c-Jun expression (Marinissen et al., 2004).
RhoA stimulation of ROCK occurs independently of the
ability of ROCK to promote actin polymerization. Similarly,
ROCK activation leads to phosphorylation of the actin-de-
polymerizing factor cofilin and the stabilization of polymer-
ized F-actin (Sotiropoulos et al., 1999). The consequent re-
duction in the monomeric G-actin pool is sensed by SRF,
which induces c-Fos expression (Miralles et al., 2003). Thus
ROCK would be predicted to induce AP-1 activity in a
sustained feed-forward manner. Through the induction of
c-Src, and consequent inhibition of ROCK by endogenous
c-Jun as shown herein, a homeostatic mechanism exists to
attenuate, in a physiological manner, AP-1 activation in-
duced by diverse stimuli.
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