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Abstract: Methiopropamine is a novel psychoactive substance (NPS) that is associated with sev-
eral cases of clinical toxicity, yet little information is available regarding its neuropharmacological
properties. Here, we employed in vitro and in vivo methods to compare the pharmacokinetics and
neurobiological effects of methiopropamine and its structural analog methamphetamine. Methio-
propamine was rapidly distributed to the blood and brain after injection in C57BL/6 mice, with a
pharmacokinetic profile similar to that of methamphetamine. Methiopropamine induced psychomo-
tor activity, but higher doses were needed (Emax 12.5 mg/kg; i.p.) compared to methamphetamine
(Emax 3.75 mg/kg; i.p.). A steep increase in locomotor activity was seen after a modest increase in the
methiopropamine dose from 10 to 12.5 mg/kg, suggesting that a small increase in dosage may engen-
der unexpectedly strong effects and heighten the risk of unintended overdose in NPS users. In vitro
studies revealed that methiopropamine mediates its effects through inhibition of norepinephrine and
dopamine uptake into presynaptic nerve terminals (IC50 = 0.47 and 0.74 µM, respectively), while
the plasmalemmal serotonin uptake and vesicular uptake are affected only at high concentrations
(IC50 > 25 µM). In summary, methiopropamine closely resembles methamphetamine with regard
to its pharmacokinetics, pharmacodynamic effects and mechanism of action, with a potency that is
approximately five times lower than that of methamphetamine.

Keywords: locomotor activity; methamphetamine; methiopropamine; mouse; neuropharmacology;
novel psychoactive substance; NPS; pharmacokinetics; pharmacology; psychostimulant

1. Introduction

The novel psychoactive substance (NPS) methiopropamine (1-(thiophen-2-yl)-2-
methylaminopropane) emerged on the European drug market in 2011. Methiopropamine
is a structural analog of methamphetamine where the benzene ring of methamphetamine
is replaced with a thiophene ring (Figure 1). Methiopropamine is mainly sold as a pure
substance, but is also found in combination with other drugs, e.g., the combination of
methiopropamine and 2-aminoindane, branded as legal cocaine (“Synthacaine”) [1]. Sev-
eral web-based vendors offer methiopropamine for online sale, making the substance easy
to obtain [2]. According to users, methiopropamine produces effects similar to those of
amphetamine, including mental stimulation, alertness and increased energy and focus,
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with common routes of administration being oral, intranasal and inhalation [3]. Methio-
propamine was identified as one of the three most common NPSs in the UK in 2014/2015 [4],
while a Norwegian study reported a snapshot prevalence of 0.8% in a population of drivers
suspected of being under the influence of drugs in the same time period [5].

Figure 1. Structural formulas of methiopropamine (MPA), nor-methiopropamine (nor-MPA) and
methamphetamine (MA).

Despite its presence as an NPS for several years, little information is available about
methiopropamine’s pharmacokinetics and precise mechanism of action. An in vitro study
examining the neurochemical profiles of different NPSs reported that methiopropamine is a
potent inhibitor of dopamine (DA) and norepinephrine (NE) uptake at human transporters
expressed in transfected cells [6]. A pharmacokinetic study analyzing rat and human urine
after methiopropamine intake reported the unchanged drug as the main excretion prod-
uct. In the human urine sample, the N-demethylated metabolite nor-methiopropamine
and the parent compound were detected 18 h after self-reported intake of 200 mg me-
thiopropamine [7]. Tyrkkö et al. [8] found similar results in human cases where methio-
propamine and nor-methiopropamine were the only substances found in urine samples.
A case study of acute toxicity after intake of methiopropamine also confirmed the pres-
ence of hydroxy nor-methiopropamine in urine, in addition to methiopropamine and
nor-methiopropamine, 21 h after nasal insufflation of 50 mg of a powder marketed as
“Quicksilver” [9].

Several clinical case reports describe acute toxicity after recreational methiopropamine
use. One case with analytical confirmation of methiopropamine described tachycardia,
chest pain, anxiety, nausea, vomiting and visual hallucinations as major intoxication
symptoms [9], while another presented with agitation, confusion, paranoid delusions,
hallucinations and incoherent speech [10]. Several fatal methiopropamine cases were
reported, however, in most cases, methiopropamine was found in combination with other
substances [11–13]. In England and Wales, methiopropamine use was reported as the cause
of death in 6 and 23 cases of single and polydrug use, respectively, between 2012 and
2016 [12]. In one fatal case of isolated methiopropamine use, a peripheral postmortem
blood concentration of 38 µg/mL was reported [14].

The aim of the present study was to characterize the neuropharmacological effects
and pharmacokinetics of methiopropamine, compared with its structural analog metham-
phetamine. We examined the drugs’ locomotor stimulating effects in mice and drug
concentrations in the blood and brain, as well as changes in the post-mortem tissue concen-
trations of monoamines and their metabolites in brain areas important for reward. Finally,
we examined methiopropamine’s mechanism of action by carrying out in vitro studies of
drug interactions with monoamine transporter proteins in rodent brain tissue.

2. Results
2.1. Locomotor Activity Studies

Injection of methiopropamine resulted in stimulation of locomotor activity (F(5, 24) = 19.20,
p < 0.001), with significantly increased activity after administration of 12.5–20 mg/kg.
Hyperlocomotion was induced immediately following drug injection and declined to zero
after 2.5 to 3.5 h (Figure 2a). The total distance travelled and peak effect (Emax) during the 4 h
locomotor session were affected by the dose (total distance (F(5, 25) = 13.47, p < 0.001), Emax
(F(5, 38) = 43.45; p < 0.001)), with a maximum total locomotor activity of 40,313 ± 3575 cm
(Figure 2b, p < 0.001) and peak effect of 2037 ± 127 cm/5 min (Figure 2c, p < 0.001) after
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injection of 12.5 mg/kg. The locomotor activity reached a “plateau effect” at 12.5 mg/kg,
with no further increases in the total run distance or Emax following administration of
higher 15 and 20 mg/kg doses (Figure 2b,c).

Figure 2. Locomotor activity in mice after injection of (a–c) methiopropamine (MPA)
and (d–f) methamphetamine (MA). Locomotor activity was recorded for 240 min after i.p. injection
of saline (0.9%), MPA (5–20 mg/kg) or MA (1–5 mg/kg). The results are expressed as (a,d) activity
profiles of the mean distance travelled per 5 min intervals, (b,e) total run distance during the 240 min
session and (c,f) maximum run distance (Emax) per 5 min intervals, n = 4–10. * p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001 vs. saline (Dunnett’s post hoc test).

Methamphetamine administration also induced hyperlocomotion in mice (F(5, 24 = 20.88,
p < 0.001) with significantly increased activity after administration of 1.75–5 mg/kg
(Figure 2e). As seen for methiopropamine, the locomotor activation appeared immedi-
ately after drug administration and declined to zero after 2.5 to 3.5 h (Figure 2d). The
total distance travelled and Emax during the 4 h locomotor session were affected by the
dose (total distance (F(5, 24) = 20.65, p < 0.001), Emax (F(5, 44) = 24.34; p < 0.001)), with a
maximum total locomotor activity of 24,401 ± 2043 cm and Emax of 1312 ± 126 cm 5 min
after administration of 3.75 mg/kg methamphetamine (Figure 2e,f). Increasing the metham-
phetamine dose to 5 mg/kg did not increase the total run distance or Emax compared with
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the 3.75 mg/kg dose. Injection of saline did not induce changes in locomotor activity in the
mice (Figure 2a,d).

2.2. Pharmacokinetic Studies

Doses for the pharmacokinetic studies were chosen based on the doses that induced
the highest level of locomotor activity in behavioral assessments (Figure 2). The blood
and brain concentrations of methiopropamine and nor-methiopropamine after i.p. admin-
istration of 12.5 mg/kg methiopropamine are shown in Figure 3a,b. Methiopropamine
was well absorbed into the blood after i.p. injection with a maximum concentration (Cmax)
of 3.71 ± 0.21 µg/mL at the earliest time point measured (5 min; Figure 3a). Methio-
propamine was rapidly eliminated from the blood, and the concentration was reduced to
12% of Cmax within 120 min after administration. Methiopropamine was found at high
concentrations in the brain tissue, with a Cmax of 14.19 ± 1.14 µg/g measured 10 min after
drug injection (Figure 3a). The elimination half-lives of methiopropamine were estimated
to be approximately 31 and 35 min in the blood and brain, respectively.

Figure 3. Concentrations of (a) methiopropamine, (b) nor-methiopropamine and (c) methamphetamine in mouse blood
(white dots) and brain tissue (black dots) 5, 10, 20, 30, 45, 60, 120 and 240 min after a single i.p. injection of 12.5 mg/kg methio-
propamine (a,b) or 3.75 mg/kg methamphetamine (c). Each time point represents mean ± SEM of blood (µg/mL) or brain
(µg/g) concentrations, n = 4–8. (d) The concentration ratio in brain vs. blood for methiopropamine and methamphetamine
5, 30 and 60 min after drug injection, n = 5–6.

The metabolite nor-methiopropamine was present at lower concentrations displaying
a Cmax of 0.15 ± 0.01 µg/mL in the blood 30 min after methiopropamine injection, and
a Cmax of 0.93 ± 0.09 µg/g in the brain 45 min after drug injection (Figure 3b). Nor-
methiopropamine was still detectable in the blood and brain tissue at the latest time point
measured, 4 h after methiopropamine injection.

Methamphetamine reached Cmax in the blood and brain shortly after i.p. adminis-
tration (Figure 3c). The Cmax was 0.91 ± 0.08 µg/mL in the blood at the earliest time
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point measured (5 min) and 4.11 ± 0.15 µg/g in the brain 20 min after drug injection.
The elimination half-lives of methamphetamine in the blood and brain were calculated to
be approximately 36 and 45 min, respectively. The concentration vs. time curve profiles
of methiopropamine and methamphetamine were almost identical (Figure 3a,c), and no
significant differences in the brain:blood ratios were found for the two drugs (p > 0.05).

2.3. Drug Effects on Neurotransmitter Uptake

Methiopropamine inhibited the plasmalemmal uptake of DA and NE in rat brain
synaptosomes in the submicromolar range (Figure 4a,b), with IC50 values of 0.74 ± 0.09
and 0.47 ± 0.06 µM, respectively (Table 1). Methamphetamine was an even more potent
inhibitor of the plasmalemmal DA and NE uptake, displaying IC50 values of 0.14 ± 0.01
and 0.08 ± 0.00 µM, respectively (Figure 4a,b and Table 1; p < 0.01). Both drugs were
less potent inhibitors of serotonin (5-HT) uptake with IC50 values of 25.14 ± 2.91 µM
for methiopropamine and 4.90 ± 0.39 µM for methamphetamine (Figure 4c and Table 1).
The vesicular uptake of DA, NE and 5-HT was also inhibited by methiopropamine and
methamphetamine (Figure 4d–f), but only at much higher drug concentrations (IC50 for
methiopropamine: 34–49 µM; IC50 for methamphetamine: 11–28 µM; Table 1).

Figure 4. Effects of methiopropamine (0.1–50 µM) and methamphetamine (0.05–50 µM) on (a–c) synaptosomal and (d–f)
vesicular uptake of [3H] dopamine (DA), [3H] norepinephrine (NE) and [3H] serotonin (5-HT) in rat brain synaptosomes
and synaptic vesicles in vitro, n = 4–6.
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Table 1. Effects of methiopropamine (MPA) and methamphetamine (MA) on uptake of [3H]DA,
[3H]NE and [3H]5-HT in rat brain synaptosomes and synaptic vesicles.

IC50
Synaptosomes

[3H]DA Uptake via
DAT (µM)

[3H]NE Uptake via
NET (µM)

[3H]5-HT Uptake via
SERT (µM)

MPA 0.74 ± 0.09 ** 0.47 ± 0.06 ** 25.14 ± 2.91 ***
MA 0.14 ± 0.01 0.08 ± 0.00 4.90 ± 0.39

IC50
Synaptic Vesicles

[3H]DA Uptake via
VMAT2 (µM)

[3H]NE Uptake via
VMAT2 (µM)

[3H]5-HT Uptake via
VMAT2 (µM)

MPA 33.79 ± 12.47 47.00 ± 8.01 48.89 ± 5.02 *
MA 10.92 ± 1.18 23.90 ± 8.55 28.23 ± 3.54

DA, dopamine; DAT, dopamine transporter; IC50, half maximal inhibitory concentration; NE, norepinephrine;
NET, norepinephrine transporter; SERT, serotonin transporter, VMAT2, vesicular monoamine transporter 2; 5-HT,
serotonin. n = 4–5; * p < 0.05; ** p < 0.01; *** p < 0.001 vs. methamphetamine (t-test, independent samples).

2.4. Drug-Induced Changes in Neurotransmitter Concentrations

Brain concentrations of DA, the DA metabolites 3-methoxytyramine (3-MT) and 3,4-
dihydroxyphenylacetic acid (DOPAC), 5-HT and the 5-HT metabolite 5-hydroxyindoleacetic
acid (5-HIAA) after methiopropamine or methamphetamine exposure were compared with
brain neurotransmitter concentrations in control animals injected with saline (Table 2).
In crude homogenates of the dorsal striatum (DS), reductions in the DOPAC concentra-
tion were seen after administration of 12.5 mg/kg methiopropamine (38% of control,
p < 0.001), 12.5 mg/kg methamphetamine (29% of control, p < 0.001) and 3.75 mg/kg
methamphetamine (53% of control, p < 0.01). The concentrations of 5-HIAA were also
significantly decreased in the DS (65–67% of control, p < 0.05) after methiopropamine
or methamphetamine administration. A tendency for increased 3-MT concentrations
was observed in the DS after injection of 12.5 mg/kg methiopropamine (158% of control,
p = 0.058) or 12.5 mg/kg methamphetamine (153% of control, p = 0.073). In the nucleus
accumbens (NAc), the 3-MT concentration was significantly increased after injection of
3.75 mg/kg methamphetamine (369% of control, p < 0.05), while all other measured brain
concentrations did not differ significantly from those measured in saline-injected animals.

Table 2. Concentrations (nmol/g) of DA, the DA metabolites 3-MT and DOPAC, 5-HT and the 5-HT
metabolite 5-HIAA 20 min after i.p. injection of methiopropamine (MPA) or methamphetamine (MA).

DA 3-MT DOPAC 5-HT 5-HIAA

Dorsal Striatum

Saline 128.9 ± 15.7 3.9 ± 0.3 41.2 ± 6.0 2.4 ± 0.3 6.7 ± 0.7
12.5 mg/kg MPA 126.6 ± 15.1 6.1± 0.8 # 15.6 ± 1.6 *** 2.3 ± 0.2 4.5 ± 0.5 *
12.5 mg/kg MA 109.6 ± 19.4 5.9± 0.6 # 12.1 ± 2.6 *** 1.8 ± 0.2 4.3 ± 0.6 *
3.75 mg/kg MA 107.4 ± 21.1 3.6 ± 0.7 22.0 ± 3.2 ** 2.0 ± 0.3 4.4 ± 0.6 *

Nucleus Accumbens

Saline 62.4 ± 7.9 1.0 ± 0.2 30.3 ± 10.0 5.0 ± 0.8 10.6 ± 1.5
12.5 mg/kg MPA 62.5 ± 6.9 2.5 ± 0.5 14.9 ± 1.9 5.2 ± 0.9 6.8 ± 1.0
12.5 mg/kg MA 54.6 ± 10.4 2.9 ± 0.4 12.5 ± 2.7 # 5.6 ± 1.4 8.4 ± 1.9
3.75 mg/kg MA 82.2 ± 10.5 3.5 ± 1.0 * 28.8 ± 2.6 6.1 ± 0.8 10.6 ± 1.4

n = 5–6; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; # p = 0.056–0.073 vs. saline (Dunnett’s post hoc test).

Figure 5 depicts the ratios of the DA metabolites 3-MT and DOPAC vs. DA, and the
5-HT metabolite 5-HIAA vs. 5-HT in the NAc and DS, measured 20 min after injection
of saline, methiopropamine or methamphetamine. The 3-MT/DA ratio was significantly
increased after administration of 12.5 mg/kg methamphetamine (DS: 182% of control,
p < 0.01; NAc: 271% of control, p < 0.05), while a tendency to increased 3-MT/DA ratio
was seen in the DS after injection of 12.5 mg/kg methiopropamine (160% of control,
p = 0.065). In comparison, the DOPAC/DA ratio was significantly decreased in the DS after
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administration of 12.5 mg/kg methiopropamine or methamphetamine (34–38% of control,
p≤ 0.001) and 3.75 mg/kg methamphetamine (66% of control, p = 0.05), whereas a tendency
to decreased ratio was seen in NAc after administration of 12.5 mg/kg methiopropamine
(64% of control, p = 0.061). Decreased 5-HIAA/5-HT ratios were seen in both the DS (69%
of control, p < 0.01) and NAc (62% of control, p < 0.01) in animals injected with 12.5 mg/kg
methiopropamine compared to animals given saline. A tendency for reduced 5-HIAA/5-
HT ratio was also seen in the DS after administration of 3.75 mg/kg methamphetamine
(79% of control, p = 0.068).

Figure 5. Ratios of (a) 3-MT/DA, (b) DOPAC/DA and (c) 5-HIAA/5-HT in nucleus accumbens and dorsal striatum
20 min after i.p. injection of saline (0.9%), methiopropamine (MPA; 12.5 mg/kg) or methamphetamine (MA; 3.75 or
12.5 mg/kg), n = 5–6; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; # p = 0.065–0.068 compared with the saline group (Dunnett’s
post hoc test). 3-MT, 3-methoxytyramine; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT, serotonin; DA, dopamine; DOPAC,
3,4-dihydroxyphenylacetic acid.

3. Discussion

Structural modification of classic drugs of abuse is a commonly employed strategy to
create NPSs, which circumvents existing drug control legislation. Methiopropamine is one
such example where a new recreational drug is created by replacing the benzene ring of
methamphetamine with a thiophene ring [9] (Figure 1). The rapid increases in the number
and diversity of NPSs on the global drug market remain a major challenge for forensic
and clinical laboratories because of the lack of analytical methods and scant information
about their pharmacology in humans and laboratory animals. In the present study, we
characterized the pharmacokinetics and neuropharmacological effects of methiopropamine
in mice, using the structural analog methamphetamine as a reference comparator drug.

The pharmacokinetics of methiopropamine closely resembled the pharmacokinetic
profile of methamphetamine, with similar concentration vs. time curves and brain:blood
drug ratios. We found that methiopropamine was rapidly absorbed into the blood and
brain after i.p. injection in mice, reaching a maximum brain concentration within 10 min.
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The elimination half-life was approximately 30 min, which is in the same range as
previously reported for methamphetamine [15]. Based on human toxicity reports [9,10,14],
and a previous metabolism study suggesting that methiopropamine is metabolized only
to a minor extent [7], nor-methiopropamine was the only metabolite included in this
study. We found that the nor-metabolite was present at a maximum concentration 24× and
15× lower than the concentration of methiopropamine in the blood and brain, respectively.
A recent study examining the urine excretion profile of methiopropamine after admin-
istration in mice reported the presence of nor-methiopropamine, oxo-methiopropamine
and two hydroxylated metabolites in addition to the unchanged drug [16]. However, only
methiopropamine and nor-methiopropamine were detected for a longer time period after
exposure, and the authors concluded that these two analytes had the highest diagnostic
value in toxicological analysis. It should also be noted that metabolite profiles in urine do
not always match those measured in the blood, brain or other tissues.

Amphetamine and its derivatives are well-known inducers of locomotor activity in
rodents [17–20]. Our study shows that high doses of methiopropamine are needed to
induce locomotor activity in C57BL/6 mice, with a maximal locomotor effect seen after
administration of 12.5 mg/kg methiopropamine, as compared with 3.75 mg/kg for metham-
phetamine. Importantly, our data show that methiopropamine is more efficacious than
methamphetamine as a locomotor stimulant because the former induces a greater extent
of overall locomotion. Methiopropamine-induced locomotor stimulation was previously
studied in Sprague-Dawley rats [21] and in CD-1 mice [22,23] with a significant increase
in locomotor activity seen after i.p. injection of 5 and 10 mg/kg, respectively. At higher
methiopropamine doses in mice (30 mg/kg; i.p.), stereotypic behavior, such as an increased
number of freezing episodes, rotational behavior and intense repetitive movements, was
observed [22]. The observed differences in drug-induced locomotor stimulation in our
study compared to the study by De-Giorgio et al. [22] could be due to strain differences
between the inbred C57BL/6 and outbred CD-1 mice. In comparison to the gradual/step-
wise dose-response increase in locomotor activity seen for methamphetamine, it is worth
mentioning the steep increase in locomotor activity observed after a modest increase in the
methiopropamine dose from 10 to 12.5 mg/kg. This steep dose-response profile suggests
that a small increase in dosage may give unexpectedly strong effects and heighten the
risk of unintended overdose in NPS users; however, the clinical significance of this steep
dose-response curve in rodents remains to be determined.

Psychostimulants differ in their relative affinity for DA, NE and 5-HT transporters [24],
and knowledge of the mechanisms of action of classic psychostimulants can be used to
predict differences in the behavioral profiles of novel drugs [25]. As an example, drugs
that are selective for the DA transporter are known to be powerful locomotor stimulants,
whereas drugs selective for the 5-HT transporter are not [26,27]. In this study, we showed
that methiopropamine is a potent inhibitor of the presynaptic NE (IC50: 0.45 µM) and DA
uptake (IC50: 0.66 µM) in isolated rat brain synaptosomes. In contrast, a 30–50× higher
methiopropamine concentration was needed to inhibit the plasmalemmal 5-HT uptake
to the same extent. This is consistent with a study by Iversen et al. [6] where methio-
propamine was shown to act as a potent inhibitor of DA and NE transport activity in
HEK293 cells expressing human neurotransmitter transporters, while the 5-HT transport
was less affected. When comparing the two substances, the selectivity for the DA, NE
and 5-HT transporters was almost identical, with methiopropamine displaying a potency
approximately 5× weaker compared with methamphetamine. Nearly identical DAT/SERT
ratios of methiopropamine and methamphetamine indicate similar abuse liability for the
two drugs [28,29]. Our studies of the effects on the vesicular transporter, VMAT2, revealed
an inhibitory effect of methiopropamine and methamphetamine in the micromolar range
(IC50: ~10–50 µM) with the lowest values found for the vesicular DA uptake (IC50: 33.8 µM
for methiopropamine and 10.9 µM for methamphetamine). This correlates well with the
reported IC50 of 9.1 µM for methamphetamine on vesicular DA uptake [30]. Mice exposed
to 12.5 mg/kg methiopropamine displayed blood and brain Cmax values of 3.7 µg/mL and
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14.2 µg/g, which equal 24 µM and 91 nmol/g (~91 µM), respectively, suggesting that an
inhibitory effect of methiopropamine on vesicular uptake could be relevant after high-dose
intake. As a comparison, recreational users driving under the influence of drugs displayed
a mean methiopropamine concentration of 0.018 µg/mL (0.12 µM) in the blood [5], whereas
a fatal intoxication case reported 38 µg/mL (245 µM) [14]. Camuto et al. [16] estimated a
dose of 10 mg/kg in mice to be equivalent to a normal-to-high recreational human dose
(~48 mg).

Drug-induced increases in monoamine transmission can be assessed directly by mea-
suring the monoamine levels in brain extracellular fluid, using in vivo microdialysis meth-
ods. In the present study, we employed an alternative, albeit less precise, approach by
measuring the concentrations of monoamines and their main metabolites in post-mortem
tissue from brain areas important to locomotor activation and drug reward. Since the DA
metabolite 3-MT can only be formed extracellularly, increases in 3-MT or the 3-MT/DA ratio
are thought to be an index of increased DA release from neurons [31–33], whereas reduced
DOPAC levels or DOPAC/DA ratios reflect reduced intraneuronal DA metabolism [34,35].
Previous studies in rats reported that amphetamine-like stimulants reduce striatal DOPAC
concentrations and increase 3-MT concentrations [33,36–38]. In animals exposed to the
highest dose of methamphetamine (12.5 mg/kg), we observed significantly increased
3-MT/DA ratios in both the DS and NAc, as well as a reduced DOPAC/DA ratio in the DS.
Similar findings were seen for methiopropamine; however, the changes in the 3-MT/DA
ratio did not reach significance (p = 0.065 in the DS). In addition to the effects on the
DA system, animals treated with methiopropamine also showed a decreased 5-HIAA/5-
HT ratio in DS and NAc, while reduced 5-HIAA levels were induced by both drugs
in the DS. The observed changes in the ratio of neurotransmitters vs. neurotransmitter
metabolites in brain tissue homogenates are consistent with drug-induced neurotransmitter
release (i.e., transporter-mediated neurotransmitter release) and/or inhibited uptake of
monoamines into the presynaptic terminal [27]. An additional explanation for the de-
creases in DOPAC and 5-HIAA produced by both drugs is inhibition of the monoamine
metabolizing enzyme monoamine oxidase (MAO) [39–41], as previously reported for
amphetamine-type drugs [42], including nor-methiopropamine [43]. The MAO inhibitory
potential of methiopropamine and other amphetamine-type NPSs is an interesting subject
for further studies.

The similarities in mechanisms of action for methiopropamine and methamphetamine
observed in this study imply similarities in toxicity as well. Methamphetamine is known
to induce neurotoxicity via mitochondrial dysfunction and enhanced oxidative stress (re-
viewed in [44–46]). A recent study examined the neurotoxic potential of methiopropamine
in mice and found that repeated methiopropamine exposure (4 × 10–20 mg/kg with 2 h
intervals) caused dopaminergic neurotoxicity mediated by oxidative stress, microglial
activation and pro-apoptosis [47]. The fact that both methamphetamine and methio-
propamine act as submicromolar inhibitors of the NE transporter also suggests common
sympathomimetic effects on the cardiovascular system. In a fatal case of methiopropamine
intoxication, cardiac arrhythmia followed by cardiovascular collapse was suggested to be
the direct cause of death [14]. Sudden deaths were also reported after acute (10 mg/kg;
26–43% deaths) and chronic (10 mg/kg/day for 30 days; 70% deaths) methiopropamine
exposure in CD-1 mice [22,48]. In mice, histological analysis revealed myocardial damage
consistent with repeated episodes of ischemia [48]. We did not observe any sudden deaths
in the C57BL/6 mice exposed to doses up to 20 mg/kg methiopropamine. De-Giorgio
et al. [22] reported reduced oxygen saturation in CD-1 mice exposed to methiopropamine.
CD-1 mice have previously been shown to be less tolerant to hypoxia than C57BL/6
mice [49,50], and this could possibly contribute to the observed differences in fatality in
the two mouse strains.

The present study provides novel information on the pharmacokinetics, mechanism
of action and drug potency of methiopropamine, using methamphetamine as a reference
comparator drug. The pharmacokinetic study shows that methiopropamine is rapidly
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distributed to the blood and brain after injection in mice, with a pharmacokinetic profile
similar to methamphetamine. Methiopropamine has a selectivity profile at DA, NE and
5-HT transporters that is almost identical to methamphetamine and exerts its effects
by inhibiting NE and DA uptake at submicromolar concentrations. A limitation of the
present study is that the behavioral experiments only addressed locomotor activity, while
future studies should examine potential abuse liability. Furthermore, the neurochemical
experiments examined monoamines in post-mortem brain tissue, whereas measuring
monoamine levels in brain extracellular fluid by in vivo microdialysis would provide more
precise information.

In summary, methiopropamine closely resembles methamphetamine with regard to
its pharmacokinetics, pharmacodynamic effects and mechanism of action, with a potency
approximately five times lower than methamphetamine. The steep increase in locomotor
activity seen after a modest increase in the methiopropamine dose from 10 to 12.5 mg/kg
suggests that small increases in dosage may give unexpectedly strong effects and increase
the risk of unintended overdose in NPS users.

4. Materials and Methods
4.1. Drugs and Chemicals

Drugs: Methiopropamine hydrochloride (HCl) (mol. wt. 191.7) was purchased from
Cayman Chemicals (Middlesex, UK) and (+)methamphetamine HCl (mol. wt. 185.7) was
purchased from Chiron AS (Trondheim, Norway). Chemicals: 5-HT HCl, L-NE HCl, 5-
HIAA HCl, 3-MT HCl, ephedrine-D3, sodium fluoride, methanol (LC-MS Chromasolv®),
ammonium formate, benztropine mesylate, reboxetine mesylate hydrate, fluoxetine HCl
and adenosine 5′-triphosphate disodium salt hydrate were purchased from Sigma-Aldrich
(Oslo, Norway). DA HCl and DOPAC were purchased from Fluka (Buchs, Switzerland).
DA-13C6 HCl, 5-HT-D4 HCl, 5-HIAA-D5, methamphetamine-13C6 and nor-methiopropamine
were purchased from Chiron AS. Di-sodiumtetraborate-10-hydrate and ethyl acetate were
purchased from Chemi-Teknik AS (Oslo, Norway). Acetic acid and formic acid were
purchased from VWR International AS (Oslo, Norway). Sodium hydroxide and n-heptane
were purchased from Merck Millipore (Oslo, Norway). Dihydroxyphenylethylamine 3,4-
[ring-2,5,6-3H]-(DA) ([3H]DA), NE HCl DL-[7-3H(N)] ([3H]NE), 5-HT [3H(G)] ([3H]5-HT)
and UltimaGoldTM liquid scintillation cocktail were purchased form from PerkinElmer Inc.
(Oslo, Norway). HEPES was purchased from Thermo Fischer Scientific (Oslo, Norway)
and sodium heparin was purchased from Leo Pharma (Oslo, Norway).

4.2. Animals

Male C57BL/6J mice (7–8 weeks old, 20–25 g; Taconic, Ejby, Denmark) and Sprague-
Dawley rats (6–8 weeks old, 150–225 g, Janvier Labs, Saint-Berthevin, France) were housed
with 4–8 mice/cage and 2 rats/cage in the animal facility at the Norwegian Institute of
Public Health (Oslo, Norway). Animals were given free access to water and commercial
food pellets for rodents. Temperature, humidity and lighting were regulated (22 ± 1 ◦C,
50 ± 10% humidity, light period 7:00 AM–7:00 PM). The animals were acclimatized for
at least five days prior to the experiments. The animal experiments were approved by
the Norwegian Animal Research Authority (protocol code: 7462; Norwegian Food Safety
Authority, Oslo, Norway) and performed in accordance with the laws and regulations
controlling experiments on animals in Norway.

4.3. Locomotor Activity Studies in Mice

Locomotor activity was assessed using the Versamax optical animal activity monitor-
ing system (AccuScan Instruments Inc., Columbus, OH), as described in detail by Andersen
et al. [51]. Briefly, mice were placed individually in an activity chamber for 60 min of ha-
bituation. After habituation, each mouse was given an intraperitoneal (i.p.) injection
(10 mL/kg) of vehicle (0.9% saline), methiopropamine (5–20 mg/kg) or methamphetamine
(1–5 mg/kg). Immediately thereafter, each mouse was returned to its respective activity
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chamber and locomotor activity recorded for 240 min. Horizontal movement was detected
by infrared beams and corresponding photodetectors. Locomotor activity was expressed as
the distance (cm) travelled per 5 min interval, maximum activity per 5 min interval (Emax)
or as the total run distance during the 240 min session.

4.4. Pharmacokinetic Studies of Methiopropamine and Methamphetamine in Mice
4.4.1. Sampling of Blood and Brain Tissue

Mice were given a single i.p. injection of methiopropamine (12.5 mg/kg) or metham-
phetamine (3.75 mg/kg) and anaesthetized with isoflurane prior to blood and brain tissue
sampling. To assess the level of anesthesia, the pedal reflex was tested by a firm toe pinch.
Blood sampling by heart puncture was performed at different time points after drug injec-
tion (5–240 min) using a syringe prefilled with heparin (final concentration 12–13 IU/mL).
Blood samples (50 or 100 µL) were transferred to tubes containing 100 µL ice-cold 5 mM
ammonium formate buffer, pH 3.1, with sodium fluoride (final conc. 4 mg/mL), and were
immediately frozen in liquid nitrogen. After cervical dislocation, the cerebrum was quickly
removed, homogenized (4 mL per g tissue) in ice-cold 5 mM ammonium formate buffer,
pH 3.1, containing sodium fluoride (4 mg/mL), aliquoted (50 or 100 µL) and frozen in
liquid nitrogen. Blood and brain samples taken 240 min after drug injection were from
animals included in the locomotor activity study. The samples were stored at −80 ◦C until
sample preparation and determination of drug concentrations.

4.4.2. Sample Preparation and UPLC-MS/MS Analysis

Stock solutions of analytes and internal standards were prepared in methanol and
stored at −20 ◦C. Working solutions for seven calibrators and four quality control (QC)
samples were prepared in 5 mM ammonium formate buffer. Calibrators (0.10–20 µM) and
QC samples (0.10–15 µM) were prepared independently by fortifying human whole blood
or rat brain tissue homogenate with working solutions. Samples and solutions were kept
on ice throughout the experiment. An internal standard (50 µL, 5 µM ephedrine-d3 and
methamphetamine-13C6 in 5 mM ammonium formate buffer, pH 3.1) was added to all
samples followed by immediate agitation on a multitube vortexer. A borate buffer (100 µL,
pH 11) and ethyl acetate/heptane mixture (1200 µL, 4:1, v/v) were added, the samples
shaken for 10 min and then centrifuged for 10 min at 3900× g at 4 ◦C. The organic layer
was transferred to glass tubes and 0.1% HNO3 (30 µL in methanol) was added before
drying under a stream of nitrogen at 40 ◦C. The samples were reconstituted (400 µL, 10 mM
ammonium formate buffer, pH 3.1/methanol (90:10, v/v)) and thoroughly shaken prior to
transfer to autosampler vials.

Chromatographic separations were performed using an Acquity™ ultra-performance
liquid chromatography (UPLC) system (Waters, Milford, MA, USA), applying an Acquity™
UPLC HSS T3 column (2.1 × 100 mm, 1.8 µm; Waters) with an Acquity™ UPLC HSS T3
VanGuard pre-column (2.1 × 5 mm, 1.8 µm; Waters). The mobile phase consisted of 10 mM
ammonium formate buffer, pH 3.1 (A) and methanol (B). The separation was carried out
using a 7-min gradient with the following profile: 0–4.0 minutes; 2.5–22.5% B, 4.0–4.1 min;
22.5–100% B, 4.1–6.0 min; 100% B, 6.0–6.01 min; 100–2.5% B, and 6.01–7.0 min; 2.5% B. The
flow rate was 0.5 mL/min, the column temperature 65 ◦C and the injection volume 0.5 µL.

A Waters Quattro Premier XE tandem mass spectrometer (MS/MS), or a Xevo TQ
triple quadrupole mass spectrometer, equipped with a Z-spray electrospray interface, was
used for the analyses. Positive ionization was performed in the multiple reaction moni-
toring mode, with two transitions for all analytes (methiopropamine: 156.2 > 124.8/96.7;
nor-methiopropamine: 142.1 > 125.0/97.0; methamphetamine: 150.1 > 91.1/119.1), and
one transition for methamphetamine-13C6 (156.2 > 125.1) and ephedrine-d3 (169.1 > 117.0).
The retention times for methiopropamine, nor-methiopropamine and ephedrine-d3 were
3.05, 2.82 and 2.97 min, respectively, while methamphetamine and methamphetamine-13C6
both eluted at 3.86 min. Quantification was performed using MassLynx 4.2 software (Wa-
ters). Calibration curves were constructed by plotting the calibrator concentration against
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the analyte/internal standard peak height ratio. The internal standard used for methio-
propamine and nor-methiopropamine was ephedrine-d3 and the internal standard used
for methamphetamine was methamphetamine-13C6. The calibration curves were linear,
and the QC sample results were satisfactory (≤±20% deviation from the nominal values).

4.5. Determination of Neurotransmitters and Neurotransmitter Metabolite Concentrations
4.5.1. Sampling of Mouse Brain Tissue

Mice were given a single i.p. injection of methiopropamine (12.5 mg/kg), metham-
phetamine (3.75 or 12.5 mg/kg) or saline, anesthetized (as described in Section 4.4.1) and
sacrificed by cervical dislocation 20 min later. The brain was removed, and the cerebrum
placed in a brain matrix (AgnTho’s AB, Lidingö, Sweden) to cut a 2 mm coronal brain
slice. Samples from the NAc and DS were collected from both hemispheres of the slice by
micropunches (1 mm, Fine Science Tools, Heidelberg, Germany). The brain samples were
immediately frozen in liquid nitrogen and stored at −80 ◦C until sample preparation and
determination of neurotransmitter and neurotransmitter metabolite concentrations within
the same day.

4.5.2. Sample Preparation and UPLC-MS/MS Analysis

Stock standard solutions of DA, 5-HT, 3-MT, DOPAC and 5-HIAA were prepared in
25 mM formic acid, stored at 4 ◦C and diluted to nine calibrators (1.0–80,000 nM) and three
QC samples (150, 300 and 3000 nM). The brain samples were thawed and immediately
sonicated in 0.1 M formic acid (15–35 mL/mg tissue) using an ultrasonic cell disrupter
(2 × 1 s bursts). Brain homogenate (50 µL) and internal standard (25 µL, 3 µM DA-13C6,
5-HT-d4 and 5-HIAA-d5 in 25 mM formic acid) were added to plastic tubes and vortexed for
20 s. The samples were centrifuged for 10 min at 14,500× g and 4 ◦C, and the supernatant
transferred to amber colored autosampler vials. For calibrators and QC samples, 50 µL
was added to 25 µL internal standard in amber colored vials. The concentrations of
neurotransmitters and neurotransmitter metabolites in NAc and DS were determined by
an UPLC-MS/MS method described by Bergh et al. [52]. Detection was performed with a
Xevo TQ triple quadrupole mass spectrometer (Waters, Milford, MA, USA). The calibration
curves were linear, and the QC sample results were satisfactory (≤±20% deviation from
the nominal values).

4.6. Neurotransmitter Uptake Studies
4.6.1. Isolation of Synaptosomes and Synaptic Vesicles from Rat Brain

Synaptosomes from rat cerebrum were isolated as described by Bogen et al. [53]. In
brief, the rats were decapitated and their brains rapidly removed. The cerebrum was
homogenized in ice-cold 0.32 M sucrose (5%, w/v) using a glass-Teflon homogenizer at
450 r.p.m. The homogenate was centrifuged at 1000× g at 2 ◦C for 10 min to remove nuclei
and cellular debris. The supernatant was mixed 1:1 with 1.3 M sucrose to obtain a final
concentration of approx. 0.8 M, and centrifuged at 21,000× g at 2 ◦C for 30 min. The
supernatant was discarded and the synaptosomal fraction (white layer of the pellet) was
gently resuspended in 6 mL ice-cold 0.32 M sucrose. Synaptosomes were used within 2 h
after isolation.

Synaptic vesicles from rat cerebrum were isolated as described previously [53]. The
cerebrum was homogenized in ice-cold 0.32 M sucrose (5%, w/v) and centrifuged at
1000× g at 2 ◦C for 10 min. The supernatant was centrifuged at 21,000× g at 2 ◦C for 30 min.
The pellet was osmotically shocked by resuspension in 18 mL ice-cold Type 1 water, and
centrifuged at 21,000× g at 2 ◦C for 30 min. The supernatant was collected and 2 mL 1 M
K-Tartrate in 0.25 M HEPES was added. This mixture was centrifuged at 2 ◦C at 100,000× g
for 1 h. The pellet was gently resuspended in 5.6 mL 0.32 M sucrose, aliquoted and snap
frozen in liquid nitrogen. The synaptic vesicles were stored at −150 ◦C until use.
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4.6.2. Synaptosomal and Vesicular Uptake of Neurotransmitters

Synaptosomal uptake of neurotransmitters was determined as described by Bogen
et al. [53]. Synaptosomes (20 or 40 µL) were pre-incubated for 15 min at 25 ◦C in Tris-
Krebs buffer (10 mM Tris, 140 mM NaCl, 5 mM KCl, 5 mM NaHCO3, 1 mM MgCl2,
1.2 mM Na2HPO4, 1.2 mM CaCl2, 10 mM glucose) with different concentrations of methio-
propamine (0.1–50 µM) or methamphetamine (0.05–50 µM). The uptake was initiated by
adding either 0.025 µM [3H]DA (0.5 µCi), 0.014 µM [3H]NE (0.1 µCi) and 0.06 µM NE, or
0.012 µM [3H]5-HT (0.5 µCi) and 0.08 µM 5-HT (final concentrations) in a total volume of
500 µL. After 9 min incubation, the reactions were terminated by dilution with ice-cold
wash solution (0.15 M NaCl and 0.05% (w/v) bovine serum albumin) and rapid filtration
through GF/B glass microfiber filters (25 mm, VWR International AS, Oslo, Norway). The
filters were washed 4×, dissolved in 4 mL UltimaGoldTM liquid scintillation cocktail and
counted for the retained radioactivity in a liquid scintillation analyzer (Tri-Carb 2810TR,
PerkinElmer Inc., Oslo, Norway). Non-specific uptake tubes were treated similarly, but in-
cubation was performed either in the presence of the DA transporter inhibitor benztropine
mesylate (0.01 µM), the NE transporter inhibitor reboxetine mesylate (0.05 µM) or the 5-HT
transporter inhibitor fluoxetine (0.05 µM). The specific uptake was defined as the total
uptake minus the non-specific uptake.

Synaptic vesicles (12.5 µL) were pre-incubated for 15 min at 30 ◦C in incubation buffer
(6 mM KCl, 6 mM MgSO4, 0.19 M sucrose, 15 mM HEPES/KOH, pH 7.4) with differ-
ent concentrations of methiopropamine (0.1–50 µM) or methamphetamine (0.1–50 µM).
The uptake was initiated by adding 1.8 mM ATP and either 0.025 µM [3H]DA (0.5 µCi),
0.068 µM [3H]NE (0.5 µCi) or 0.012 µM [3H]5-HT (0.5 µCi) in a total volume of 330 µL. After
incubation for 3 min, the reactions were terminated by dilution with ice-cold wash solution
(0.15 M KCl) and rapid filtration through MFTM membrane filters (0.45 µm HA, Merck
Millipore). The filters were washed 4×, dissolved in 4 mL UltimaGold™ and counted for
retained radioactivity in a liquid scintillation analyzer. Non-specific uptake tubes were
treated similarly, but incubation was performed in the presence of 25 µM reserpine. The
specific uptake was defined as the total uptake minus the non-specific uptake.

4.7. Data and Statistical Analysis

Data are expressed as mean ± SEM, or mean + SEM, unless stated otherwise. Ani-
mals were randomly assigned to the different experimental groups. The pharmacokinetic
analyses and neurotransmitter uptake experiments were performed in duplicate samples.
Elimination half-lives were calculated from the equation t1/2 = ln 2/k, where k is the elimi-
nation rate constant (k = ln C1 − ln C2/t2 − t1) [54]. For calculation of the concentration
ratio in brain vs. blood for methiopropamine and methamphetamine, we approximated
that the densities of brain homogenate and blood were equivalent (i.e., µg/g ≈ µg/mL).
IC50 values were calculated by nonlinear regression ([inhibitor] vs. normalized response-
variable slope) using Graph Pad Prism version 7.02 for Windows (GraphPad Software,
La Jolla, CA, USA). Statistical analysis of drug-induced locomotor activity over time was
performed using the General Linear Model for repeated measures, followed by Dunnett’s
post hoc test. One-way ANOVA was performed for comparison of total locomotor ac-
tivity, Emax, effects on neurotransmitter concentrations and concentrations ratios, with a
significant F value followed by Dunnett’s post hoc test. Independent samples t-tests were
performed for comparison of the IC50 values and comparison of the brain:blood ratios
for methiopropamine and methamphetamine. P values less than 0.05 were considered
statistically significant. All statistical tests were performed using SPSS, version 26 (SPSS
Inc., Chicago, IL, USA).
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