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ABSTRACT

Here we describe our study of miRNA isoforms
(isomiRs) in breast cancer (BRCA) and normal breast
data sets from the Cancer Genome Atlas (TCGA)
repository. We report that the full isomiR profiles,
from both known and novel human-specific miRNA
loci, are particularly rich in information and can dis-
tinguish tumor from normal tissue much better than
the archetype miRNAs. IsomiR expression is also de-
pendent on the patient’s race, exemplified by miR-
183-5p, several isomiRs of which are upregulated in
triple negative BRCA in white but not black women.
Additionally, we find that an isomiR’s 5′ endpoint and
length, but not the genomic origin, are key deter-
minants of the regulation of its expression. Over-
expression of distinct miR-183-5p isomiRs in MDA-
MB-231 cells followed by microarray analysis re-
vealed that each isomiR has a distinct impact on
the cellular transcriptome. Parallel integrative anal-
ysis of mRNA expression from BRCA data sets of
the TCGA repository demonstrated that isomiRs can
distinguish between the luminal A and luminal B
subtypes and explain in more depth the molecu-
lar differences between them than the archetype
molecules. In conclusion, our findings provide evi-
dence that post-transcriptional studies of BRCA will
benefit from transcending the one-locus-one-miRNA
paradigm and taking into account all isoforms from
each miRNA locus as well as the patient’s race.

INTRODUCTION

Breast cancer (BRCA) is a heterogeneous disease and the
second leading cause of cancer death among women after
lung cancer (1). In 2014 in the United States there were
an estimated 232 000 newly diagnosed cases, with approxi-
mately 41 000 deaths from the disease.

Over the last 30 years, in-depth molecular investigations
led to the identification of histological markers that have
been successfully implemented in clinical practice. These
markers are used to categorize BRCA tumors and deter-
mine the most appropriate course of action in each case.
Quantitation of the Estrogen Receptor (ER), the Proges-
terone Receptor (PR) and of the Human Epidermal Growth
Factor Receptor 2 (HER2) are now routinely used to clas-
sify tumors into disease subgroups depending on the pres-
ence (”positive” or “+”) or absence (”negative” or “−”) of
each hormone receptor (2,3). ER/PR positive tumors (ER+
only, PR+ only, or simultaneously ER+ and PR+) account
for the majority (>70%) of the BRCA cases, with effective
treatments targeting the ER pathway (2–5). On the other
hand, 15% of the tumors are HER2+ and generally have a
highly active growth factor signaling pathway with signifi-
cant crosstalk with the ER cytoplasmic signaling pathway
and with different tumor properties (2,3,6).

Approximately 15–20% of the BRCA cases do not ex-
press any of the three hormone receptors and are there-
fore characterized as “triple negative BRCA” (TNBC), or
as “ER−/PR−/HER2−” (3). TNBC represents the most
aggressive subtype of BRCA; in the absence of a recep-
tor, hormone therapies cannot be used leaving chemother-
apy as the only option. Extensive population studies have
shown that TNBC is much more prevalent among black
women (7). In particular, it is more than twice as frequent
among premenopausal black women than premenopausal
white women. Moreover, TNBC from black patients ex-
hibits higher rates of proliferation, increased angiogenesis,
higher grade and rates of lymph node metastasis (8–10). The
resulting mortality rate in this population group is ∼31%,
the highest in BRCA among all racial/ethnic groups in the
US.

Gene expression studies originally helped establish four
basic BRCA subtypes (11,12): Luminal A (ER+ and/or
PR+, HER2−, low Ki67), Luminal B (ER+ and/or
PR+, HER2+, or HER2− with high Ki67), HER2-
Enriched (ER−, PR−, HER2+) and Basal-like (ER−,
PR−, HER2−) tumors. Two more subtypes, “normal-like”
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and “claudin-low,” have also been described but occur at
lower frequencies (8,13). The expression levels of a 50-gene
panel (the “PAM50 gene signature”) is typically used to
classify a surgically resected BRCA sample into one of the
four intrinsic subtypes (14). It is worth noting here that the
histological hormone profiles and the intrinsic subtypes are
not “interchangeable”. A characteristic example is that of
basal-like and TNBC tumors (15): even though the two have
a significant overlap not all TNBC tumors have a basal-like
phenotype. Conversely, not all basal-like cancers lack ex-
pression of the three hormone receptors.

In addition to other large-scale studies (16), the Cancer
Genome Atlas Network has conducted a multi-platform
integrated analysis of hundreds of BRCA samples across
all hormone profiles and most intrinsic subtypes providing
novel molecular insight into BRCA biology (8). Among the
data types that were generated, the gene expression part of
the study included the quantification of both mRNA and
miRNAs.

MiRNAs are ubiquitously expressed short RNAs ap-
proximately 22 nucleotides (nt) in length. MiRNAs have
been shown to regulate a large variety of molecular func-
tions, and have been associated to a variety of diseases
(17–19). In vertebrates, their biogenesis typically involves
transcription of a pri-miRNA by RNA polymerase II fol-
lowed by cleavage by the DGCR8/Drosha complex into
a hairpin-shaped loop (pre-miRNA) that is exported to
the cytoplasm. There, a pre-miRNA is processed further
by Dicer, an RNAse III endonuclease, leading to the for-
mation of mature single-stranded miRNA products and
their subsequent loading onto the RNA-induced silencing
complex (RISC) whose main component is the Argonaute
(Ago) protein (20,21). With the help of the RISC complex
a miRNA controls the abundance of specific mRNAs by
targeting the latter in regions that are complementary, or
nearly so, to the miRNA (22,23). The miRNA profile is
deregulated in BRCA, and in cancer in general, (8,24) and
this subject has been systematically reviewed (25–28).

It has long been held that each arm of the pre-miRNA
produces one consequential mature miRNA. This miRNA
is listed in the public miRNA databases and will be re-
ferred to in what follows as the “reference” or “archetype”
miRNA (29). However, the subsequent discovery of iso-
forms (isomiRs) that arise from the same arm as the
archetype miRNA and have slightly different 5′ and/or 3′
termini is beginning to overturn the classical “one arm-one
miRNA” view. As we reported recently, specific isomiRs can
be substantially more abundant than the archetype miRNA
(30). In fact, as we showed in recent work using lymphoblas-
toid cell lines derived from 452 healthy individuals isomiR
profiles depend on gender, population and race (30). The
implications that these isomiR findings may have for health
and disease are potentially very significant. Nonetheless,
with the exception of isolated efforts (31–33) the currently
available knowledge remains limited.

In the current study, we extend our previous study of
healthy individuals (30) to the disease context by system-
atically analyzing isomiR profiles in BRCA data sets from
the TCGA repository. After we catalogued all the isomiRs
that are abundantly present in these data sets we focused on
a number of questions. Does knowledge of the isomiR pro-

files improve discrimination of normal from tumor, or of
one subtype from another? Do the race-dependencies that
we discovered in lymphoblastoid cell lines (30) extend to
breast tissue samples? Are isomiR abundances correlated?
Is the genomic locus or the hairpin arm, i.e. the arm from
which the isomiRs arise, a deciding factor of isomiR abun-
dance? Can we discern any evidence of additional mecha-
nisms that affect isomiR levels? Do distinct isomiRs from
the same hairpin arm affect the cellular transcriptome dif-
ferently?

MATERIALS AND METHODS

IsomiR nomenclature

To discriminate among isomiRs from the same locus, we use
the naming rules we introduced previously (30). In brief, for
each isomiR we note the unique ID assigned to the locus
(e.g. MIMAT0000076) as well as its most common name
(e.g. miR-21-5p), followed by two numbers separated by
vertical bars, e.g. miR-21-5p|+2|−1|. The first number indi-
cates the relative position of the isomiR’s 5′ terminus with
respect to the archetype’s 5′ end, whereas the second num-
ber indicates the analogous relationship for the isomiR’s
and the archetypes’s 3′ termini: a positive sign (+) indi-
cates that the isomiR’s terminus is downstream from the
archetype terminus (in 5′→3′ direction); a negative sign
(−) indicates that the isomiR’s terminus is upstream of the
archetype’s terminus. Using this notation, miR-21-5p|0|0|
denotes the archetype miRNA that arises from the left (5p)
arm of the mir-21 precursor.

Sample source, read mapping, isomiR identification, normal-
ization and filtering

Deep sequencing data for the 316 samples included in this
study were obtained from the TCGA data portal (https:
//tcga-data.nci.nih.gov/tcga/). The samples were chosen in
a way that almost all hormone profiles were included. Pub-
licly available high-throughput sequencing of RNA isolated
by crosslinking immunoprecipitation (HITS-CLIP) data for
three BRCA model cell lines were also downloaded (34).
Mapping was performed on the GRCh37 human genome
assembly, as described previously (30). No insertions or
deletions were allowed. To focus on the isomiRs of the
data set, we used the reference coordinates of the miR-
Base Rel. 20 miRNAs (29) as well as the 3494 miRNA loci
that we recently reported (35) (we will refer to these loci as
“novel”) and expanded them by 6 nt at each side. We kept
the molecules that are fully in this window and have a to-
tal length of 16–28 nt, inclusive. To exclude lowly expressed
isomiRs, we considered for statistical analysis only isomiRs
that had more than 100 reads in at least one sample. As
the average sequencing depth (number of total reads) for
the BRCA samples was 5.5 M reads, this threshold corre-
sponds to a threshold of about 18 transcripts per million
(TPM). This filtering process left us with 1958 isomiRs in
the final expression matrix. In order to exclude sequencing
depth biases, we normalized the expression of each isomiR
(the number of reads) by dividing it with the number of
uniquely mapped reads for each data set. Data for mRNA

https://tcga-data.nci.nih.gov/tcga/
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(Level 3-RNASeqV2) expression for the same TCGA sam-
ples were downloaded from the TCGA data portal (https://
tcga-data.nci.nih.gov). Genes with a mean expression lower
than 100 reads per million (RPM) were excluded from the
analysis. This left us with 12 657 genes in the expression ma-
trix that was scaled (standardized) per gene before the sta-
tistical analysis.

Cell culture, RNA transfection and microarray analysis

MDA-MB-231 cells were grown in DMEM medium (Fisher
Scientific) supplemented with 10% fetal bovine serum (Life
Technologies), 1% Penicillin and Strep (Fisher Scientific),
and 1% glutamine (Fisher Scientific), at 37◦C in a humidi-
fied atmosphere containing 5% CO2. The mirVana miRNA
mimic for miR-183–5p, the Negative Control #1, along
with the two customized isomiRs (miR-183-5p|−2|−2|,
5′-TGTATGGCACTGGTAGAATTCA-3′ and miR-183-
5p|+2|+2|, 5′-TGGCACTGGTAGAATTCACTGT-3′)
were purchased from Life Technologies and were trans-
fected at a final concentration of 50 nM using the
Lipofectamine RNAiMAX transfection Reagent (Life
Technologies). Transfections were done in triplicate. After
48 h, RNA was extracted from the cells using the TRizol
reagent (Life Technologies).

RNA was quantified on a Nanodrop ND-100 spec-
trophotometer, followed by RNA quality assessment ana-
lyzing on an Agilent 2200 TapeStation (Agilent Tehnolo-
gies, Palo Alto, CA). Fragmented biotin-labeled cDNA
(from 100 ng of RNA) was prepared using the GeneChip
WT Plus Kit (Affymetrix, Santa Clara, CA) according to
the manufacturer’s instructions. Affymetrix gene chips, Hu-
man Transcriptome Array 2.0 (Affymetrix, Santa Clara,
CA), were hybridized with 5 �g fragmented and biotin-
labeled cDNA in 200 �l of hybridization cocktail. Target de-
naturation was performed at 99◦C for 5 min. and then 45◦C
for 5 min, followed by hybridization with rotation 60 rpm
for 16 h at 45◦C. Arrays were then washed and stained using
Gene chip Fluidic Station 450, using Affymetrix GeneChip
hybridization wash and stain kit. Chips were scanned on an
Affymetrix Gene Chip Scanner 3000, using Command Con-
sole Software. Quality Control of the experiment was per-
formed by Expression Console Software v1.4.1. The SST-
RMA algorithm was used for data processing and normal-
ization; only the top 80% expressed protein-coding genes
(15 581 in number) from ENSEMBL75 (36) were consid-
ered for further statistical analysis.

Multivariate statistical analysis

Statistical analysis was performed in R (http://www.R-
project.org/) (37). The packages lawstat (38), amap (39),
DiscriMiner (40), samr (41), VennDiagram (42) and dendex-
tend (43) were used for Levene’s test, Hierarchical Cluster-
ing (HCL) (44), Partial Least Squares–Discriminant Anal-
ysis (PLS-DA) (45), Significance Analysis of Microarrays
(SAM) (41) and visualization of the Venn diagrams and
the dendrograms, respectively. Principal Component Anal-
ysis (PCA) (44) was performed with the prcomp function.
For the construction of the Venn diagram of the number
of isomiRs present in each cell line from (34), the normal-
ized expression values were averaged across replicates of the

same cell line and an isomiR was considered to be present if
it belonged to the upper 90% quantile of the distribution of
the number of reads per isomiR. DAVID (46,47) was used
to identify enriched gene ontology (GO) Biological Process
(BP) terms with an FDR threshold of 10%. The background
list for the DAVID analysis comprised the expressed genes
in the respective experiments.

Target prediction and miRNA-mRNA integration

Targets of isomiRs were predicted using rna22 (48). The full
list of the protein-coding ENSEMBL75 (36) transcripts was
used as targets and the targeting site was allowed to be any-
where in the 5′- and 3′-UTR as well as the coding sequence.
We defined nucleotides 2–7 as the seed region, enforced the
presence at least 12 paired bases in the heteroduplex, includ-
ing G:U pairs, while allowing at most one unpaired base
(mismatch or bulge) within the seed region. An additional
filtering for P-value (threshold of 0.01) of the specific loci
being a miRNA response element (MRE) was done during
the integration of isomiR and mRNA data for the compar-
ison of the luminal A and luminal B BRCA subtypes. An
isomiR was considered to target a gene if it had at least one
predicted target site in at least one of the gene’s mRNA tran-
scripts satisfying the above criteria. The isomiR-gene pairs
were visualized using Cytoscape (49).

RESULTS

In this study, we considered a total of 5353 human miRNA
precursors: these included the 1859 precursors contained
in Release 20 of miRBase (29) and the 3494 novel precur-
sors that we reported recently (35). For each miRNA hair-
pin, we considered each arm separately. We analyzed 294
tumors and 22 normal samples from the TCGA/BRCA
repository (8) and processed the data as previously de-
scribed (30). For each miRNA hairpin arm, we considered
an “active window” that extended six nucleotides (nt) be-
yond the boundaries of the “archetype” miRNA that is cur-
rently listed in miRBase or that was reported by us (35).
All reads of each analyzed data set were mapped on the en-
tire genome: only reads that mapped within each arm’s ac-
tive window and whose length ranged from 16 to 28 nt in-
clusive were kept and processed further. We refer to all the
distinct molecules that arise from a single miRNA precur-
sor arm as “isomiRs”. Naturally, the “archetype” or “ref-
erence” miRNA listed in miRBase for a locus is included
among the locus’ isomiRs.

The archetype miRNA is but one of several products arising
from the locus at hand

We first counted the number of hairpin arms that produce
one or more miRNA molecules. We found a total of 405
hairpin arms producing 1958 distinct isomiRs (the full data
set is included as Supplementary Table S1). Of the 405
hairpin arms, 32 are novel (35) and produce 105 distinct
isomiRs. On average there are five distinct isomiRs that arise
from each locus. However, this number exhibits significant
variation as can be seen from Figure 1A: 103 (25.4%; 16
of which are novel) hairpin arms produce a single miRNA

https://tcga-data.nci.nih.gov
http://www.R-project.org/
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Figure 1. General characteristics of the isomiRs. (A) The number of distinct isomiRs per locus. (B) Distribution of the number of isomiR endpoints at
each genomic position relative to the archetype’s coordinates. (C–D) Relative expression of the isomiRs starting (C) or ending (D) at each genomic position
relative to the archetype’s coordinates. (E–F) Relative expression of the isomiRs with the 5′ terminus at the reference (E) or at the +1 position (F) and
a varying 3′ terminus (x axis). For (C–F) the expression values were calculated using normal breast samples from white women.
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molecule whereas the majority of the arms (257 of 405,
or 63.5%; 14 of which are novel) produce between 2 and
10 isomiRs. For 45 arms (11.1%; two of which are novel)
we observed more than 10 isomiRs generated from each.
Among these 45 arms, miR-21-5p had the most isomiRs (43
isomiRs) followed by miR-10a-5p (41 isomiRs) and miR-
183-5p (41 isomiRs). It is noteworthy that 90 arms do not
produce the archetype miRNA and that the majority of
them (53 out of 90) produce only one other (non-archetype)
isomiR. We also note that out of the 32 novel miRNA loci
found to be expressed, half of them are human-specific, 14
are primate-specific (not found in the mouse genome) and
two are found in mice but not in Drosophila melanogaster
nor in Saccharomyces cerevisiae. Interestingly, the average
expression of these arms was not correlated with evolution-
ary conservation (Supplementary Figure S1A).

As the 5′ and the 3′ isomiRs are expected to affect the
miRNA locus’ properties in different ways, we plotted the
distribution of the 5′ and 3′ termini of the isomiRs around
the termini of the archetype miRNA (Figure 1B). Levene’s
test indicated that the variances in the two distributions dif-
fer in a statistically significant manner (P-value < 10−4)
with the 3′ termini of the isomiRs exhibiting more diversity
than the 5′ termini (30). We also examined how the abun-
dance of isomiRs changes as a function of the location of
each isomiR’s termini relatively to those of the archetype.
To this end, we calculated the median expression of each
isomiR in normal samples from white females and plotted
it as a function of the deviation from the archetype’s 5′ or
the 3′ termini (Figure 1C and D). For the 5′ terminus, we ob-
served an overall reduction in the abundance of the isomiRs,
by as much as an order of magnitude, as the distance from
the reference 5′ position increased (Figure 1C). However,
this was not the case for the 3′ termini: the abundance of
isomiRs with termini ending as many as 6 nt away (either −6
or +6) from the reference position was roughly unchanged
compared to that of the archetype.

To dissect the relationships of the two endpoints, we first
decomposed the curve of the 3′ termini in Figure 1B to its
5′-specific counterparts (Supplementary Figure S1B). We
found that the majority of the isomiRs starting at the ref-
erence position also end at the reference 3′ position. How-
ever, when we plotted the average expression of the isomiRs
with the same 5′ end but varying 3′ ends, we observed that
the expression levels remain on average similar (Figure 1E–
F) independently of (i) the starting and ending positions
(Figure 1E–F), although with a larger dynamic range for
isomiRs ending at the reference position and of (ii) the ab-
solute numbers of isomiRs ending at each position (Sup-
plementary Figure S1B). It should be noted that these data
describe the totality of the isomiRs irrespective of their ge-
nomic origin and do not reflect individual loci or hairpin
arms. As exemplified in Supplementary Figure S1C–E, and
also shown in our previous work (30), there are specific hair-
pin arms where the archetype miRNA is not the most abun-
dant molecule.

Collectively, the above observations mirror our earlier
findings in a different tissue (30) and indicate that the refer-
ence molecules (i.e. archetype miRNA) capture only a por-
tion of a diverse repertoire of miRNA products that can
arise from a given precursor arm.

IsomiRs improve the discrimination between normal and
BRCA samples

In previous work we analyzed samples from healthy in-
dividuals (30) and showed that isomiRs are constitutively
present across like samples while also exhibiting differ-
ences in a gender-, population- and race-dependent man-
ner. Here we extend the earlier analysis to include disease
samples. As an example we focus on normal breast and
on ER+/PR+/HER2− BRCA samples, all from white pa-
tients, from the TCGA cohort. We used PCA to project the
datapoints (samples) from their original multi-dimensional
space onto a 2-D space and also used HCL to assess the
similarity/dissimilarity of the analyzed data sets (44). Fig-
ure 2 shows the results of PCA and HCL when only the
archetype miRNAs (panels A and B) and when the com-
plete collection of isomiRs is considered (panels C and D).
In the first case, the normal and tumor samples are part
of one big cluster and mixed (Figure 2A and B). However,
when using the full set of isomiRs the two groups of sam-
ples formed two distinct clusters with a very small cross-talk
(Figure 2C and D). The improvement in the ability to dis-
criminate in an unsupervised way between the normal and
the tumor data sets is very clear. We obtained similar results
for the rest of normal versus BRCA-subtype comparisons;
see, e.g. Supplementary Figure S2. Exclusion of our novel
miRNAs had minimal effect on the discrimination patterns
described (data not shown).

The findings suggest that, as a group, the isomiRs are
better descriptors of the tissue at hand (both normal and
tumor states). To evaluate alterations of the isomiR biogen-
esis at a global level, we plotted the graph of Figure 1E–
F but for the ER+/PR+/HER2− BRCA samples (Supple-
mentary Figure S3). We did not observe any global patterns
of isomiR production, e.g. a global preponderance of 3′
shortening or 5′ extensions in the hormone positive tumors
as compared to the normal samples, indicating that the
observed differences are probably caused by alterations in
the regulation of specific miRNA loci. To statistically cap-
ture such differences, we used the non-parametric method
for multivariate significance analysis known as “Signifi-
cance Analysis of Microarrays” or SAM (41). For the nor-
mal versus ER+/PR+/HER2− comparison, SAM iden-
tified 224 isomiRs with statistically significant differential
abundances (DA); 221 of the 224 are downregulated in the
ER+/PR+/HER2− data sets (Supplementary Table S2 and
Figure S4). The 224 DA isomiRs originate from 61 dis-
tinct hairpin arms, four of which are novel. The 5p arm of
miR-10b generated the highest number of DA isomiRs: 22
DA isomiRs out of 29 isomiRs expressed. The 5p arm of
mir-21 generated 43 isomiRs, the highest number of dis-
tinct isomiRs across all transcribed miRNA arms; how-
ever, only three of these isomiRs were DA between the
normal and ER+/PR+/HER2− data sets. We note that
the three DA miR-21–5p isomiRs were the only isomiRs
that were found to be more abundant in the 101 analyzed
ER+/PR+/HER2− BRCA tumors from the TCGA cohort
(the archetype miRNA was among the three).

The 3p arm of miR-143 is another noteworthy
source of isomiRs. This arm produced a total of 27
isomiRs that include the archetype miRNA. Of these 27
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Figure 2. The full set of isomiRs better separated the normal from the tumor samples than the archetype miRNAs. Principal Component Analysis (PCA)
(A and C) and Hierarchical Clustering (HCL; metric: Pearson Correlation) (B and D) of the ER+/PR+/HER2− BRCA (yellow) and normal (green)
samples. (A–B) PCA and HCL with only the archetype miRNAs. No clear separation of the tumor and normal groups can be observed. (C–D) PCA and
HCL using the full set of isomiRs showing a clear discrimination of the two groups with little overlap. The numbers on the axes labels of PCA indicate the
variance explained by each principal component (PC).

isomiRs, 14 exhibited significantly lower abundance in the
ER+/PR+/HER2− data sets compared to the normal
data sets. Interestingly, and unlike the case of miR-21–5p
above, the miR-143 archetype miRNA was not among the
DA isomiRs.

Looking across the 61 hairpin arms, we found that the
archetype miRNA was the sole DA isomiR between nor-
mal and ER+/PR+/HER2− in only 14 cases. In an ad-
ditional 28 cases, the DA isomiRs included the archetype
miRNA and at least one more isoform. Finally, for the re-
maining 19 arms, the archetype miRNA was not among
the DA isomiRs. In other words, 77% (47 of 61) of the
miRNA-producing hairpins contributed isomiRs that were
DA abundant between normal and ER+/PR+/HER2−
and whose significance in the BRCA context will be missed
if one looks only at the archetype miRNA. This is in agree-
ment with the results summarized in Figure 2 where inclu-

sion of the full isomiR profile led to an improved discrimi-
nation between the two tissue states.

The isomiR profiles in BRCA samples depend on race

We recently showed in a different biological context that
the isomiR profiles in healthy individuals differ between hu-
man races (white and black) and also between populations
belonging to the same race (30). Racial differences among
breast cancer patients have been documented previously,
with the case of TNBC providing the most characteristic
such example (10,50). However, there are many open ques-
tions regarding the molecular basis of these phenotypic dif-
ferences, especially at the miRNA/isomiR level.

In order to examine the possibility of race-dependencies
we studied the isomiR profiles in 51 white TNBC patients
and 16 black TNBC subjects. We also studied the isomiRs
in normal samples from 15 white and 6 black subjects. We
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first carried out a normal versus tumor comparison and did
so separately for each race. In both instances, unsupervised
analyses indicated that the isomiR profile could clearly dis-
criminate between normal and tumor samples from same-
race subjects (Figure 3A-D), a strong indication that there
are significant differences in the isomiR profiles between the
normal and tumor tissue states. For the samples from the
white subjects, the observed cross-talk comprised only three
data sets (Figure 3A and B). In the case of black subjects,
there was no cross-talk as the normal and tumor data sets
clustered distinctly (Figure 3C and D).

In addition to PCA and HCL, we also used the non-
parametric SAM (see above), separately for each race in
order to identify which race-specific isomiRs are deregu-
lated in cancer. For the normal and TNBC data sets from
the white subjects, SAM identified 305 isomiRs that are
DA in tumor compared to the normal samples (Supplemen-
tary Table S3 and Figure S5A). Specifically 156 of these 305
isomiRs exhibited lower abundance in the tumor samples;
the remaining 149 isomiRs exhibited higher abundance in
tumor. Repeating the analysis for the TNBC and normal
data sets from the black subjects we found 162 isomiRs
that were DA between normal and tumor. All 162 of these
isomiRs exhibited lower abundance in tumor (Supplemen-
tary Table S3 and Figure S5B). Interestingly, for both races,
non-archetype isomiRs from the 5p arm of miR-10b were at
the top in terms of relative significance in the normal versus
TNBC comparisons.

In all, 113 hairpin arms (from both miRBase and novel
genomic loci) gave rise to DA isomiRs in the TNBC versus
normal comparison in white subjects. The number dropped
to 47 hairpin arms when data sets from only black subjects
were analyzed. Only 30 hairpin arms were common to both
collections. Nonetheless we note that even though a hair-
pin arm may be a source of DA isomiRs in both races, the
identity of the DA isomiRs from that arm is not the same
for both races; e.g. different miR-143-3p isomiRs may be
DA between normal and tumor in white subjects than in
black subjects. Next, we compared the identities of the two
collections of DA isomiRs (305 and 162, respectively––see
above) found that only 89 isomiRs were common to both
races and DA in the TNBC versus normal comparisons:
216 DA isomiRs are responsible for molecular events that
are exclusively present in the white subjects and 73 DA
isomiRs are responsible for molecular events that are ex-
clusively present in the black subjects. In addition, we ex-
amined the TNBC data sets to determine whether racial
molecular differences could be identified between white and
black subjects. In recognition of the fact that TNBC is a
diverse cancer subtype (3), we used a supervised analysis
method (Partial Least Squares––Discriminant Analysis or
PLS-DA) (51). We were able to discriminate the TNBC data
sets along the race boundary (Figure 3E). Using SAM, we
identified 21 isomiRs (originating from 8 hairpin arms) that
were DA between white and black TNBC patients (Supple-
mentary Table S3 and Figure S5C). Interestingly, 10 of these
DA isomiRs arise from TJU CMC MD2.ID00121, a novel
human-specific miRNA locus that we recently discovered
(35). It is reasonable to assume that the observed differences
underlie differences in the pathobiology of TNBC.

Finally, we examined the normal data sets alone to deter-
mine whether differences existed between white and black
subjects. For consistency, we again used PLS-DA and were
able to easily discriminate the normal data sets of differ-
ent races (Figure 3F). Using SAM, we identified 22 DA
isomiRs (from 14 distinct hairpin arms) all of which have
lower abundance in the normal breast samples of white
subjects (Supplementary Table S3 and Figure S5D). The
overlap among the identified DA isomiRs is shown in Sup-
plementary Figure S5E. These results indicate that normal
breast tissue physiology includes a race-specific molecular
component. These characteristics potentially provide a dif-
ferent dynamic biological background, beyond the genome,
that may explain race-dependent contributions to the events
that guide cancer development.

Several isomiRs have correlated abundances that depend on
their endpoint choices and not on the locus of origin

In a top-down approach, one miRNA gene gives rise to
two arms, and each arm to multiple isomiRs. Therefore,
the isomiR profile is the result of transcriptional choices
of the unit of origin and of post-transcriptional events
that operate on the products of the two arms. From a
genome-centric view, the genomic origin should dominate
the post-transcriptional biogenesis in regulating the abun-
dance of the isomiRs encoded from different genes but
from a biogenesis perspective the choice on the abundance
of functionally related isomiRs should be mainly deter-
mined by post-transcriptional processing mechanisms. To
investigate these hypotheses, we first considered the ge-
nomic loci producing miR-29a-3p and miR-29c-3p. The se-
quences of these two archetype mirNAs share the same seed
(5′-NAGCACC-3′), have similar mRNA targeting profiles
(52,53) but are produced from different chromosomes. The
sequences of the archetype miRNAs also differ only in one
base in the middle of the miRNAs’ span. Using HCL (Pear-
son correlation as a metric) on the expression of products
of miR-29a-3p and miR-29b-3p arms in all samples in the
BRCA data set, we clustered the isomiRs based on their
abundance profile: two isomiRs, whether from the same lo-
cus or not, will end-up on the same sub-tree if they have
correlated expression across samples. We observed that the
primary determinant of the clustering was not the isomiRs’
genomic origin but rather their primary characteristics, i.e.
the specifics of their 5′ and 3′ endpoints (Figure 4A). Look-
ing at Figure 4A, we can recognize two main clusters be-
ing formed: a “gold” cluster containing mainly isomiRs that
have a shortened 3′ end and consequently short lengths, and
also a “black” cluster containing the archetype miRNAs
and isomiRs with smaller deviations on their 5′ and 3′ end-
points.

Having shown that independently transcribed isomiRs
of nearly-identical archetypes do not cluster based on the
transcript of origin, we examined isomiRs that arise from
a polycistronic transcript as is the case with the miR-17/92
cluster (28). This cluster comprises six miRNAs (miR-17,
miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1)
whose pri-miRNAs are transcribed as a single RNA; the
DGCR8/Drosha complex identifies and cleaves each char-
acteristic hairpin structure (28), but with different efficien-
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Figure 3. Race-specific isomiR profiles in TNBC and normal tissue. Principal Component Analysis (PCA) (A and C) and Hierarchical Clustering (HCL;
metric: Pearson Correlation) (B and D) of the normal and TNBC samples in white (A and B) and black (C and D) women. The separation of the tumor
from the normal samples is evident in all of the four analyses. (E–F) Partial Least Squares––Discriminant Analysis (PLS-DA) for the white and black
normal tissues (E) and tumor samples (F). In all these analyses, the separation of the samples from black and white subjects is evident. The numbers on
the axes labels of PCA indicate the variance explained by each principal component (PC).
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Figure 4. Correlation patterns among isomiRs. HCL analyses (metric: Pearson Correlation) on the isomiRs of selected loci. (A) HCL of the isomiRs
of two functionally related miRNA loci, miR-29a and miR-29c. The absence of absolute clustering based on the transcript of origin indicates that the
transcription is not the main determinant of the isomiR relative abundance. (B) HCL of the isomiRs from the miRNAs of the 17/92 cluster. IsomiRs do
not cluster based on the hairpin of origin suggesting stronger downstream processing mechanisms. (C) HCL of the isomiRs from the two arms of one
common hairpin. The choice on the arm of the hairpin has a mild effect on determining the correlation patterns of the isomiRs that originate from each
arm. (D–E) HCL of the isomiRs from distinct loci: miR-21-5p (D) and miR-182-5p (E). IsomiRs are clustered based on specific characteristics including
the relative 5′ and 3′ endpoints and the length. For (A–E), branches colored yellow, green and red represent clusters of isomiRs with specific common
characteristics that are described in the main text. Asterisks mark the archetype miRNA.
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cies for each hairpin (54,55). HCL analysis of the isomiRs’
abundances revealed the absence of clusters based on the re-
spective miRNA precursor of origin as well the absence of
clusters of miRNA family members that share the same seed
(Figure 4B). Additionally, the arm of origin did not seem
to be a contributor to determining the relative abundances
of the isomiRs. However, we found that isomiRs clustered
with respect to other characteristics, such as their length:
the “golden” and “red” clusters contain mainly isomiRs
that are shorter than the respective archetype miRNA (Fig-
ure 4B).

We also explored whether the identity of the source hair-
pin arm impacts on isomiR abundance. We focused on mir-
361, a pre-miRNA that produces isomiRs from both of its
arms. As seen in Figure 4C, HCL analysis revealed that
isomiRs clustered together if they were 3′ shortened (“gold”
group). Analogously, isomiRs from both precursor arms
that were 3′ lengthened clustered together (“red” group). We
note that the red group contains all of the 3′ lengthened
isomiRs. Lastly, the two archetype miRNAs (indicated by
the asterisks in Figure 4C) as well as isomiRs from both
the 5p and 3p arms that had only slightly modified lengths
clustered together forming the “green” group on the right
part of the dendrogram. The lack of clearly defined clusters
that are based on the source arm of this miRNA precur-
sor indicates that arm identity, in addition to the transcript
and hairpin source, is not the main determinant of isomiR
abundance.

Having excluded genomic origin, co-transcription and
arm identity from the list of major modulators of the
isomiRs’ relative abundances, we focused on and analyzed
separately the isomiR profiles from the 5p arms of two spe-
cific pre-miRNAs, mir-21 and mir-182. We selected these
two miRNA loci because they produce a significant num-
ber of isomiRs, 43 and 34 respectively, that we can use to
interpret the correlation patterns. As can be seen from Fig-
ure 4D–E, HCL revealed that in both cases the isomiRs with
a shortened 5′ end had correlated abundances and clustered
together: for both miR-21-5p and miR-182-5p the “green”
group comprised most of the 5′-shortened isomiRs and only
those. Specifically for the isomiRs of miR-182-5p, the green
cluster comprises two subgroups: one subgroup contained
short isomiRs that were shortened largely on their 3′ ends;
the second group contained short isomiRs whose 5′ termini
were very substantially shifted to the right (in the 5′→3′ ori-
entation) of the archetype’s 5′ terminus.

The above results suggest a complex set of events that reg-
ulate the abundance of isomiRs from a given arm. We em-
phasize that these results are not in conflict with the obser-
vation that there was no global change in the isomiR pro-
duction in tumor as compared to the normal tissue (Sup-
plementary Figure S3). In this section we focused on the
processing of specific loci and hairpin arms, while the re-
sults of Figure 1D–E and Supplementary Figure S3 describe
the totality of isomiRs without considering possible mecha-
nisms that regulate the abundance of isomiRs from specific
loci/hairpin arms. The absence of clusters that comprise
isomiRs with the same transcriptional history (Figure 4A–
B) emphasizes that the regulation is post-transcriptional
in nature and operates independently on each hairpin and
each hairpin arm (Figure 4A–C). Nonetheless, the selection

of a relatively extreme 5′ endpoint appears to have a higher
priority than that of the 3′ end (Figure 4D–E).

The Ago loading of isomiRs is cell-type specific

In our previous work, we reported that isomiRs are
loaded on Ago (30). To test the same hypothesis in
the BRCA context, we used publicly available Ago
HITS-CLIP from three different BRCA model cell-
lines, MCF-7 (ER+/PR+/HER2−), MDA-MB-231
(ER−/PR−/HER2−) and BT474 (ER+/PR+/HER2+)
(34). The number of distinct isomiRs found to be loaded
on Ago in each cell line was largely the same in all three
cases, as more than 75% of the isomiRs had significant
expression in all three cell lines (Figure 5A; the full data
set is provided in Supplementary Table S4). However, in
terms of their relative Ago-loaded abundance, the three
cell lines exhibited distinct profiles, as PCA (Figure 5B)
and HCL (Figure 5C) revealed that the replicates of each
cell line clustered together and distinctly from other cell
lines. As each cell line corresponds to a different molecular
BRCA subtype, these data suggest that different cell lines
exploit the miRNA/isomiR machinery in different ways
and therefore differentially regulating gene expression.

IsomiRs from the same hairpin arm differentially regulate the
cellular transcriptome

In light of the differences that we observed in both nor-
mal and breast tumor samples and the different Ago-loaded
isomiR profiles in cell lines, we sought to explore how dif-
ferent isomiRs affect the mRNA transcript profile of a cell.
Currently, there is very limited knowledge regarding the tar-
gets of isomiRs (31–33) especially for isomiRs that differ
on their 5′ termini, which are expected to have differences
on the seed region of the corresponding isoform. The seed,
which comprises positions 2 through 7 from the 5′ end of a
miRNA, is known to be a key determinant of a miRNA’s
targetome (56–58). We focused on the isomiRs of the miR-
183-5p locus, as the locus’ role in BRCA, and cancer in gen-
eral, has been previously demonstrated (59–61). However,
the isomiRs’ functional roles remain unexplored with no,
to the best of our knowledge, previously reported systemic
studies. In TNBC, 10 isomiRs of this locus are upregulated
in white subjects as compared to the adjacent normal tissue
but not in black subjects (Supplementary Table S3).

We selected the archetype miRNA and two more isomiRs
of the same length that are found expressed in the BRCA
data set (Supplementary Table S1). The two isomiRs were
shifted two base pairs upstream (miR-183-5p|−2|−2|) or
downstream (miR-183-5p|+2|+2|). We transfected MDA-
MB-231 cells with a miRNA mimic for each isomiR and
also with a negative control RNA mimic and analyzed the
extracted RNA with microarrays. PCA and HCL on the
top 80% expressed mRNA transcripts indicated that each
treatment had a distinct effect on the transcriptome of the
cells (Figure 6A–B). The transcript profiles of the sam-
ples are well correlated (the low values of the Y axis of
Figure 6B and Supplementary Figure S6A); however, the
three replicates in each treatment formed clear tight clus-
ters (Figure 6A–B). We used SAM to find DA genes af-
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Figure 5. Ago-loaded isomiR profiles are different among BRCA model cell lines. Venn diagram showing how many distinct isomiRs are found in the
Ago HITS-CLIP of each cell line (A). Principal Component Analysis (PCA) (B) and Hierarchical Clustering (HCL; metric: Kendall’s tau coefficient) (C)
indicated that the Ago-loaded isomiR profile is characteristic for each cell line and consistent among replicates. The numbers on the axes labels of PCA
indicate the variance explained by each principal component (PC).

ter each isomiR treatment (Supplementary Figure S6B–6D
and Supplementary Table S5) as compared to the control
treatment. Figure 6C shows the number of DA mRNA tran-
scripts after the treatment with each isomiR as compared to
the control one. It is evident that the isomiRs regulate the
cell transcriptome differently as there are fewer than 15%
of all the mRNAs that are common to all three cases (Fig-
ure 6C). A similar trend was also obvious for the upregu-
lated transcripts (Figure 6C). We ran DAVID (46,47) in or-
der to identify significantly enriched GO BP terms in the
transcripts with significantly differentiated abundance, sep-
arately for each isomiR and direction (up or downregulated)
(Supplementary Table S6) and found that no enriched bio-
logical process was common to the three groups for either
the upregulated or downregulated mRNAs (Supplementary
Figure S6E–6F). For example, the archetype miRNA led
to the decrease in abundance of mRNAs encoding proteins
involved in the regulation of kinase activity and phospho-
rus metabolism whereas the miR-183-5p|+2|+2| isomiR de-

creased the abundance of genes involved in Ras signaling
and ribonucleotide monopshosphate metabolic processes
(Supplementary Table S6). Interestingly, we found a set
of genes that are regulated in opposite ways by different
isomiRs (Figure 6D). For example, the transcript of the
EGFR gene was upregulated after overexpression of the
archetype miR-183-5p miRNA but downregulated after the
transfection with the miR-183-5p|−2|−2| mimic, as com-
pared to the control treatment (Figure 6D). The opposite
trend was observed for NRAS. No specific BP term was
found enriched in this group of genes (data not shown). Ex-
amples of the expression of DA transcripts are shown in
Supplementary Figure S7.

To determine whether each negatively significant tran-
script is a potential direct target of the respective isomiR,
we used rna22 (48) to predict target sites on the mRNA
sequence. Supplementary Table S7 contains all the predic-
tions for the three isomiRs with which we experimented; the
predictions are summarized in Supplementary Figure S8.
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Figure 6. Different isomiRs from the same locus have different effects on the cell transcriptome. Principal Component Analysis (PCA) (A) and Hierarchical
Clustering (HCL; metric: Pearson correlation) (B) on the mRNA transcripts of the four treatment groups quantified by microarrays. (C) Venn diagram
of the common down––(top graph) and upregulated (bottom graph) mRNAs among the treatments with the specific isomiR as compared to the control
treatment. (D) Heatmap of the differentially abundant mRNAs but in opposite directions in at least two comparisons. The numbers on the axes labels of
PCA indicate the variance explained by each principal component (PC).
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We observed that rna22 can predict that more than 70% of
the negatively significant and DA mRNAs can potentially
be a direct target of each isomiR (Supplementary Figure
S8).

In summary, these findings provide experimental evi-
dence that in BRCA each of the miR-183-5p isomiRs has
a different targetome and the effect of each isomiR on the
transcriptome can change drastically even when there is
a shift by two nucleotides with respect to the archetype
miRNA. The findings also underline the importance of fo-
cusing on and separately studying specific isomiRs when
trying to gauge the regulatory role that a specific miRNA
hairpin arm can have on expressed mRNAs.

IsomiRs can distinguish between the luminal A and luminal B
subtypes

The luminal A and luminal B subtypes were established
as the most common subtypes early on based on gene ex-
pression analyses (8,12). As reported in the original TCGA
BRCA analysis, use of the PAM50 gene signature classi-
fied the samples in the intrinsic subtypes, including lumi-
nal A and luminal B, but a miRNA-based analysis could
not distinguish these two subtypes (8). Because of the recog-
nized underlying heterogeneity and intra-group variability,
we opted to use a supervised method (PLS-DA) to specifi-
cally examine whether the ER+/PR+/HER2− luminal A
samples could be distinguished from the luminal B ones
using the full isomiR profiles. For this analysis, we only
considered BRCA samples from white women. As shown
in Figure 7A, the isomiRs can easily separate the two lu-
minal subtypes without any overlap between the resulting
clusters. From the PLS-DA model we extracted the isomiRs
that contribute the most to the observed discrimination and
list them in Table 1. Additionally, we used SAM to identify
DA isomiRs between the luminal A and the luminal B sub-
type (Figure 7B, Table 1 and Supplementary Table S8 and
Figure S9A). Both approaches showed concordance in the
identified isomiRs. Of note are isomiRs from the miR-141,
miR-200c and miR-191-5p loci which have been implicated
previously in BRCA biology (see Discussion).

Using the mRNA expression data from the TCGA
data portal (8), we performed PCA and HCL on the
ER+/PR+/HER2− luminal A and luminal B data sets
(Supplementary Figure S9B and C). Both of these unsu-
pervised methods showed a good separation of the two
BRCA subtypes based on mRNA expression levels. Using
the SAM method we identified 397 differentially expressed
mRNAs (Supplementary Table S9 and Figure S9D): specif-
ically, 125 were downregulated and 272 were upregulated
in luminal B compared to luminal A. DAVID analysis of
the upregulated mRNAs identified a signature involved in
cell proliferation and cell cycle (Supplementary Table S10).
Analogously, similar analysis of the downregulated mR-
NAs revealed a signature related to interactions with the ex-
tracellular matrix and cell adhesion (Supplementary Table
S10).

We proceeded to integrate our analysis of the mRNA
expression data with our isomiR analyses. We used the
rna22 tool (48) to predict targets among the differentially
abundant mRNA (Supplementary Table S11) and deter-

Table 1. Significant isomiRs for the discrimination of luminal A and lu-
minal B ER+/PR+/HER2− BRCA miRNA profiles

VIP score as calculated by the PLS-DA model of Figure 7A

Direction of change of each isomiR as identified by SAM (Supplementary Table S8) in luminal B

as compared to luminal A samples

1

2

mine isomiR-mRNA pairs that are anti-correlated: i.e. the
isomiR is more and the mRNA is less abundant in luminal
B as compared to luminal A, or vice versa. We found that
111 out of the 125 downregulated genes are direct predicted
targets of at least one upregulated isomiR (Figure 7C; Sup-
plementary Table S11). Moreover, 86 of the 272 upregulated
genes are direct predicted targets of at least one downregu-
lated isomiR. The number of predicted interactions among
the isomiR profile and the genes is significantly larger when
all the isomiRs are considered compared to the interactions
mediated by the archetype miRNAs only (Figure 7C). We
note that the anti-correlations described here comprise both
abundant and less abundant isomiRs (Supplementary Fig-
ure S9E).
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Figure 7. Luminal A and Luminal B intrinsic subtypes have distinct isomiR profiles. (A) Partial Least Squares––Discriminant Analysis (PLS-DA) of the
isomiR profiles of ER+/PR+/HER2− BRCA cases from white women. (B) Number of differentially abundant (DA) isomiRs in the luminal B as compared
to the luminal A subtype. Each bar divided into the number of DA archetype miRNAs (blue part) and the number of the rest DA isomiRs (orange part).
(C) Number of interactions of isomiR-gene anti-pairs. The blue part of each bar represents interactions of archetype miRNAs; the orange of non-archetype
ones.

To visualize the isomiR:gene anti-correlated pairs, we
constructed a network for each type of pairs with spe-
cific biological processes highlighted (Supplementary Fig-
ure S10A–B). From this integrative analysis, we observed
the evident role of two let-7 isomiRs in inhibiting prolif-
eration and DNA repair/replication (62); these isomiRs
have distinct 5′ termini and thus distinct seed regions. The
archetype let-7c-5p miRNA was not found to be DA. Two
of the most important isomiRs for the discrimination of the
two subtypes, miR-141-5p|0|+1| and miR-200c-3p|−1|−1|
had nine and six interactions, respectively. The two net-
works are highly intraconnected indicating that combina-
tions of isomiRs cooperatively regulate the cell transcrip-
tome. These results strengthen the functional importance of
isomiRs in the BRCA context and further support the argu-
ment that their deregulation is of significance in the study
of the different BRCA subtypes and racial disparities (30).

DISCUSSION

In this study, we expanded our previous work with isomiRs
extending it to the disease context and in particular breast
cancer. We first catalogued all possible isomiRs that are de-
tectable by RNA-seq and in virtually all cases of known
miRNAs we found a clear deviation from the “one arm-
one miRNA” dogma. For example, miR-21-5p produces as
many as 43 distinct isomiRs. However, the resulting distri-
bution of isomiRs that a locus can produce is skewed with
an average of five isomiRs per locus. With regard to the
isomiRs’ endpoints, and consistent with previous studies by
others and us (30,33,63), we observed a variation at the po-
sition of each terminus. Specifically, the 3′ end was found
to be more variable than the 5′ end not only in terms of
the number of isomiRs ending at each position but also
their expression levels. DGCR8/Drosha and Dicer are re-
sponsible for the cleavage events during miRNA biogenesis
and are commonly considered to be the enzymes choosing

the pri-miRNA and isomiR endpoints (64). However, non-
templated nucleotide additions have been reported that can
affect miRNA stability, target identification and targeting
power (64,65). Lastly, the last few nucleotides of a miRNA
have the potential to act as a localization signal for the iso-
form (66).

Given this increased complexity, we next examined
whether considering the full isomiR profile versus only
the archetype miRNAs provides any additional discrim-
inatory power when comparing normal and tumor sam-
ples. We focused on two common BRCA subtypes,
ER+/PR+/HER2− and ER−/PR−/HER2+ and were
able to demonstrate in both cases that the full isomiR pro-
file is a more powerful descriptor (Figure 2 and Supple-
mentary Figure S2). In the case of ER+/PR+/HER2−, sig-
nificance analysis identified isomiRs from many loci as be-
ing differentially expressed between the normal and tumor
samples. MiR-10b (67) and miR-21 (68), two miRNAs with
known and previously documented roles in BRCA, con-
tributed multiple isomiRs to our results. In fact, many of the
isomiRs arising from these two loci have modified 5′ end-
points and, thus, distinct targetomes in comparison to the
archetype miRNA. This is a strong argument for studying
all of the isoforms that arise from a genomic locus and not
only the archetype miRNA.

Having established the importance of the full isomiR pro-
file, we also extended our previous work on population and
race differences to the disease context (30). The samples
in the BRCA data set allowed us to compare white and
black patients with triple negative (ER−/PR−/HER2−)
BRCA. Within each race, multivariate statistical analy-
ses clearly separated the normal from the tumor samples
(Figure 3). Notably, the isomiRs responsible for differ-
entiating the normal from the disease state in one race
were largely different from the isomiRs that differentiated
the normal from the disease state in the other race. Fur-
ther analyses of the tumor samples from both races iden-
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tified specific isomiRs that exhibited significantly differ-
ent expression profiles in each race. Interestingly, isomiRs
from TJU CMC MD2.ID00121, a novel human-specific
miRNA locus we recently reported (35), were among the
most significantly differentiated isomiRs between the two
races. The genomic locus for TJU CMC MD2.ID00121
partially overlaps with the BMP8B gene, which has been
linked with pancreatic (69) and gastric cancer (70), but is
located on the opposite strand from BMP8B. The impli-
cations of this genomic co-localization are currently un-
known. Another miRNA locus, miR-125a, gave rise to
isomiRs in a race-dependent manner; this miRNA was in-
vestigated previously in BRCA (71) but not in the context
of TNBC patients from different races. Lastly, we were also
able to show a distinction in the isomiR profile of normal
tissues from white and black women extending our previ-
ously identified race-dependent differences to another tissue
type (30).

Given the evident importance of isomiRs for tumor bi-
ology, we proceeded to investigate whether isomiRs have
correlated expression. First, we examined isomiRs from
the miR-29a and miR-29c loci that lie on different chro-
mosomes but are known to be functionally related. We
found a lack of correlation among miR-29 isomiRs from
the same genomic locus suggesting the existence of post-
transcriptional events that weigh in and establish the abun-
dance of isomiRs (Figure 4A). Along these lines, analysis
of the polycistronic transcript that corresponds to the miR-
17/92 cluster (28) showed that neither the hairpin nor the
arm of origin were the main determinants of the isomiRs’
abundance: indeed, isomiRs from different hairpins and dif-
ferent arms formed clusters based on other characteristics,
namely the position of the 5′ endpoint relative to the ref-
erence coordinate and the relative position of the 3′ end-
point (Figure 4B). These results indicate that a multitude
of molecular and biochemical events and mechanisms, both
known (e.g. Drosha and Dicer cleavage (64), non-templated
nucleotide additions (65) etc.) and unknown, likely co-
ordinate the expression and abundance of the produced
isomiRs. In addition, the machinery that would ultimately
determine the collection of isomiRs depends on race, gen-
der, tissue type and disease subtype (Figure 3) (30). There-
fore, one would have to account for all these variables when
elucidating the biogenesis mechanisms.

As previous work has shown that isomiRs are loaded
on Ago (30,33,63), another element that we explored is the
loading of the miRNA isoforms on Ago proteins and the
targeting of mRNAs. To this end we analyzed the isomiR
loading on Ago in three BRCA model cell lines and ob-
served that the overlap of isomiRs among the three cell lines
is qualitatively high (Figure 5). However, from a quantitative
standpoint each cell line was characterized by its own spe-
cific Ago-loaded isomiR footprint. This could simply be the
result of differing transcriptional events among the cell lines
but in the absence of the corresponding RNA-seq profiles
for these cell lines no firm conclusions can be drawn. Alter-
natively, these quantitative differences could be the result
of currently-not-understood biological mechanisms regu-
lating the relative amount of isomiR loading that is cell-
type-specific following the cell-type-specific expression of
isomiRs. As different molecular BRCA subtypes are de-

scribed by each of the analyzed cell lines, the results sug-
gest that isomiRs are an integral and important part of the
post-transcriptonal regulatory layer of gene expression.

As far as targeting is concerned, previous work has shown
that isomiRs of the same miRNA locus may target different
mRNAs but these mRNAs (or genes) were considered to be-
long to the same pathways (63). Since, as we showed above,
isomiRs with differing 5′ ends are also produced, we investi-
gated the effect of the overexpression of three different miR-
183-5p isomiRs on the transcriptome of a BRCA model
cell line, MDA-MB-231. We used microarrays to globally
study how protein-coding gene expression is affected fol-
lowing treatment with each isomiR as compared to a con-
trol treatment. Our choice of locus in this case was driven
by the fact that miR-183 has been shown to be an important
miRNA in many disorders (61,72–74) including breast can-
cer (59,75,76), and isomiRs from this locus were found to
be upregulated in TNBC from white subjects compared to
the normal breast tissue, but not in black subjects (Supple-
mentary Table S3). The microarray analysis showed that the
transcript profile was clearly distinct for each treatment with
a limited overlap on the number of differentially abundant
genes among the three isomiR treatments as compared to
the control cells (Figure 6). Among the genes that were DA,
notable examples include PDCD4 (61,77), that was down-
regulated after overexpression of two of the three isomiRs,
and GPRC5A (78,79), that was upregulated in all isomiR
treatments. DAVID analysis revealed that these differen-
tially abundant genes code for proteins that are part of dif-
ferent biological processes (Supplementary Figure S6). A
functional overlap is likely to exist, as e.g. the Ras pathway
(downregulated after miR-183-5p|+2|+2| treatment; Sup-
plementary Table S6) is linked with cell proliferation (down-
regulated after treatment with the archetype miR-183-5p
miRNA; Supplementary Table S6), but a similar physiolog-
ical impact of the isomiRs cannot be concluded from mi-
croarray and gene expression studies. It is also likely that
isomiRs work synergistically to direct the MDA-MB-231
cells toward a more aggressive phenotype, as the miR-183-
5p locus is considered to work as an oncomiR (59). Inter-
estingly, there was a group of genes that were differentially
abundant in two or more treatments with an isomiR as com-
pared to the control treatment but in opposite directions.
Importantly, there are significant genes in cancer that fall in
this category, like EGFR (80), NRAS (81), IL8 and IL6 (82).
From this perspective, an isomiR that will lead to the down-
regulation of an oncogene will be considered as a tumor
suppressor miRNA, although a distinct isomiR from the
same hairpin arm could be acting as an oncomiR. However,
the interplay among these products, how they interact and
how they affect mRNA abundance in cases of co-expression
are currently open questions.

The most common BRCA cases are those of the hormone
receptor positive (HR+) cancers that are usually classified
molecularly as luminal A and luminal B (8,12,83). We per-
formed an integrated analysis of the isomiRs and the mR-
NAs in the luminal A and luminal B ER+/PR+/HER2−
tumors and found that the isomiR profile can easily discrimi-
nate the two subtypes (Figure 7, Table 1 and Supplementary
Table S9), which suggests currently not understood roles for
the isomiRs in this context. Among the isomiRs that are
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most important for the discrimination of the two subtypes
were miR-141 and miR-200c, two loci with known links to
BRCA progression and aggressiveness (84–86). Through in-
tegration with the mRNA data, we show that the full set of
isomiRs explains in more detail the mRNA differences be-
tween the luminal A and luminal B subtypes (Figure 7 and
Supplementary Figure S10).

From an evolutionary perspective, Figure 3F and our pre-
vious results (30) suggest that different races, taxa below the
rank of human species, have distinct isomiR profiles, as far
as normal breast tissue and lymphoblastoid cell lines are
concerned. Additionally, we find isomiRs expressed from
human- and primate-specific miRNA hairpin arms but no
isomiRs from these loci were found to be DA among races
(Supplementary Table S3). It was previously proposed that
a preference for a dominant 5′ isomiR exists and that it
can change in different organisms through a mechanism
called ‘seed shifting’ (87,88) resulting in different dominant
5′ isomiRs in different species (33). Collectively, these data
suggest a potentially dynamic role of isomiRs in evolution.

In conclusion, our results show that by considering all
miRNAs isoforms from the transcribed miRNA loci in-
stead of only the archetype miRNAs can help provide a
deeper understanding of the post-transcriptional regula-
tory events that are at play in BRCA. Incorporation of
isomiRs in such studies enhances the ability to discrimi-
nate normal tissue from tumor samples and to discrimi-
nate among different breast cancer subtypes. From a mech-
anistic standpoint our finding that the isomiR endpoints
are not randomly distributed but are in fact correlated with
the isomiR expression pattern in ways that are largely un-
related to the miRNA genomic location, miRNA hairpin,
and miRNA arm of origin is noteworthy and warrants addi-
tional studies. Lastly, our findings show that overexpression
of isomiRs from the same arm change the mRNA profile
in distinct ways and affect multiple and different biological
processes, which in turn highlights the need for future stud-
ies of post-transcriptional regulation to be isomiR-centric
and not archetype-centric.
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