5-21-2012

Effect of Pooled Human Intravenous Globulin (IVIG) on the Reversal of Cholinergic Inhibition of Smooth Muscle by Immunoglobulins (IgGs) from Patients with Scleroderma (SSc)

Jagmohan Singh
Thomas Jefferson University

Vaibhav Mehendiratta
Thomas Jefferson University

Sergio A. Jimenez
Thomas Jefferson University

Sidney Cohen
Thomas Jefferson University

Anthony J. DiMarino
Thomas Jefferson University

Recommended Citation

Singh, Jagmohan; Mehendiratta, Vaibhav; Jimenez, Sergio A.; Cohen, Sidney; DiMarino, Anthony J.; and Rattan, Satish, "Effect of Pooled Human Intravenous Globulin (IVIG) on the Reversal of Cholinergic Inhibition of Smooth Muscle by Immunoglobulins (IgGs) from Patients with Scleroderma (SSc)" (2012). *Division of Gastroenterology and Hepatology Faculty Papers*. Paper 11.

https://jdc.jefferson.edu/gastro_hepfp/11

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Division of Gastroenterology and Hepatology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Authors
Jagmohan Singh, Vaibhav Mehendiratta, Sergio A. Jimenez, Sidney Cohen, Anthony J. DiMarino, and Satish Rattan
Effect of Pooled Human Intravenous Globulin (IVIG) on the Reversal of Cholinergic Inhibition of Smooth Muscle by Immunoglobulins (IgGs) from Patients with Scleroderma (SSc)

Jagmohan Singh, Vaihabh Mehdinadtria, Sergio A. Jimenez, Sidney Cohen, Anthony J. Dimarino, and Satish Rattan

Department of Medicine, Division of Gastroenterology and Hepatology, and Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA

Backgrounds & Aims

The gastrointestinal (GI) tract is the most common internal organ system affected in SSc. We and others have shown before that the SSc immunoglobulins (IgGs) cause selective blockade of muscarinic type-3 cholinergic (M3-R) in the GI tract. Presently, there is no effective treatment for SSc although numerous cytotoxic and immunomodulatory agents have been employed with limited success and are marred with serious side effects. Present studies investigated the reversibility of SScIgGs caused M3-R blockade by the pooled Intravenous immunoglobulins (IVIG).

Methods

Effects of SScIgGs and IgGs from normal individuals (NlgGs) on M3-R activation by bethanechol (BeCh) were determined in human internal anal sphincter (IAS) smooth muscle cells (SMCs), before and after IVIG. M3-R occupancy and binding by the SScIgGs was determined via immunofluorescence (IF), Western blotting, and ELISA, respectively. Functional displacement of M3-R occupancy by the SScIgGs was determined employing different concentrations of the IgGs during the sustained phase of the BeCh-induced contraction of rat IAS smooth muscle strips.

Results

Fig 1. SSc IgGs occupy M3-R thus reducing M3-R Immunofluorescence. Reversed by Pooled Human Immunoglobulin (IVIG)

Fig 2. Co-localization of SSc IgGs with M3-R is Blocked by IVIG

Fig 3. SSc IgGs cause Functional Displacement of M3-R: Reversed by IVIG

Fig 4. IVIG Reverses the binding of SScIgG with second Loop of M3-R (M3-RL2)

Summary

1. IgGs from scleroderma patients (SScIgGs) inhibit muscarinic type-3 cholinergic (M3-R) activation, as shown by the data in human IAS smooth muscle cells and rat smooth muscle strips.
2. SScIgGs inhibit M3-R occupation as shown by immunocytochemistry and ELISA-binding studies.
3. Pooled Intravenous globulin (IVIG) renews the M3-R occupation and inhibition primarily by neutralizing circulating the SScIgGs.

Conclusions

- IVIG alters SScIgGs-mediated block of M3-R by blocking the circulating SScIgGs.
- This mechanism may be partly responsible for the restoration of M3-R-mediated cholinergic dysfunction in SSc-related GI motility disorders.

Fig 5. SScIgG significantly bound to M3-R (*p < 0.05). IVIG reverses the binding (*p < 0.05)

Fig 6. Active IVIG (not inactivated) *p < 0.05) the binding of SScIgGs with M3-RL2 and the HSSMIF

Proposed Mechanism of Action of Pooled Human Immunoglobulin (IVIG)

Strengthened contractile properties of smooth muscle

Data shown in Figure 5.