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Primary biliary cirrhosis (PBC) is a chronic cholestatic liver
disease characterized by immunomediated destruction of the
small- and medium-sized intrahepatic bile ducts, mediated
by a selective loss of self-tolerance.1 Epidemiological and
genetic studies indicate that PBC is triggered in genetically
susceptible individuals following exposure to environmental
factors, including microbes and chemical compounds.2,3 Loss
of tolerance occurs either via molecular mimicry and/or the
formation of neoantigens and the development of cross
reactivity.4 This process results from dysfunction in both
innate and adaptive immunity, leading to the expansion of
autoreactive T- and B-lymphocyte populations.5 In PBC, the
multiorchestrated immune effector mechanisms lead to bile
duct injury.

Immune Tolerance and the “Liver Tolerance
Effect”

In the 1890s, Paul Ehrlich described a phenomenon inwhich a
host immune system turns on itself, attacking and damaging
its own organs and tissues. He coined the term “horror
autotoxicus” to describe how the phenomenon is teleologi-

cally impossible and that nature would or should not allow
this to happen. As a result, despite research supporting the
existence of autoimmunity early in the 20th century, little
attention was paid to the concept of immune tolerance. The
discipline of autoimmunity was eventually recognized by the
1940s, and in the ensuing 20 years, an appreciation of the
pathogenesis of rheumatoid arthritis and systemic lupus
erythematosus was increasingly attributed to an autoim-
mune phenomenon. In 1948, Frank Macfarlane Burnet de-
duced the nature of immunological inertness to self, first
naming this as “tolerance” and then proposing it to be a
characteristic acquired in developmental life rather than
innately as earlier believed.6,7 In 1953, Medawar and his
colleagues experimentally demonstrated the induction of
immune tolerance in inbredmice.8Ultimately, the conception
of immune tolerance was defined as an ability of the immune
system to prevent itself from targeting self-molecules, cells,
or tissues; this has led to seminal research in our understand-
ing of autoimmunity.9

The hallmark of the immune system is its ability to
maintain this tolerance to self-antigens, and yet still be able
to mount effective immune responses against pathogens and
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Abstract In primary biliary cirrhosis (PBC), the breach of tolerance that leads to active disease
involves a disruption in several layers of control, including central tolerance, peripheral
anergy, a “liver tolerance effect,” and the action of T regulatory cells and their related
cytokines. Each of these control mechanisms plays a role in preventing an immune
response against self, but all of them act in concert to generate effective protection
against autoimmunity without compromising the ability of the host immune system to
mount an effective response to pathogens. At the same time, genetic susceptibility,
environmental factors, including infection agents and xenobiotics, play important roles
in breach of tolerance in the development of PBC.
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malignant cells (danger signals). Breaking the balance be-
tween tolerance and immunity can lead to disease manifes-
tations, resulting in infections, neoplasia, or autoimmunity.
To avoid harmful self-reactivity, self-tolerance within the T-
and B-cell repertoire are achieved through central and pe-
ripheral tolerance mechanisms.

Central tolerance in the thymus and bonemarrow play key
roles in shaping immune system homeostasis, especially in
early life. In the thymus, with no marked reactivity against
self-peptides, developing lymphocytes undergo positive se-
lection in the thymic cortex, then become mature lympho-
cytes and enter the circulation. Conversely, developing
lymphocytes with marked reactivity against self-peptides
are negatively selected and deleted in the thymic medul-
la.10–14 After exiting the thymus, mature T cells are subjected
to secondary selection (peripheral tolerance) by which the
majority of self-reactive T cells are deleted or rendered
anergic.15,16 Meanwhile, when immature B cells express
surface IgM that recognize ubiquitous self-cell-surface anti-
gens, they are eliminated by a process known as clonal
deletion or anergy.17 Autoreactive B cells can escape deletion
by a process known as receptor editing.18,19Mature B cells are
also under the control of peripheral tolerance.20

Abundant evidence suggests that even under the regula-
tion of central and peripheral tolerance, small numbers of
potentially hazardous self-reactive lymphocytes still can
“leak out” into the periphery in normal individuals.21,22 But
these residual self-reactive T cells normally remain in an
inactive state due to several factors, including lack of costi-
mulation from antigen-presenting cells, low avidities of their
T-cell receptors (TCRs) for self-antigens, or seclusion of self-
antigens.23 At the same time, mature self-reacting B cells may
survive intact and rarely be activated because they need
costimulatory signals from T cells, as well as the presence
of its recognized antigen to proliferate and produce
antibodies.

In addition to these passive mechanisms, evidence indi-
cates that suppressive regulatory mechanisms also exist.
CD4 þ CD25þ T regulatory cells (Tregs) are immune regula-
tory cells that play an important role in immune homeostasis.
These cells are involved in themaintenance of peripheral self-
tolerance and downregulation of immune responses.24–26

PDCD5 acetylates FOXP3 and affects Treg cell modulation of
immune function, thereby playing a role in the development
of autoimmune disease.27

Liver tissue itself also possesses the ability tomediate local
and systemic tolerance to self and foreign antigens.28 This is
known as the “liver tolerance effect.” The liver is a depot for
clearance of toxins and metabolic products that result from
physiologic and pathogenic processes. Thus, there is a need to
prevent activation of the immune system by exposure to
“nonpathogenic”molecules (including food components) and
microorganisms (gut microflora), while continuing to mount
an effective immune response against pathogens.29,30 Non-
parenchymal liver cells including the liver sinusoidal endo-
thelial cells, resident DCs, Kupffer cells, and hepatic stellate
cells are likely responsible for hepatic tolerance. These cells
can generate anti-inflammatory cytokines including IL-10

and TGFβ or express the negative costimulators of T-cell
activation that mediate immune suppression, such as pro-
grammed cell death ligand-1 (PD-L1).31,32 In addition, hep-
atocytes and Treg cells are also involved in mediating T-cell
tolerance in the liver.

The normal physiologic mechanisms of immune tolerance
should prevent autoimmune diseases. The concept of auto-
immunity is often thought to require the presence of auto-
antibodies (antibodies directed against normal self-tissues or
substances).33,34 However, autoimmunity may exist in the
absence of a known autoantigen. Autoimmunity generally
results from a defect in central tolerance mechanisms that
allows the generation and proliferation of a limited number of
autoreactive cells, which canmature and enter the periphery.
However, it has been repeatedly demonstrated in animal and
human studies that the presence of autoreactive cells does
not universally lead to autoimmune disease. A breach of
tolerance that occasionally occurs during the process of
mounting an immune response to a pathogen is often, but
not always the trigger for the development of autoimmune
diseases. Autoimmune diseases are generally classified on the
basis of the organ or tissue involved. Autoimmune diseases
that are restricted to specific organs of the body are known as
organ-specific autoimmune diseases, including type 1 diabe-
tesmellitus,multiple sclerosis, PBC, and psoriasis. Conversely,
if many tissues of the body are affected, the disease is
regarded as a systemic autoimmune disease, such as systemic
lupus erythematosus and rheumatoid arthritis.

Primary Biliary Cirrhosis and a Breach of
Tolerance

In 1851, Addison and Gull first described nonobstructive
biliary cirrhosis. The disease was further characterized clini-
cally by Ahrens et al in 1950. After a considerable period of
research inactivity, a cDNAencoding the autoantigen targeted
by these antimitochondrial antibodies (AMAs) was cloned in
1987 by Gershwin and colleagues.35 Subsequently, the anti-
gen was identified as the E2 subunit (E2) of the pyruvate
dehydrogenase complex (PDC).36 More recently, other auto-
antibodies have been detected in PBC patients, including
those directed against the nuclear pore complex (NPC).37 A
series of interrelated immunoreactive events have been
discovered to occur in primary biliary cirrhosis, which
upon characterization will contribute to our understanding
of the mechanisms of breach of tolerance (►Fig. 1).

Primary biliary cirrhosis, with the presence of autoanti-
bodies (AMAs), PDC-E2-specific autoreactive CD4, CD8 T cells,
autoreactive B lymphocytes in liver tissue, and three separate
genetically based mouse models,38–40 fulfills the criteria for
an autoimmune disease.41 Autoimmune mechanisms of PBC
are multifactorial,42 consisting of a breakdown in central or
peripheral tolerance, as well as the aforementioned liver
tolerance effect.

Specifically, the loss of tolerance in PBC patients may occur
as a result of three main conceptual mechanisms: (1) molec-
ular mimicry and the presence of neoantigens, developed
through cross reactivity to PDC-E2; (2) a genetic
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susceptibility, responsible for inheritable abnormalities in the
regulation of immune responses; and (3) an imbalance in the
immune system, leading to an overactive innate immune
system, which inappropriately activates nonspecific immune
responses that lead to the expansion of autoreactive popula-
tions of T and B lymphocytes (►Fig. 2).

Mitochondrial Autoantigens in Primary
Biliary Cirrhosis

The 2-oxoacid dehydrogenase complex (2-OADC) autoanti-
gens are multienzyme complexes essential in the mitochon-
drial respiratory chain.43 This enzyme family includes three

Fig. 2 Mechanisms that are involved in breaching immune tolerance in primary biliary cirrhosis. The breach of tolerance that leads to active
disease involves a disruption in several layers of control, including central tolerance, peripheral anergy, a “liver tolerance effect,” and the action of
T regulatory cells and their related cytokines. At the same time, genetic susceptibility, environmental factors, including infection agents and
xenobiotics, also play important roles in breach tolerance.

Fig. 1 Timeline of identifying immune parameters in primary biliary cirrhosis (PBC). Black, clinical immunology-related events and conception;
blue, innate immunity; red, adaptive immunity; green, PBC mouse models. AMA, antimitochondrial antibody; BD, biliary ducts; DC, dendritic cell;
NK, natural killer; NKT, Natural killer T; TLR, Toll-like receptor.
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complexes: PDC, the 2-oxo glutarate dehydrogenase complex
(OGDC), and the branched chain 2-oxoacid dehydrogenase
complex (BCOADC). Each of the three complexes consists of
three subunits: E1, E2, and E3. Antimitochondrial antibodies
specifically recognize the lipoylated domains of the 2-OADC
family of enzymes, and all immunodominant epitopes con-
tain an ExDKA (glutamic acid -E-, x, aspartic acid, -D-, lysine –
k-, and alanine –A-) motif, with lipoic acid attached to K at
position 173. This configuration is necessary and/or sufficient
for antigen recognition. Interestingly, there are only five
proteins in mammals that contain lipoic acid, and four of
the five are autoantigens in PBC. Among the 2-OADC con-
stituents, themajor autoantigen is the PDC-E2, which was the
antigen first cloned in 198735; less frequent autoantigens
include OADC-E2, BCOADC-E2, and E3BP.44

In autoimmunity, the paradox is that autoantigens are
unable to elicit a primary immune response themselves, but
can be recognized as targets for effector T cells stimulated by a
pathogenic cross-reactive epitope. To break self-tolerance to
the autoantigen, the epitope mimic or mimotope needs to
induce activation and proliferation rather than anergy of
autoreactive T cells. Subsequently, the autoantigen presented
by the host cells of a certain tissue must be recognized by
reactive epitope-specific T cells. In the case of PBC, either a
mimotope carried by a microbe or a neoantigen generated by
xenobiotic-modified self-antigen can mimic mitochondrial
proteins, and subsequently may activate autoreactive lym-
phocytes that have leaked out into the peripheral repertoire.
The process may become self-perpetuating because of the
cross-reactive unmodified self-antigens (►Fig. 3).45

Molecular Mimicry of PDC-E2 and Cross Reactivity
Two triggers, infections and xenobiotics, have been exten-
sively investigated with regard to their role in molecular
mimicry. Central to molecular mimicry is the ability of
microorganisms that contain immunogenic epitopes (similar
to self-antigens) to trigger a cross-species immune re-
sponse.46 Xenobiotics are chemicals that can generate a loss
of tolerance to self-proteins, usually as a result of changed
immunogenicity through alteration of or complexing to
either self-proteins or nonself-proteins.47,48

Molecular Mimicry
In 1964, the term “molecular mimicry” was coined by Dam-
ian, who suggested that select antigenic determinants of
microorganisms may resemble host epitopes.49 Numerous
specific infectious agents, mainly bacteria (both gram nega-
tive and positive), and viruses (herpes simplex viral,50 mouse
mammary tumor virus,51,52 and Epstein-Barr virus53), para-
sites (trypanosomes and Ascaridiagalli54), and fungi (Saccha-
romyces cerevisiae55), have been implicated in PBC.56 The
classic example is Escherichia coli and it has been reported
that urinary tract infections (UTIs) are frequently observed in
PBC.57 Sera from PBC patients react with both E. coli and
human PDC-E2. We also note that Novosphingobium aroma-
ticivorans, a gram-negative bacterium, contains two proteins
that share highly homologous amino-acid sequenceswith the
immunodominant epitope of PDC-E2. Specific antibody re-
actions to this organism have also been detected in PBC
patients, and in fact exhibit up to a 1000-fold stronger
response than those against E. coli.58 In addition, a peptide
derived from Pseudomonas aeruginosa has been found to be
partially homologous to PDC-E2159–167, which is the HLA-
A�0201-restricted epitope of PDC-E2 recognized by autoreac-
tive cytotoxic T lymphocytes in PBC (►Table 1).59

Autoimmune cholangiopathy, which possesses some sim-
ilarity to human PBC, has occurred after exposure to bacterial
components. Lipopolysaccharide (LPS), a specific component
of gram-negative bacterial cell walls, injected intomice either
alone or in combinationwith PDC-E2, induces the appearance
of portal lymphocytic infiltration and cholangiocyte degen-
eration such as that seen in human PBC liver.60 Furthermore,
lipoteichoic acid (LTA), a gram-positive cell wall component,
is also involved in systemic multifocal epithelial inflamma-
tion in chronic colitis-harboring TCRα(�/ � )xAIM(�/ � )
mice.61 Serum levels of LTA-specific IgA are also significantly
higher in PBC than in normal controls.62 Unmethylated CpG
motifs from bacterial DNA triggers a PDC-specific Th1 re-
sponse in peripheral blood mononuclear cells (PBMCs) from
mice immunized with PDC.63

Most studies supporting the role of infectious agents in the
pathogenesis of PBC are based on linear or conformational
mimicry between microbial proteins and human mitochon-
drial antigens. Shared sequences between human and micro-
bial proteins can disrupt immune toleranceby inducing cross-
reactive antibodies or effector T cells and/or by promoting
epitope spreading.64 However, controversy surrounding the
concept of infectious agents and their components in the
etiology of PBC still exists.65,66

Fig. 3 Molecular mimicry of PDC-E2 helps breach tolerance in primary
biliary cirrhosis (PBC) patients. (1) Infectious agents (E. coli, viral
pathogens) and xenobiotics can be recognized and phagocytosed by
antigen-presenting cells (APCs); (2) APCs process and present molec-
ular mimicry of PDC-E2 to CD4 or CD8 T cells by MHC-II or MHC-I; (3)
autoreactive CD4 T, CD8 T cells are activated, and CD4 T cells provide
help to autoreactive B cells to produce antimitochondrial antibodies
(AMA), which lead to the breach of tolerance; (4) intact PDC-E2
released from biliary epithelial cells recognized by reactive epitope-
specific T cells lead to PBC.
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Xenobiotics
Self- or nonself-proteins can be modified by chemical com-
pounds (i.e., xenobiotics) causing a change in molecular
structure that enhances immunogenicity. Xenobiotics are
important in PBC because many environmental chemicals
aremetabolized primarily in the liver and duringmetabolism,
may form reactive metabolites that can modify cellular
proteins to form neoantigens. Sufficient data exist supporting
the hypothesis that xenobiotic-induced and/or oxidative
modification of mitochondrial autoantigens is a critical step
leading to loss of tolerance for PBC patients.67 As previously
noted, lipoic acid is a critical component of the PDC-E2
epitope. Moreover, lipoic acid, at the exterior of the PDC-E2
protein complex, is accessible to chemical modification.

In 2001, Gershwin and his colleagues replaced the lipoic
acid moiety with synthetic structures designed to mimic a
xenobiotically modified lipoyl hapten and subsequently
quantified the reactivity of these structures with sera from
PBC patients. The data demonstrate that AMAs from seropos-
itive patientswith PBC, but not controls, reacted against three
of 18 organically modified autoepitopes significantly better
than to the native domain,47 suggesting an organic compound
may modify a self-protein and serve as a mimotope.

In 2003, the Gershwin laboratory replaced the lipoic acid
moiety of PDC-E2 with a collection of synthetic structures
designed to mimic a xenobiotically modified lipoyl hapten on
a 12-aa peptide, leading to significantly higher reactivitywith
AMA. Based on these data, they immunized rabbits with the
xenobiotic, 6-bromohexanoate, bovine serum albumin con-
jugate, and induced AMAproductionwithout requirement for
the peptide backbone of PDC-E2.68 These autoantibodies
disappeared when the stimulus was discontinued. In 2007,

the same group reported that oxidative stress-induced liver
damage leads to a transiently higher frequency of AMA
induction, especially in subjects with acetaminophen
(APAP) poisoning.69

In 2011,quantitative structure-activity relationship
(QSAR) analysis was performed on a focused panel of lipoic
acid mimics in which the lipoyl disulfide bond was modi-
fied.706,8-bis(acetylthio)octanoic acid (SAc), 8-(acetylthio)
octanoic acid (OASAc), and 6,8- bis(propionylthio)octanoic
acid (SCOEt) were highly reactive to sera from AMA-positive
PBC patients, at levels even higher than the reactivity against
lipoic-acid-conjugated PDC-E2 peptide. Furthermore, two of
these compounds (6-bromohexanoate and 2-octynoic acid71)
were capable of inducing AMA and PBC-like liver lesions in
guinea pigs72 and NOD.110173 or C57BL/674mice, respective-
ly. These models illustrate breakdown of tolerance in the
absence of exposure to PDC-E2.

Interestingly, 2-octynoic acid is found in several cosmetic
products including nail polish; their frequent use among
women may contribute to the female predominance of
PBC.75,76

Apoptosis
The clearance of apoptotic cells is normally associatedwith an
anti-inflammatory response; this process plays an important
role in tissue homeostasis and immune tolerance.77,78 More-
over, increasing evidence suggests that failure in clearance of
apoptotic cell debris is linked to the breakdown of tolerance
and the development of autoimmunity.79–81 Apoptosis of
biliary epithelial cells (BECs) has been proposed as a potential
source of neoantigens that are responsible for activating
autoreactive lymphocytes.82Autophagy, the catabolic process

Table 1 Molecular mimicry and neoantigens to PDC-E2

Epitope mimic or mimotope Cross reactivity References

Molecular mimicry

Escherichia coli PDC-E2212–226, PDC-E2 163–176 Ab and CD4 207,245

Novosphingobium aromaticivorans PDC-E2 208–237 Ab 84,246

Helicobacter pylori PDC-E2 212–226 Only in mouse models 247,248

Pseudomonas aeruginosa PDC-E2 159–167 CD8 TCR 59

Haemophilus influenzae PDC-E2 212–226 Ab 245

Lactobacillus delbrueckii PDC-E2 212–226 Ab 249

Mycoplasma pneumoniae PDC Ab 250

Mycobacterium gordonae PDC-E2 212–226 Ab 251

Borrelia burgdorferi PDC-E2 208–235 Ab 252

Xenobiotics

Lipoic acid moiety replacement Lipoic acid mimics AMA 47

6-bromohexanoate 12-aa replacement within
lipoic acid moiety

AMA 68

2-octynoic acid PDC-E2 AMA 71

Structure-activity
relationship (QSAR) analysis

Lipoic acid mimics AMA 70
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that leads to cell destruction and the clearance of the resul-
tant cellular debris may also play a significant role in autoim-
mune diseases.83

Mitochondrial antigens are ubiquitously expressed in all
nucleated cells, and are phylogenetically highly conserved.84

During spontaneous or induced apoptosis, almost all cell
types express mitochondrial antigens on the intact plasma
membrane and within apoptotic blebs. The apoptotic cells
acquire the ability to initiate an autoimmune response by
presentation of 2-OADC-derived autoantigens.85 In most cell
types, the release of lysine-lipoylated sequences from mito-
chondria during apoptosis leads to oxidation by gluta-
thiones.86 The oxidated forms are not immunogenic and
are not recognized by serum AMA because glutathionylation
masks autoantibody recognition.87 Cholangiocytes fail to
covalently link glutathione to lysine-lipoyl groups during
apoptosis and immunogenicity is retained. The intact PDC-
E2 in apoptotic fragments can then be taken up by local
antigen-presenting cells and transferred to regional lymph
nodes for priming of cognate T cells. Lleo and colleagues first
reported the presence of PDC-E2 in the blebs of human
intrahepatic bile duct cells that were undergoing apoptosis.77

Autoantigens found in apoptotic blebs (apotopes) were sub-
sequently taken up by macrophages.88 Further study showed
that addition of serum AMA to a coculture of macrophages
and apotopes led to a significant increase in proinflammatory
cytokine secretion. However, the blocking of CD16 mediated
complement receptor 3 (CR3) signaling, possibly resulting
from the serum anti-CD16 IgM autoantibodies found in PBC,
may be related to the delayed clearance of apoptotic BECs by
macrophages.89

The unique characteristics of BECs during apoptosis might
constitute the pathogenic link between the ubiquitous distri-
bution and high degree of conservation across species of the
AMA autoantigen and the organ specificity of PBC
pathology.85

Genetics and Autoimmunity in PBC

There is a broadly accepted paradigm that genetic suscepti-
bility results in a breakdown in immunological tolerance that
may enhance the effect of autoantigens and the degree of an
abnormal immune response. Specifically, the role of genetic
factors in conferring PBC susceptibility has been widely
demonstrated (►Fig. 4). The relative risk of a family member
of a first-degree relative of PBC patients is 50- to 100-fold
higher than the general population.90 By evaluating the
concordance of PBC in a genetically defined population of
twin sets (including monozygotic and dizygotic twins), ge-
netic susceptibility was further confirmed.91,92 In addition,
the significant female preponderance is well known and the
median odds ratio in case studies corresponds to a female
predominance of up to 9:1 to 10:1, among the highest
described in autoimmune diseases.

Human Leukocyte Antigen
The major histocompatibility complex (MHC) is located on
the short arm of chromosome 6 and harbors genes encoding
molecules involved in antigen presentation, and is therefore
involved in distinguishing self from non-self. The MHC com-
plex is characterized by a cluster of genes related by sequence
homology and/or function: the human leukocyte antigen

Fig. 4 Genetic factors that confer primary biliary cirrhosis (PBC) susceptibility. The relationship between genetic susceptibility and the breach of
tolerance in PBC is complex, involving human leukocyte antigens (HLA), nonhuman leukocyte antigens, antigen risk loci, epigenetics, and sex-
associated factors.
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(HLA) class I andHLA class II genes encoding proteins involved
in antigen presentation. HLA class III genes encode several
other immune proteins, such as tumor necrosis factor-α (TNF-
α).93 Unlike other autoimmune diseases, there are only weak
and regional associations between PBC and HLA mole-
cules.90,94–96 In HLA candidate gene studies based on pop-
ulations of European origin, PBC is associated with the risk
haplotypes, DRB1�08:01-DQA1�04:01-DQB1�04:02 and
DRB1�04:04-DQB1�03:02.97,98 Primary biliary cirrhosis is
also associated with the protective haplotypes DRB1�11:01-
DQA�05:01-DQB1�03:01 and DRB1�15:01-DRA1�01:02-
DQB1�06: 02. In Japan, DRB1�08:03-DQB1�06:01 and
DRB1�04:05-DQB1�04:01 have been identified as risk hap-
lotypes, whereas DRB1�13:02-DQB1�06:04, DRB1�11:01-
DQB1�03:01, and DRB1�15:01 act as protective haplotypes.99

In a study by Invernizzi et al, conditional analysis showed that
these haplotype associations in Italians are most likely driven
by the respective DRB1 alleles, the risk alleles DRB1�08 and
DRB1�14, and the protective allele DRB1�11.100

No consistent and reproducible associations have been
detected between specific DRB1 alleles and clinical features of
the disease. In Chinese PBC patients, significant association
exists between HLA-DRB1�08:03, DQ2, and DQB1�06:01 al-
leles and PBC. DRB1�08:03-DQB1�06:01 and DRB1�07:01-
DQB1�02:02 haplotypes were also associated with PBC sus-
ceptibility. On the other hand, DRB1�03:01 alleles and the
DRB1�12:02-DQB1�03:01 haplotype were significantly de-
creased in Chinese PBC patients compared with controls.101

Genome-Wide Association Studies
Genome-wide association study (GWAS) analysis demon-
strates that there is less of a difference in the intensity of
risk association with PBC between HLA and non-HLA loci.
This finding suggests that although HLA is a very important
contributor of risk, the non-HLA loci, as a group, are at least
equally important. So far, 27 genome-wide significant non-
HLA risk loci for PBC have been identified,102 including
2q32 (STAT1, STAT4), 3q25 (IL12A, SCHIP1), 7q32 (IRF5,
TNPO3), 11q23(CXCR5),12p13 (TNFRSF1A, LTBR), 16p13.13
(SOCS1, CLEC16A), 17q12 (IKZF3) and 19q13.3 (SPIB).98,103

Risk loci for PBC appear to be enriched for gene products
involved in innate or adaptive immune responses, consis-
tent with an autoimmune component to pathogenesis.
Genome-wide association studies now play a significant
role in evaluating a genetic role in many autoimmune
hepatic diseases.102

In 2009, Hirschfield et al identified three susceptibility
loci, HLA, IL12A, and IL12RB2, and their observations were
confirmed by other GWAS studies.104 IL-12,acting as a T-cell
stimulating factor that is involved in the differentiation of
naive T cells into Th1 cells, has been previously implicated in
autoimmunity and is important for the development of
antigen-specific (PDC-E2) autoreactive T cells in PBC.105 IL-
12 is also involved in the activity of natural killer (NK) cells
and its cytotoxic activity. In addition, the binding of IL-12 to
its receptor is thought tomodulate autoimmune responses by
evoking IFN-γ production, which may in turn alter IL-23-
driven induction of IL-17-producing Th17 lymphocytes.

Moreover, signals from IL-12R are mediated by TYK2 and
STAT4, and negatively regulated by SOCS1.106,107

IRF5-TNPO3 (encoding interferon regulatory factor 5 and
transportin 3) plays a key role in the innate immune response
as part of the Toll-like receptor (TLR) signaling pathway and
mediates apoptosis induced by TNF related apoptosis-in-
duced ligand.108 IRF5 also contributes to the development
of dendritic cells, and promotes inflammatory macrophage
polarization and Th1-Th17 responses109

CXCR5 (Chemokine (C-X-C Motif) Receptor 5), acting as a
multipass membrane protein, is mainly expressed in mature
B cells and follicular helper-T cells (Tfh). Expression of CXCR5
affects the migration of B cells into splenic follicles, and may
have a regulatory role in B-cell differentiation. Moreover,
CXCR5 also affects the function of Tfh cells, which have been
reported to play an important role in multiple autoimmune
diseases.110

The transcription factor IKZF3 gene encodes IKAROS fami-
ly zinc finger 3 (also known as Aiolos) and plays a critical
regulation role in B-cell differentiation, proliferation, and
maturation. It also controls apoptosis of T and B cells in an
IL-2-dependent way, and has been implicated in the patho-
genesis of autoimmunity.111 Spi-B (Spi-B transcription factor
[Spi-1/PU.1 related]), a member of the ETS transcription
factor family, is an important mediator of both early T-cell
lineage differentiation and B-cell receptor signaling. Spi-B
also induces the development of plasmacytoid dendritic cells
and NK cells.

Other new candidate genes associated with disease at
GWAS thresholds include SIAE, TNFSF15, POU2AF1, CTLA-4,
IL-1, IL-10, vitamin D receptor (VDR), DENND1B, CD80, IL7R,
CLEC16A, PTPN22, and NFKB1,112–118 all of which play com-
pelling roles in the development of autoimmunity that re-
quire further confirmation or investigation.

Epigenetics
Epigenetics is defined as stable and heritable patterns of gene
expression that do not involve any alterations to the original
DNA sequence. There are four known types of epigenetic
mechanisms: (1) methylation of DNA on certain cytosine
residues that generally silences genes, (2) posttranslational
modifications of histone tails of nucleosomes (acetylation,
methylation, ubiquitination, etc.) that may either render
genes active or inactive depending on the histone modified
and the nature of the modification, (3) active remodeling of
chromatin by protein machines called remodeling complexes
that can also either enhance or suppress, and (4) the silencing
of gene expression by small noncoding RNA transcripts.119

The lackof concordance inmonozygotic twins in autoimmune
diseases strongly suggests that besides environmental fac-
tors, epigenetic factors may also be important in determining
the susceptibility to autoimmunity.9,120,121 The relationship
between epigenetics and the pathogenesis of autoimmune
diseases, including PBC, has been described
extensively.91,122–125

The interaction of CD40 and CD40L plays a key role in
CD4þ T cell priming, B-cell terminal maturation, and immu-
noglobulin class-switch recombination. No gene mutations
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were detected in cDNA of CD40L from PBC patients by RT-
PCR-SSCP technique.126 Lleo et al has demonstrated signifi-
cantly lower levels of DNAmethylation of the CD40L promot-
er in CD4 þ T cells from PBC patients, as compared with
controls, and this decreased methylation inversely correlated
with levels of serum IgM in PBC patients.127

The reason for female predominance is unclear, although
multiple theories have been proposed.128–138 Because the
female has two X chromosomes, one is silenced to varying
degrees in a processknownasX-chromosome inactivation (XCI)
or lyonization. Most genes on the inactive X chromosome are
silenced by promoter methylation during X-chromosome in-
activation (XCI).139Twogenes (CLIC2 and PIN4)were identified
as consistently downregulated in an effected cohort of mono-
zygotic twin sets discordant and concordant for PBC. Both
CLIC2 and PIN4 demonstrated partial and variablemethylation

of CpG, but the possible mechanisms by which epigenetic
factors influence PBC onset are likelymuchmore complex than
a simple X-linking of candidate genes.120,140–142

MicroRNAs play a vital role in the regulation of various
aspects of immune function and in the development of auto-
immune disease. In 2009, it was shown that PBC is associated
with altered expression of 35 hepatic microRNAs.143 Subse-
quently, 17microRNAs differentially expressed in PBMCs from
PBC patientswere also identified.144OthermicroRNAs, such as
miR-506,145 miR-let-7b, miR-505–3p, and miR-197–3p have
also been reported to be associated with PBC.146,147 However,
the precise mechanisms related to the role of microRNA in the
maintenance of the breach of immune tolerance in PBC have
yet to be elucidated.

Finally, a considerable number of sex-related genes appear
crucial in the maintenance of physiological sex hormone

Fig. 5 Innate and adaptive immunity in primary biliary cirrhosis (PBC) patients. (1) Microorganism proteins, xenobiotics, and apoptosis of biliary
epithelial cells (BEC) can be recognized and endocytosed by antigen-presenting cells (APCs), which subsequently activate innate immune cells
such as Toll-like receptors (TLRs), DCs, macrophages, natural killer (NK) and natural killer T (NKT) cells, and others. (2) After being processed by
APCs, some T-cell immunogenic peptides were generated and presented to uncommitted T helper (Th0) lymphocytes and CD8 T cells. (3)
Activated Th0 cells then differentiate into Th1, Th2, Tfh, and Th17 cells. Furthermore, Th1 cells secrete cytokines such as interleukin-2 (IL-2) and
interferon-γ, which stimulate development of cytotoxic T lymphocytes (CTL).Th2 cells or Tfh cells secrete IL-4, IL-10, IL-13, or IL-21, and may
stimulate autoantibody (e.g., AMA) production by B lymphocytes. Finally, CTL (autoreactive CD8þ T), B lymphocytes, Th17, autoreactive
CD4 þ T, NK, and NKT infiltrate and gather around the small bile duct, and participate in the development of autoimmunity. (4) Simultaneously,
the number and function of immunosuppressive cells (Treg, Breg, Tr1, and CD8 Treg) decrease significantly, which indirectly promotes
overactivation of immune responsiveness. Throughout the process, the balance between immune tolerance and break tolerance is a constantly
changing process, which finally leads to the breach of tolerance in PBC.
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levels. Often, these genes have a pleotropic function in
immune system balance.148 Sex-associated hormones, such
as estrogens, androgens and prolactin, which not only differ
betweenmales and females but also canvary according to age,
can be central to the T helper 1/T helper 2 balance. They may
therefore play a significant role in determining an appropriate
or inappropriate inflammatory response and thus play a role
in the balance between immune tolerance and autoimmuni-
ty.149 Invernizzi et al150first determined a significantly higher
frequency of monosomy of the X chromosome in peripheral
leukocytes (particularly T and B cells) in female PBC subjects
as compared with age-matched female controls. Moreover,
several sex-related factors (pregnancies,151 contraceptives,
estrogen-replacement treatments,75 and recurrent vagini-
tis152) appear to increase the risk of developing PBC. The
availability of high-throughput efforts to sequence exomes
and genomes and the advent of deep-sequencing should
advance these data.

Innate and Adaptive Immunity

Defects in immune regulation that govern components of
both innate andadaptive immunity contribute to the abnormal
perpetuation of the immune response (►Fig. 5; ►Table 2).
Innate immune cells physiologically resident in the liver
constantly provide a defense against pathogens while main-
taining tolerance to food antigens and commensal bacteria.
The evidence for a role of innate immunity in PBC includes the
following immunological features: presence of granulomatous
inflammation, elevated levels of polyclonal IgM, hyperrespon-
siveness to CpG, increased levels of NK cells, and aberrant
cytokine responses.153,154

Toll-Like Receptors
Thirteen Toll-like receptors (TLRs) have been described in
mammals of which 10 are found in humans.155 Toll-like
receptors are part of a system of pattern-recognition

Table 2 Innate and adaptive immune in patients with primary biliary cirrhosis

Immune type Function Reference

Innate immunity

TLR TLR signaling; contributes to the breach of tolerance 154,157

DC " Number (peripheral and intrahepatic) " Function
(presenting and cross presenting)

163,164,166

Macrophage " Hypersecretion of proinflammatory cytokines 168,253

BEC Act as antigen presenting cells; defense against
pathogenesis; induces IgA-related damage

173,175,180

NK " Number (peripheral and intrahepatic) " Function
(cytotoxic activity)

184,185

NKT " Number (peripheral and intrahepatic)
"Function(cytotoxic activity, perforin expression)
" Lymphoid cell infiltration

187,188

Adaptive immunity-Cellular immunity

CD4 ""Autoreactive CD4 T cells (100- to150-fold)
"Ratio of Th1/Th2

190,191,203

Th17 "Number (intrahepatic) "IL-17 secretion 192–194

Treg ↓ Number (peripheral and intrahepatic)
↓ Function (maintenance self-tolerance)

195,196

Tfh " Number (peripheral and intrahepatic)
" Function (provides help to B cells)

CD8 " Autoreactive CD8 T cells (10-fold)
" Function (cytotoxic activity)

59,208

- Humoral immunity

Antibodies Indicates a breach of immune tolerance
(AMA, AMA-IgA, ANA, anti-Gp120 and anti-Sp100)

211,212

B cells " Number (peripheral and intrahepatic)
" Intrahepatic CD38þ plasmablast
"Function (promote antibody production)
Suppressive B cells exist (Breg)

38,214,215,254

Abbreviations: AMA, antimitochondrial antibody; ANA, antinuclear antibody; BEC, biliary epithelial cell; DC, dendritic cell; IgA, immunoglobulin A; NK,
natural killer; NKT, natural killer T; TLR, Toll-like receptor.
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receptors (PRRs) that act by recognizing unique, highly
conserved structural components of bacteria, fungi, viruses
called pathogen-associated molecular patterns (PAMPS), as
well as damage-associated molecular patterns (DAMPs). The
binding of PAMPs or DAMPS to TLRs leads to signaling path-
ways that activate and propagate innate and adaptive inflam-
matory responses.156

The expression of TLRs is normally regulated by a negative
signaling pathway in the liver, which prevents inappropriate
activation of inflammation. Peripheral blood mononuclear
cells in PBC patients produce higher amounts of inflammato-
ry cytokines in response to the ligands of TLR2, TLR3, TLR4,
TLR5, and TLR9 than PBMCs in healthy subjects.157 In PBC
patients, peripheral B cells exposed to CpG motifs express
increased amounts of TRL9 and CD86, which enhance their
production of intracellular IgM and AMA.154,158

Furthermore, the cytotoxicity of liver NK cells in PBC
patients is more profound than cells in control subjects
when incubated with poly I:C and LPS-primed liver macro-
phages.159 These results indicate that patients with PBC
exhibit hypersensitivity to TLR signaling.

Antigen-Presenting Cells

Dendritic Cells
Dendritic cells (DCs) occupy a unique position at the interface
between innate and adaptive immunity, orchestrating a large
panel of responses. The presentation of antigens by immature
DCs should result in immune tolerance, while activated and
mature DCs are capable of priming robust adaptive immune
responses.160 In 1989, Demetris et al first identified dendritic
cells that localize inside the basement membrane between
biliary epithelial cells of septal bile ducts in livers of early stage
PBC.161 Using immunohistochemical methods, Tanimoto et al
reported that there exists activated CD83-positive DCs in PBC
patients.162 In 2001, Akbar et al stimulated peripheral blood T
cells from PBC with either PDC alone or DCs plus PDC. They
reported that peripheral blood T cells from 100% of AMA-
positive PBC patients reflected PDC-specific proliferationwhen
cultured with PDC-pulsed DCs.163 This finding demonstrated
the effectiveness of antigen-pulsed DCs.

In 2002, Kita et al also found that PDC-E2-specific cytotoxic
T lymphocytes (CTLs) could also be generated by pulsing DCs
with full-length recombinant PDC-E2 protein, which indicated
that CTL activation could be augmented by immune complexes
cross presented by dendritic cells.164 Hiasa et al analyzed the
phenotypes of DC1 andDC2 frompatientswith primary biliary
cirrhosis.165 A phenotype of DC2 with reduced expression of
HLA D2 and CD123 in PBC may have relevance to the break-
down of tolerance to self-antigen. In addition, Langerhans cells
(LCs) existing around or within biliary epithelial layers are
important as periductal antigen-presenting cells in PBC. The
migration of LCs into bile ducts is closely associated with the
periductal cytokine milieu in patients with PBC.166

Monocytes
Monocytes have also been implicated in the pathogenesis of
PBC and other autoimmune diseases.167 Peripheral-blood

monocytes in PBC are more sensitive to infectious stimuli,
which lead to hypersecretion of proinflammatory cytokines.
The expression of TLR4 in circulating monocytes increased
significantly after stimulation with lipopolysaccharide (LPS)
in PBC patients, and circulating monocytes produce higher
proinflammatory cytokines, including IL-1β, IL-6, IL-8, and
TNF-α169, that can amplify adaptive T-cell–mediated immune
responses against pathogens. At the same time, the level of
RP105, which is involved in the negative regulation of TLR4
signaling, is decreased in PBCmonocytes.168 In the liver of PBC
patients, TLR3 is highly expressed onmacrophages surround-
ing the portal tract and on hepatocytes, and these macro-
phages produce type-I interferon through TLR-3 signaling.169

The complexity of the immune response is illustrated by the
fact that the proinflammatory cytokine IL-6 has been found to
play a role in activation of IL-10 producing Tr1 cells in
suppressing autoimmune tissue inflammation.170,171

Biliary Epithelial Cells
Biliary epithelial cells (BECs) are not just innocent bystanders
in the pathophysiology of PBC.172 First, unlike other epithelial
cells, BECs act as antigen-presenting cells that express HLA
class II173,174 and costimulatory molecules, such as CD80 and
CD86.175,176 After phagocytosing and processing the apopto-
tic BECs, BECs present novel mitochondrial self-peptides in
conjunction with HLA class II.80,176,177 Finally, autoreactive T
cells against 2-OADC infiltrate into the liver,178 and gather
around small bile ducts. Thiswas observed in PBC irrespective
of their serum AMA status.179 These data support the notion
that phagocytosis of apoptotic cells by nonprofessional phag-
ocytesmay contribute to the tissue specificity of autoimmune
diseases. Biliary epithelial cells also contribute to the defense
mechanisms against infectious agents by recognition of
PAMPs via specific membrane TLRs, resulting in the genera-
tion of chemokines that activate both the innate and adaptive
immunity systems. Biliary epithelial cells are unique in
secreting immunoglobulins A of the secretory type (sIgA)
through transcytosis in the biliary lumen, which may consti-
tute organ-specific immune-mediated injury.180,181

Natural Killer Cells
Natural killer cells are mainly involved in defense against
infections and tumors, but also link innate with adaptive
immunity. Several studies indicate that aberrancies in NK-
cell-mediated immune homeostasis can lead to the onset of
autoimmune diseases.182 In 2001, Panasiuket alfirst reported
the increase of NK cell numbers in the peripheral blood of PBC
patients.183 The finding has been confirmed by Chuang and
his colleagues, and it was further demonstrated that NK cells
express higher levels of perforin and decreased cytokine
production in PBC patients compared with healthy con-
trols.184 At the same time, a higher frequency of CD56dim/
CD16pos hepatic NK cells was present within the liver of PBC
patients. Further studies have shown that hepatic NK cells
have cytotoxic activity against autologous biliary epithelial
cells.

Because NK cells have been reported to express CX3CR1
and CXCR3, it has been hypothesized that the higher
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frequency of cytotoxic NK cells found in the liver of PBC is due
to an increased migration of circulating NK cells through
mechanisms that involve both CX3CR1 and CXCR3. In amouse
model, there is a marked suppression of AMA and cytokine
production from autoreactive T cells after in vivo depletion of
NK and natural killer T (NKT) cells.185 The increased infiltra-
tion of cytotoxic NK cells in the liver may reflect the break-
down of NK cell immune tolerance, but further studies are
needed to describe the detailed mechanisms driving the
expansion of autoreactive NK cells.186

Natural Killer T Cells
Natural killer T cells are regulated by self- and nonself-
glycolipid antigens that are presented by the antigen-pre-
sentingmolecule CD1d. This process allows for rapid NKT cell
expression of effector cytokines and chemokines, thereby
modulating both innate and adaptive immune responses. In
PBC, the frequency and absolute number of blood and liver
NKT cells are markedly increased compared with healthy
controls. Moreover, cytotoxic activity and perforin expression
by isolated NKT cells were significantly increased in PBC with
increased IL-8 levels and expression of CD128a (IL-8 receptor)
on NKT cells. In contrast, the levels of interferon-γ (IFN-γ), IL-
6, and IL-8 synthesized by NKT cells were significantly
decreased in PBC when compared with controls.187 In
2008, Chuang et al generated a CD1d(�/ � ) dnTGF-nRII
mice and reported decreased hepatic lymphoid cell infiltra-
tion aswell asmilder cholangitis than that seen in controls.188

CD1d-restricted NKT cells in the liver exhibit increased IFN-γ
production after exposure toα-galactosylceramide. In bothN.
aromaticivorans induced and 2-OA-BSA induced PBC mouse
models, NKT cells are involved in disease exacerbations,
which include signs of portal inflammation, bile duct destruc-
tion, and liver fibrosis.58,189

Adaptive Immunity: Cellular Immunity

Excessive T-Cell Helper Function
An enhanced ratio of Th1 toTh2 cells is an important factor in
the onset of PBC.190,191 Th17cells, a subset of CD4 T cells,
accumulate around damaged bile ducts in liver and in a
mouse model of PBC.192 In IL-2Rα(–/ – ) mice, marked aggre-
gation of IL-17þ cells within portal tracts compared with the
periphery has been demonstrated. Interestingly, CD4þ T cells
from the livers of normal C57BL/6J mice can secrete higher
levels of IL-17 comparedwith those from spleens, indicating a
role of the liver microenvironment in Th17 induction. Finally,
Th17 cells involved in the pathogenesis of various autoim-
mune diseases are also constituents of the periductular
infiltrates in human PBC.193,194 In recent studies, our prelim-
inary data demonstrated that the frequency of T follicular
helper cells are more highly expressed in PBC patients, and
that Tfh accumulates around the damaged bile ducts in liver
tissue.

T-Cell Regulation
CD4 þ CD25þ T regulatory cells (Tregs) play an important
role in themaintenance of peripheral self-tolerance as well as

downregulation of various immune responses.24,25 In PBC
patients, FoxP3þ Tregs can be identified in the lymphoid
infiltrates localized to portal tracts, and significantly lower
proportions of circulating CD4 þ CD25highTregs are observed
in patients and family members.195 In addition, the
dnTGFβRII and IL-2Rα knockout murine models support a
role of Tregs deficiency in loss of immune tolerance. The
selective deficiency of the TGFβ R-signaling pathway exclu-
sively in T lymphocytes accounts for major impairments of
peripheral tolerance as Treg cells depend on TGFβ for their
regulatory activity. The result is the triggering of tissue-
specific autoreactive effector T cells.39 A mouse deficient
for IL-2 receptor α (IL-2Rα), which is highly expressed on
Tregs, developed 100% AMA positivity against PDC-E2, 80%
antinuclear antibody (ANA) positivity, and lymphocyte infil-
tration around the portal tracts associatedwith cholangiocyte
injury.38

In 2009, Zhang et al studied Scurfy (Sf) mice, which have a
mutation in the gene encoding the Foxp3 transcription factor
resulting in a complete abolition of Foxp3þ Tregs. At 3 to
4 weeks of age, 100% of animals manifested high titers of
serum AMA of all isotypes. Furthermore, these mice had
moderate to severe lymphocytic infiltrates surrounding por-
tal areas with evidence of biliary duct damage. These data
illustrate that lacking normal Treg function is a major pre-
disposing feature for breach of tolerance that leads to
PBC.196,197

Other regulatory cells, such as CD8 Tregs have also been
reported to contribute to a significant phenotypic alteration
in PBC patients characterized by increased expression of
CD127 and reduced CD39 compared with normal controls.
Furthermore, in vitro induction of CD8 Tregs by incubation
with IL-10 is significantly reduced in PBC.198 The immuno-
modulatory effects of the tryptophan-catabolizing enzyme
indoleamine-2,3-dioxygenase (IDO) have been studied at a
cellular level and implicated in the pathogenesis of several
complex diseases. Impaired IDO production has been re-
ported and postulated to contribute to the development of
disease pathogenesis in PBC patients.199

Expansion of the Autoreactive T-Cell Pool
Under normal circumstances, lymphocytes are scattered
throughout the liver parenchyma, as well as in the portal
tracts. These lymphocytes belong to several subpopula-
tions.200 T-helper (CD4 þ ) TCR αβþ and CD8þ T cells are
present in portal tracts and around damaged bile ducts,
strongly supporting their role in the development of biliary
damage.201–207 Autoreactive CD4 T cells that specifically
target PDC-E2-self-antigen are present in peripheral blood
and liver. There is a 100- to150-fold increase in the number of
PDC-E2-specific CD4 T cells in the hilar lymph nodes and liver
versus peripheral blood in patientswith PBC.203 TheHLA class
I restricted epitope for CD8 T cells, namely the 159–167 aa
sequence,maps in close vicinity to the epitopes recognized by
CD4 T cells as well as by AMA.59 Notably, the autoepitope for
both CD4 and CD8 T cells overlaps with its B-cell (AMA)
epitope, including the inner lipoyl domain. Similar to CD4
autoreactive T cells, there is a 10-fold higher frequency of
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PDC-E2 159–167 specific CD8 T cells in liver compared with
blood. Moreover, the frequency of precursor of PDC-E2-spe-
cific autoreactive CD8 T cells is significantly higher in early-
rather than late-stage disease.208 The autoreactive CD8 T cells
in PBC produce IFN-γ rather than IL-4/IL-10 cytokines. Autor-
eactive CD8 T cells have also been implicated in hepatocyte
damage seen in autoimmune hepatitis.209

Adaptive Immunity: Humoral Immunity
A high titer of serum AMA can be detected in up to 95% of
patients with PBC. Antimitochondrial antibodies can be de-
tected even before clinical symptoms or biochemical anoma-
lies. However, most studies have shown that there is no
correlation between the level of serum AMA and the severity
of PBC. Antimitochondrial antibody positivity alone also does
not predict the patient’s response to treatment with urso-
deoxycholic acid (UDCA). However, AMA-IgA can be detected
not only in sera, but also in bile, saliva, and urine of patients
with PBC. In one study, AMA-IgA correlates with disease
severity.210 In addition to AMAs, ANAs are detected in nearly
50% of patients with PBC, and their presencemay be clinically
significant.211,212

Although B cells are well known for their antibody pro-
duction, they also participate in antigen presentation, model-
ing of the spleen architecture, and Th1/Th2 polarization of T
cells.213 Specific substrates of B cells can act as negative
regulators and facilitate immune tolerance. In the liver of
PBC patients, the number of infiltrating B cells is higher than
that of PSC patients and normal controls. Moreover, the
proportion of CD19 þ CD69þ activated B cells is markedly
higher in liver than in peripheral blood in PBC, and the
number of AMA-producing cells is five-fold greater in liver
than in PBMCs.214 In 2012, Takahashi et al reported a unique
coronal arrangement of CD38þ cells around the intrahepatic
bile ducts in PBC, but not in controls; therewas an association
with AMA titer and an inverse association with serum γ-
glutamyltranspeptidase levels.215

In a dnTGF-βRII PBC mouse model, anti-CD20 adminis-
tered every 2 weeks ameliorated autoimmune cholangitis if
given early in the disease process.216 In PBC, a regimen of two
doses of 1000 mg rituximab (mouse-human chimeric anti-
CD20 monoclonal antibody) separated by 2 weeks was found
to be safe, but onlymarginally effective in some patients, who
had an incomplete UDCA response.217 In 2-octynoic acid-

Table 3 Novel approaches that may restore immune tolerance in primary biliary cirrhosis

Treatment target Possible mechanisms Treatment efficacy

Traditional

UDCA (13–15 mg/kg/d) Bile acid pool Not clear (involving choleresis,
antiapoptosis, anti-
inflammation)

About 60% efficacy

Nonspecific immunosuppression

Budesonide219,255

Methotrexate and colchicine220

Cyclosporine221

Azathioprine222

Whole activated
immune systems
(autoimmune or
nonspecific
immune)

Immunosuppression Transitory biochemical
response in some patients,
but with side effects

Specific target therapy

Rituximab216,217 Total B cells Depletion B cells Limited efficacy in patients

Ustekinumab226 IL-12/IL-23 Block the signal pathway of IL-
12

In progress (NCT01389973)

NI-0801 CXCR10 (IP-10) Inhibits T-cell migration and
inflammation

In progress (NCT01430429)

CTLA4/immunoglobulin
230

CTLA4 Inhibits T-cell activation In preclinical studies

Novel therapeutic methods

Mesenchymal stem cells234,235 Whole activated
immune systems
and damaged bile
ducts

Potential immunomodulatory
capacity; tissue regeneration
and repair

Pilot data in PBC patients;
significant benefits in
mouse models

Tolerogenic dendritic
cell (tolDCs) vaccine

DC Induce immune tolerance to
PDC

In theoretical stages

Oral tolerance238 Immune system Induce immune tolerance to
PDC

failed

SiRNA or microRNA Key molecular Restore immune tolerance In theoretical stages

Abbreviations: DC, dendritic cell; IL, interleukin; PBC, primary biliary cirrhosis; PDC, pyruvate dehydrogenase complex; UDCA, ursodeoxycholic acid.
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bovine serum albumin (2OA-BSA)-induced mice, treatment
with anti-CD20 and anti-CD79 antibodies led to a higher
number CD4þ and CD8þ T cells around damaged bile ducts in
portal areas, which manifest as more severe cholangitis.218

Adoptive transfer of CD19þ cells from dnTGF-βRII mice into
recombination activating gene-1 (Rag-1)(�/ � ) mice re-
sulted in decreased liver inflammation and bile duct dam-
age.216 Together, these findings suggest that there is a
subclass of B cells that has a regulatory role by producing
IL-10. However, further studies are needed to explore the
functions of B cells in PBC.

Novel Approaches to Restore Immune
Tolerance in Primary Biliary Cirrhosis

Currently, UDCA is the only drug approved by the Food and
Drug Administration to treat PBC patients. Early treatment
with UDCA at a dose of 13 to 15 mg/kg per day can delay the
progression of histological changes, ameliorate long-term
morbidity, and prolong life expectancy. Ursodeoxycholic
acid acts by increasing the hydrophilic properties of the
bile acid pool, producing bicarbonate-rich choleresis, which
protects against hepatocellular damage. However, over 40% of
patients have an incomplete response to UDCA, resulting in
progressive disease necessitating liver transplantation or
ultimately resulting in death from liver-related causes. There-
fore, future studies should focus on the development of novel
approaches that restore the immune tolerance in PBC
(►Table 3).

Unlike other autoimmune diseases, nonspecific immuno-
suppressive medication is not recommended as a first-line
strategy for PBC. But it is sometimes used in patients who fail
to respond toUDCA. In 2000, Angulo et al treated PBC patients
who had an incomplete response to UDCA therapy with
budesonide, a corticosteroid with an extensive first-pass
hepatic metabolism.219 After 1-year treatment, there was a
significant but transitory improvement in serum levels of
total bilirubin, and a significant but marginal improvement in
serum alkaline phosphatase. The Mayo risk score increased
significantly, and there was a significant loss of bone mass of
the lumbar spine. In 2010, Kaplan et al treated PBC patients
who had not responded fully to UDCAwithmethotrexate and
colchicine.220 The result showed that methotrexate and
colchicine significantly improved liver enzyme tests and liver
histology. Others, like cyclosporine,221 azathioprine222 were
also used to treat PBC patients. However, these nonspecific
immunosuppression drugs not only suppressed the underly-
ing autoimmune disease, but also led to global suppression of
the immune system. The results of this approach include side
effects such as increased risk of infection, carcinogenesis, and
osteoporosis. There is a clear need for more specific strategies
to restore immune tolerance to the specific autoantigens
implicated in disease pathology.

Ideally, autoimmune disease therapies would uniquely
target the specific autoreactive lymphocyte populations,
while leaving unperturbed the rest of the immune system.
Primate or humanized monoclonal antibodies against pan-T
cell or B cells as well as leukocyte-specific antigens or soluble

receptors have been used extensively in the treatment of
autoimmune diseases.223 Several antibodies targeting specif-
ic cells or signaling pathways have been also applied in PBC
patients.

In PBC patients, although the role of B cells in the
pathogenesis is not clearly defined, B-cell depletion thera-
py has been shown to be of potential value. The concept of B
cell depletion was first tried in a PBC mice model, Moritoki
et al showed that in younger dominant-negative TGF-βRII
mice aged 4 to 6 weeks, anti-CD20 treatment significantly
alleviated liver inflammation and reduced bile duct dam-
age.216 Rituximab is a mouse-human chimeric anti-CD20
monoclonal antibody designed for B-cell depletion therapy
in humans. It has been approved for the treatment of
lymphoma and certain autoimmune diseases such as rheu-
matoid arthritis. Tsuda et al used rituximab to treat six
patients with PBC who had suboptimal biochemical re-
sponse to UDCA.217 After B-cell depletion, they observed a
reduction in the number of AMA-producing B cells, AMA
titers, serum alkaline phosphatase levels (ALP), and plasma
levels of immunoglobulins (IgA, IgM, and IgG) at week 24.
As the levels of immunoglobulins, AMA titers and ALP
returned to baseline levels at week 36, repeated anti-
CD20 treatment was suggested to maintain the treatment
effect. However, there were two patients who experienced
upper respiratory infection and reactivation of varicella
zoster after the first infusion. Further clinical studies
targeting B cells in PBC patients are warranted.224

Interleukin-12 (IL-12) and its receptors have been identi-
fied as susceptibility genes for PBC, and play a very important
role in the breakdown of immune tolerance, thereby offering
another potential therapeutic target.225 Ustekinumab,226 a
humanmonoclonal antibody directed against IL-12 and IL-23,
is involved in immune regulation and has the potential to
mediate certain autoimmune diseases such as active psoriasis
arthritis.227 A phase II clinical trial (NCT01389973) using
ustekinumab to treat PBC patients is in progress.

CXCL-10 has been shown to play a role in autoimmuni-
ty.228 Plasma and portal IFN-γ-inducible protein-10 (IP-10)
levels were found to be increased in PBC patients compared
with controls.229 NI-0801, an anti-CXCL10 monoclonal anti-
body that inhibits T-cell migration and inflammation, is being
studied in the treatment of PBC patients in a phase II clinical
trial (NCT01430429). Other specific antibody treatments,
such as those targeting CTLA4/immunoglobulin,230,231 are
also in preclinical studies in mouse models, and offer other
potential areas of pharmaceutical development in the treat-
ment of PBC.232

Mesenchymal Stem Cells: Re-establishing Immune
Tolerance
Mesenchymal stem cells (MSCs) have been used as a thera-
peutic strategy for tissue regeneration and repair, and their
potential immunomodulatory capacity, especially in the in-
duction of immune tolerance, has raised significant clinical
interest. Recently, autologous and allogeneic MSCs have been
reported to significantly improve symptoms in patients with
severe autoimmune diseases, such as Crohn disease, multiple

Seminars in Liver Disease Vol. 34 No. 3/2014

Breach of Tolerance: Primary Biliary Cirrhosis L. Wang et al. 309

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 T
ho

m
as

 J
ef

fe
rs

on
 U

ni
ve

rs
ity

, S
co

tt 
M

em
or

ia
l L

ib
ra

ry
, A

IS
R

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



sclerosis, refractory systemic lupus erythematosus, and sys-
temic sclerosis.233

Mesenchymal stem cells have also been used in mouse
models of PBC. In 2011,Wang et al used bonemarrow-derived
mesenchymal stem cells (BM-MSC) in treatment of polyino-
sinic-cytidylic acid poly (I:C) induced C57BL/6 PBC mouse
model.234 The result showed that after 6 weeks of MSC
infusions, serum aminotransferase and autoimmune anti-
bodies declined, and histological examination showed signif-
icant amelioration of monocyte infiltration around bile ducts.
In addition, allogeneic BM-MSC transplantation markedly
increased CD4 þ Foxp3þ regulatory T cells in peripheral
blood as well as lymph nodes. In our pilot studies,235 umbili-
cal cord-derived mesenchymal stem cells (UC-MSCs) were
administered three times at 4-week intervals to seven PBC
patients who were suboptimally treated with UDCA. The
patients were followed for a 48-week period. The result of
this proof of concept study indicated that MSC treatment in
PBC is safe. Fatigue and pruritus were alleviated in most
patients after UC-MSC treatment. There was a significant
decrease in serum alkaline phosphatase and γ-glutamyltrans-
ferase levels at the end of the follow-up period as compared
with baseline. A larger, randomized controlled cohort study is
warranted to confirm the clinical efficacy of UC-MSC
transfusion.

Novel Vaccine Therapies
Tolerogenic dendritic cell (tolDCs) vaccines, an antigen-spe-
cific treatment that only targets the autoreactive inflamma-
tory response, has already been proven effective in
experimental animal models of various autoimmune disor-
ders as well as with in vitro experiments using ex vivo
generated human tolDCs.236 A PDC-E2 specific tolDCs is a
potential strategy for the treatment of PBC.

Induction of oral tolerance by administration of protein
antigens has the potential to induce antigen-specific immu-
nological unresponsiveness (immune tolerance). High doses
of orally fed antigenmay lead to deletion or anergy of Th cells,
whereas low-dose administration leads to induction of trans-
forming growth factor (TGF)-β-secreting regulatory T cells.237

This approach represents a potential means to prevent or
treat autoimmune disease. Suzuki et al administered 5 mg
PDC in gelatin capsules to six PBC patients for 12 months, but
failed to induce oral tolerance.238

Since the discovery of the RNAi pathway, there has been an
increase in interest in the development of RNAi-based thera-
peutics for “undruggable” targets. Undruggable targets are
those pathogenic molecules that cannot be targeted due to
chemical, structural, or accessibility limitations. Using con-
ventional therapy, only �20% of molecules are targetable.
siRNA therapy has the potential to break this barrier, and has
been used in autoimmune mouse models for rheumatoid
arthritis and Sjögren (SjS) syndrome to restore immune
tolerance.239,240 Similarly, siRNAs or microRNA targeting
special genes might be another potential therapeutic method
for the treatment of PBC patients.241,242

The concept of a breach of immune tolerance in autoim-
mune diseasemay change thewaywe think about PBC and its

treatment. In the future, novel therapeutic approaches based
on restoration of immune tolerance will be developed to
maintain disease remission with minimal ongoing treatment
or a drug-free regimen (such as stem cell therapy) rather than
the use of general immunosuppressive agents.243

Summary

In PBC, considerable progress has been made in understand-
ing the basic mechanisms of the breach of tolerance, but our
knowledge is still incomplete.

In most autoimmune diseases, the treatment generally
involves immunosuppression. In PBC, most immunosuppres-
sive agents have proven to be relatively ineffective.244 This
indicates that the pathogenesis of PBC is not simply an over-
reactive immune system directed against a self-antigen, but
more likely involves an imbalance in immune tolerance that is
affected by many different factors. The specific role of these
factors, which may include those that are involved in innate
immunity, and additionally those that are involved in cellular
regulation, such as T regulatory cells, is not completed
elucidated.

Primary biliary cirrhosis, being a chronic liver disease, is
generally characterized by a slow progression but a highly
variable clinical course. The clinical features and natural
history of the disease vary greatly between patients, ranging
from asymptomatic and slowly progressive to symptomatic
and rapidly evolving to decompensated status. However, very
little is known about the relationship between the variable
clinical course of PBC and its immune tolerance state. More-
over, the exact time point of the breach in immune tolerance
is unclear. Whether it occurs in asymptomatic clinical stages
when AMAmay be detected, or only in liver biopsy stage I and
beyond where the disease has progressed to small bile duct
damage needs to be further elaborated.

It is unclear where the breach in tolerance in PBC origi-
nates. Tolerance is regulated by both innate and adaptive
immunity, and PBCmay occur through different mechanisms.
This is illustrated by the fact that some PBC patients are AMA
positive, while others are AMA negative, but patients lacking
AMAs present with similar disease characteristics and pro-
gression as AMA-positive patients. The quality of life and life
expectancy in responders to UDCA treatment are comparable
with the general population. However, the 40% of patients
who are UDCA unresponders exhibit a muchmore aggressive
disease progression that can lead to liver transplantation. The
mechanisms that affect UDCA responsiveness may be a
combination of genetic factors and environmental exposures.

There are other factors that may also play a role in the
breach of immune tolerance in PBC patients. The majority of
the patients are in their sixth decade of life at the time of
diagnosis of PBC. Immunosenescence (aging of the immune
system), which may result in a decline of T- and B-cell
function, may be accompanied by a loss of ability to differen-
tiate “self” and “foreign” antigens and may contribute to the
development of PBC. Finally, further research is needed to
decipher the extent of the involvement of various compo-
nents in the pathogenesis of PBC. Novel approaches that are
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based on an understanding of the detailed mechanisms may
then be developed and used to improve treatment efficacy in
the future.

References
1 KaplanMM, GershwinME. Primary biliary cirrhosis. N Engl J Med

2005;353(12):1261–1273
2 Perricone C, Colafrancesco S, Mazor RD, Soriano A, Agmon-Levin

N, Shoenfeld Y. Autoimmune/inflammatory syndrome induced
by adjuvants (ASIA) 2013: unveiling the pathogenic, clinical and
diagnostic aspects. J Autoimmun 2013;47:1–16

3 Selmi C, Leung PS, Sherr DH, et al. Mechanisms of environmental
influence on human autoimmunity: a National Institute of Envi-
ronmental Health Sciences expert panel workshop. J Autoimmun
2012;39(4):272–284

4 Hirschfield GM, Gershwin ME. The immunobiology and patho-
physiology of primary biliary cirrhosis. Annu Rev Pathol 2013;
8:303–330

5 Wildner G, Kaufmann U. What causes relapses of autoimmune
diseases? The etiological role of autoreactive T cells. Autoimmun
Rev 2013;12(11):1070–1075

6 Mackay IR. Autoimmunity since the 1957 clonal selection theory:
a little acorn to a large oak. Immunol Cell Biol 2008;86(1):67–71

7 Cohn M, Mitchison NA, Paul WE, Silverstein AM, Talmage DW,
Weigert M. Reflections on the clonal-selection theory. Nat Rev
Immunol 2007;7(10):823–830

8 Billingham RE, Brent L, Medawar PB. Actively acquired tolerance
of foreign cells. Nature 1953;172(4379):603–606

9 Pillai S. Rethinking mechanisms of autoimmune pathogenesis. J
Autoimmun 2013;45:97–103

10 Kappler JW, Roehm N, Marrack P. T cell tolerance by clonal
elimination in the thymus. Cell 1987;49(2):273–280

11 Kisielow P, Blüthmann H, Staerz UD, Steinmetz M, von Boehmer
H. Tolerance in T-cell-receptor transgenic mice involves deletion
of nonmature CD4þ8þ thymocytes. Nature 1988;333(6175):
742–746

12 Palmer E. Negative selection—clearing out the bad apples from
the T-cell repertoire. Nat Rev Immunol 2003;3(5):383–391

13 Starr TK, Jameson SC, Hogquist KA. Positive and negative selec-
tion of T cells. Annu Rev Immunol 2003;21:139–176

14 Pugliese A. Central and peripheral autoantigen presentation in
immune tolerance. Immunology 2004;111(2):138–146

15 Van Parijs L, Abbas AK. Homeostasis and self-tolerance in the
immune system: turning lymphocytes off. Science 1998;
280(5361):243–248

16 Walker LS, Abbas AK. The enemy within: keeping self-reactive T
cells at bay in the periphery. Nat Rev Immunol 2002;2(1):11–19

17 Halverson R, Torres RM, Pelanda R. Receptor editing is the main
mechanism of B cell tolerance toward membrane antigens. Nat
Immunol 2004;5(6):645–650

18 Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reactive
bone marrow B cells. J Exp Med 1993;177(4):1009–1020

19 Eisenberg RA. Secondary receptor editing in the generation of
autoimmunity. Autoimmun Rev 2012;11(11):787–789

20 Goodnow CC, Adelstein S, Basten A. The need for central and
peripheral tolerance in the B cell repertoire. Science 1990;
248(4961):1373–1379

21 Guerder S, Picarella DE, Linsley PS, Flavell RA. Costimulator B7-1
confers antigen-presenting-cell function to parenchymal tissue
and in conjunction with tumor necrosis factor alpha leads to
autoimmunity in transgenic mice. Proc Natl Acad Sci U S A 1994;
91(11):5138–5142

22 Weigle WO. Analysis of autoimmunity through experimental
models of thyroiditis and allergic encephalomyelitis. Adv Immu-
nol 1980;30:159–273

23 Pan PY, Ozao J, Zhou Z, Chen SH. Advancements in immune
tolerance. Adv Drug Deliv Rev 2008;60(2):91–105

24 Sakaguchi S. Naturally arising CD4þ regulatory t cells for immu-
nologic self-tolerance and negative control of immune responses.
Annu Rev Immunol 2004;22:531–562

25 Shevach EM. Regulatory T cells in autoimmmunity�. Annu Rev
Immunol 2000;18:423–449

26 Askenasy N. Enhanced killing activity of regulatory T cells ameli-
orates inflammation and autoimmunity. Autoimmun Rev 2013;
12(10):972–975

27 Xiao J, Liu C, Li G, et al. PDCD5 negatively regulates autoimmunity
by upregulating FOXP3(þ) regulatory T cells and suppressing
Th17 and Th1 responses. J Autoimmun 2013;47:34–44

28 Bogdanos DP, Gao B, Gershwin ME. Liver immunology. Compr
Physiol 2013;3(2):567–598

29 Selmi C, Mackay IR, Gershwin ME. The immunological milieu of
the liver. Semin Liver Dis 2007;27(2):129–139

30 Invernizzi P. Liver auto-immunology: the paradox of autoimmu-
nity in a tolerogenic organ. J Autoimmun 2013;46:1–6

31 Tiegs G, Lohse AW. Immune tolerance: what is unique about the
liver. J Autoimmun 2010;34(1):1–6

32 Gianchecchi E, Delfino DV, Fierabracci A. Recent insights into the
role of the PD-1/PD-L1 pathway in immunological tolerance and
autoimmunity. Autoimmun Rev 2013;12(11):1091–1100

33 Avrameas S, Selmi C. Natural autoantibodies in the physiology
and pathophysiology of the immune system. J Autoimmun 2013;
41:46–49

34 Bailey M, Christoforidou Z, Lewis M. Evolution of immune
systems: specificity and autoreactivity. Autoimmun Rev 2013;
12(6):643–647

35 Gershwin ME, Mackay IR, Sturgess A, Coppel RL. Identification
and specificity of a cDNA encoding the 70 kd mitochondrial
antigen recognized in primary biliary cirrhosis. J Immunol
1987;138(10):3525–3531

36 Selmi C, Mackay IR, Gershwin ME. The autoimmunity of primary
biliary cirrhosis and the clonal selection theory. Immunol Cell
Biol 2011;89(1):70–80

37 Duarte-Rey C, Bogdanos D, Yang CY, et al. Primary biliary cirrhosis
and the nuclear pore complex. Autoimmun Rev 2012;11(12):
898–902

38 Wakabayashi K, Lian ZX, Moritoki Y, et al. IL-2 receptor alpha(-/-)
mice and the development of primary biliary cirrhosis. Hepatol-
ogy 2006;44(5):1240–1249

39 Oertelt S, Lian ZX, Cheng CM, et al. Anti-mitochondrial antibodies
and primary biliary cirrhosis in TGF-beta receptor II dominant-
negative mice. J Immunol 2006;177(3):1655–1660

40 Irie J, Wu Y, Wicker LS, et al. NOD.c3c4 congenic mice develop
autoimmune biliary disease that serologically and pathogeneti-
cally models human primary biliary cirrhosis. J Exp Med 2006;
203(5):1209–1219

41 Rose NR, Bona C. Defining criteria for autoimmune diseases
(Witebsky’s postulates revisited). Immunol Today 1993;14(9):
426–430

42 Anaya JM. Common mechanisms of autoimmune diseases (the
autoimmune tautology). Autoimmun Rev 2012;11(11):781–784

43 Reed LJ, Hackert ML. Structure-function relationships in dihy-
drolipoamide acyltransferases. J Biol Chem 1990;265(16):
8971–8974

44 Meda F, Zuin M, Invernizzi P, Vergani D, Selmi C. Serum autoanti-
bodies: a road map for the clinical hepatologist. Autoimmunity
2008;41(1):27–34

45 Gershwin ME, Ansari AA, Mackay IR, et al. Primary biliary
cirrhosis: an orchestrated immune response against epithelial
cells. Immunol Rev 2000;174:210–225

46 Bogdanos DP, SmykDS, Invernizzi P, et al. Infectome: a platform to
trace infectious triggers of autoimmunity. Autoimmun Rev 2013;
12(7):726–740

Seminars in Liver Disease Vol. 34 No. 3/2014

Breach of Tolerance: Primary Biliary Cirrhosis L. Wang et al. 311

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 T
ho

m
as

 J
ef

fe
rs

on
 U

ni
ve

rs
ity

, S
co

tt 
M

em
or

ia
l L

ib
ra

ry
, A

IS
R

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



47 Long SA, Quan C, Van de Water J, et al. Immunoreactivity of
organic mimeotopes of the E2 component of pyruvate dehydro-
genase: connecting xenobiotics with primary biliary cirrhosis. J
Immunol 2001;167(5):2956–2963

48 Long SA, Van de Water J, Gershwin ME. Antimitochondrial anti-
bodies in primary biliary cirrhosis: the role of xenobiotics. Auto-
immun Rev 2002;1(1-2):37–42

49 Ehser J, Holdener M, Christen S, et al. Molecular mimicry rather
than identity breaks T-cell tolerance in the CYP2D6mousemodel
for human autoimmune hepatitis. J Autoimmun 2013;42:39–49

50 Fujiwara K, Yokosuka O. Frequent detection of immunoglobulin
M anti-herpes simplex viral antibody in patients with primary
biliary cirrhosis. Hepatology 2012;56(1):395

51 Xu L, Shen Z, Guo L, et al. Does a betaretrovirus infection trigger
primary biliary cirrhosis? Proc Natl Acad Sci U S A 2003;100(14):
8454–8459

52 Selmi C, Ross SR, Ansari AA, et al. Lack of immunological or
molecular evidence for a role of mouse mammary tumor retrovi-
rus in primary biliary cirrhosis. Gastroenterology 2004;127(2):
493–501

53 Morshed SA, Nishioka M, Saito I, Komiyama K, Moro I. Increased
expression of Epstein-Barr virus in primary biliary cirrhosis
patients. Gastroenterol Jpn 1992;27(6):751–758

54 Uzoegwu PN, Baum H, Williamson J. The occurrence and locali-
zation in trypanosomes and other endo-parasites of an antigen
cross-reacting with mitochondrial antibodies of primary biliary
cirrhosis. Comp Biochem Physiol B 1987;88(4):1181–1189

55 Sakly W, Jeddi M, Ghedira I. Anti-Saccharomyces cerevisiae anti-
bodies in primary biliary cirrhosis. Dig Dis Sci 2008;53(7):
1983–1987

56 Selmi C, De Santis M, Cavaciocchi F, Gershwin ME. Infectious
agents and xenobiotics in the etiologyof primary biliary cirrhosis.
Dis Markers 2010;29(6):287–299

57 Varyani FK, West J, Card TR. An increased risk of urinary tract
infection precedes development of primary biliary cirrhosis. BMC
Gastroenterol 2011;11:95

58 Mattner J, Savage PB, Leung P, et al. Liver autoimmunity triggered
by microbial activation of natural killer T cells. Cell Host Microbe
2008;3(5):304–315

59 Kita H, Matsumura S, He XS, et al. Analysis of TCR antagonism and
molecular mimicry of an HLA-A0201-restricted CTL epitope in
primary biliary cirrhosis. Hepatology 2002;36(4 Pt 1):918–926

60 Ide T, Sata M, Suzuki H, et al. An experimental animal model of
primary biliary cirrhosis induced by lipopolysaccharide and
pyruvate dehydrogenase. Kurume Med J 1996;43(3):185–188

61 Haruta I, Hashimoto E, Shibata N, Kato Y, KobayashiM, Shiratori K.
Lipoteichoic acidmay affect the pathogenesis of PBC-like bile duct
damage and might be involved in systemic multifocal epithelial
inflammations in chronic colitis-harboring TCRalpha-/-xAIM-/-
mice. Autoimmunity 2007;40(5):372–379

62 Tarner IH, Fathman CG. Does our current understanding of the
molecular basis of immune tolerance predict new therapies for
autoimmune disease? Nat Clin Pract Rheumatol 2006;2(9):
491–499

63 Jones DE, Palmer JM, Burt AD, Walker C, Robe AJ, Kirby JA.
Bacterial motif DNA as an adjuvant for the breakdown of immune
self-tolerance to pyruvate dehydrogenase complex. Hepatology
2002;36(3):679–686

64 Agmon-Levin N, Katz BS, Shoenfeld Y. Infection and primary
biliary cirrhosis. Isr Med Assoc J 2009;11(2):112–115

65 Dubel L, Tanaka A, Leung PS, et al. Autoepitope mapping and
reactivity of autoantibodies to the dihydrolipoamide dehydroge-
nase-binding protein (E3BP) and the glycine cleavage proteins in
primary biliary cirrhosis. Hepatology 1999;29(4):1013–1018

66 Selmi C, Gershwin ME. The retroviral myth of primary biliary
cirrhosis: is this (finally) the end of the story? J Hepatol 2009;
51(2):412–413, author reply 414–415

67 Leung PS, Wang J, Naiyanetr P, et al. Environment and primary
biliary cirrhosis: electrophilic drugs and the induction of AMA. J
Autoimmun 2013;41:79–86

68 Leung PS, Quan C, Park O, et al. Immunizationwith a xenobiotic 6-
bromohexanoate bovine serum albumin conjugate induces anti-
mitochondrial antibodies. J Immunol 2003;170(10):5326–5332

69 Leung PS, Rossaro L, Davis PA, et al Acute Liver Failure Study
Group. Antimitochondrial antibodies in acute liver failure: im-
plications for primary biliary cirrhosis. Hepatology 2007;46(5):
1436–1442

70 Naiyanetr P, Butler JD, Meng L, et al. Electrophile-modified lipoic
derivatives of PDC-E2 elicits anti-mitochondrial antibody reac-
tivity. J Autoimmun 2011;37(3):209–216

71 Rieger R, Leung PS, Jeddeloh MR, et al. Identification of 2-non-
ynoic acid, a cosmetic component, as a potential trigger of
primary biliary cirrhosis. J Autoimmun 2006;27(1):7–16

72 Leung PS, Park O, Tsuneyama K, et al. Induction of primary biliary
cirrhosis in guinea pigs following chemical xenobiotic immuni-
zation. J Immunol 2007;179(4):2651–2657

73 Wakabayashi K, Yoshida K, Leung PS, et al. Induction of autoim-
mune cholangitis in non-obese diabetic (NOD).1101 mice follow-
ing a chemical xenobiotic immunization. Clin Exp Immunol 2009;
155(3):577–586

74 Wakabayashi K, Lian ZX, Leung PS, et al. Loss of tolerance in
C57BL/6 mice to the autoantigen E2 subunit of pyruvate dehy-
drogenase by a xenobiotic with ensuing biliary ductular disease.
Hepatology 2008;48(2):531–540

75 Gershwin ME, Selmi C, Worman HJ, et al; USA PBC Epidemiology
Group. Risk factors and comorbidities in primary biliary cirrhosis:
a controlled interview-based study of 1032 patients. Hepatology
2005;42(5):1194–1202

76 PrinceMI, Ducker SJ, James OF. Case-control studies of risk factors
for primary biliary cirrhosis in two United Kingdom populations.
Gut 2010;59(4):508–512

77 Lleo A, Selmi C, Invernizzi P, Podda M, Gershwin ME. The con-
sequences of apoptosis in autoimmunity. J Autoimmun 2008;
31(3):257–262

78 Elliott MR, Ravichandran KS. Clearance of apoptotic cells: im-
plications in health and disease. J Cell Biol 2010;189(7):
1059–1070

79 Clancy RM, Neufing PJ, Zheng P, et al. Impaired clearance of
apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La anti-
bodies in the pathogenesis of congenital heart block. J Clin Invest
2006;116(9):2413–2422

80 Allina J, Hu B, Sullivan DM, et al. T cell targeting and phagocytosis
of apoptotic biliary epithelial cells in primary biliary cirrhosis. J
Autoimmun 2006;27(4):232–241

81 Lleo A, Invernizzi P, Selmi C, et al. Autophagy: highlighting a novel
player in the autoimmunity scenario. J Autoimmun 2007;29(2-
3):61–68

82 Lleo A, Invernizzi P, Mackay IR, Prince H, Zhong RQ, GershwinME.
Etiopathogenesis of primary biliary cirrhosis. World J Gastro-
enterol 2008;14(21):3328–3337

83 Gianchecchi E, Delfino DV, Fierabracci A. Recent insights on the
putative role of autophagy in autoimmune diseases. Autoimmun
Rev 2014;13(3):231–241

84 Padgett KA, Selmi C, Kenny TP, et al. Phylogenetic and immuno-
logical definition of four lipoylated proteins from Novosphin-
gobium aromaticivorans, implications for primary biliary
cirrhosis. J Autoimmun 2005;24(3):209–219

85 Lleo A, Bowlus CL, Yang GX, et al. Biliary apotopes and anti-
mitochondrial antibodies activate innate immune responses in
primary biliary cirrhosis. Hepatology 2010;52(3):987–998

86 Odin JA, Huebert RC, Casciola-Rosen L, LaRusso NF, RosenA. Bcl-2-
dependent oxidation of pyruvate dehydrogenase-E2, a primary
biliary cirrhosis autoantigen, during apoptosis. J Clin Invest 2001;
108(2):223–232

Seminars in Liver Disease Vol. 34 No. 3/2014

Breach of Tolerance: Primary Biliary Cirrhosis L. Wang et al.312

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 T
ho

m
as

 J
ef

fe
rs

on
 U

ni
ve

rs
ity

, S
co

tt 
M

em
or

ia
l L

ib
ra

ry
, A

IS
R

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



87 Sasaki M, Ikeda H, Nakanuma Y. Activation of ATM signaling
pathway is involved in oxidative stress-induced expression of
mito-inhibitory p21WAF1/Cip1 in chronic non-suppurative de-
structive cholangitis in primary biliary cirrhosis: an immunohis-
tochemical study. J Autoimmun 2008;31(1):73–78

88 Lleo A, Selmi C, Invernizzi P, et al. Apotopes and the biliary
specificity of primary biliary cirrhosis. Hepatology 2009;49(3):
871–879

89 Allina J, Stanca CM, Garber J, et al. Anti-CD16 autoantibodies and
delayed phagocytosis of apoptotic cells in primary biliary cirrho-
sis. J Autoimmun 2008;30(4):238–245

90 Parikh-Patel A, Gold E, Mackay IR, Gershwin ME. The geoepi-
demiology of primary biliary cirrhosis: contrasts and compar-
isons with the spectrum of autoimmune diseases. Clin Immunol
1999;91(2):206–218

91 Selmi C, Mayo MJ, Bach N, et al. Primary biliary cirrhosis in
monozygotic and dizygotic twins: genetics, epigenetics, and
environment. Gastroenterology 2004;127(2):485–492

92 Svyryd Y, Hernández-Molina G, Vargas F, Sánchez-Guerrero J,
Segovia DA, Mutchinick OM. X chromosome monosomy in pri-
mary and overlapping autoimmune diseases. Autoimmun Rev
2012;11(5):301–304

93 Kelley J, Trowsdale J. Features of MHC and NK gene clusters.
Transpl Immunol 2005;14(3-4):129–134

94 Invernizzi P, Battezzati PM, Crosignani A, et al. Peculiar HLA
polymorphisms in Italian patients with primary biliary cirrhosis.
J Hepatol 2003;38(4):401–406

95 Donaldson PT, Baragiotta A, Heneghan MA, et al. HLA class II
alleles, genotypes, haplotypes, and amino acids in primary biliary
cirrhosis: a large-scale study. Hepatology 2006;44(3):667–674

96 Donaldson PT. TNF gene polymorphisms in primary biliary
cirrhosis: a critical appraisal. J Hepatol 1999;31(2):366–368

97 Juran BD, Hirschfield GM, Invernizzi P, et al; Italian PBC Genetics
Study Group. Immunochip analyses identify a novel risk locus for
primary biliary cirrhosis at 13q14, multiple independent associ-
ations at four established risk loci and epistasis between 1p31
and 7q32 risk variants. Hum Mol Genet 2012;21(23):5209–5221

98 Liu JZ, Almarri MA, Gaffney DJ, et al; UK Primary Biliary Cirrhosis
(PBC) Consortium; Wellcome Trust Case Control Consortium 3.
Dense fine-mapping study identifies new susceptibility loci for
primary biliary cirrhosis. Nat Genet 2012;44(10):1137–1141

99 Umemura T, Joshita S, Ichijo T, et al; Shinshu PBC Study Group.
Human leukocyte antigen class II molecules confer both suscep-
tibility and progression in Japanese patients with primary biliary
cirrhosis. Hepatology 2012;55(2):506–511

100 Invernizzi P, Ransom M, Raychaudhuri S, et al; Italian PBC
Genetics Study Group. Classical HLA-DRB1 and DPB1 alleles
account for HLA associations with primary biliary cirrhosis.
Genes Immun 2012;13(6):461–468

101 Zhao DT, Liao HY, Zhang X, et al. Human leucocyte antigen alleles
and haplotypes and their associations with antinuclear anti-
bodies features in Chinese patients with primary biliary cirrhosis.
Liver Int 2014;34(2):220–226

102 Mells GF, Kaser A, Karlsen TH. Novel insights into autoimmune
liver diseases provided by genome-wide association studies. J
Autoimmun 2013;46:41–54

103 Liu X, Invernizzi P, Lu Y, et al. Genome-wide meta-analyses
identify three loci associated with primary biliary cirrhosis. Nat
Genet 2010;42(8):658–660

104 Hirschfield GM, Liu X, Xu C, et al. Primary biliary cirrhosis
associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med
2009;360(24):2544–2555

105 Hirschfield GM, Siminovitch KA. Toward themolecular dissection
of primary biliary cirrhosis. Hepatology 2009;50(5):1347–1350

106 Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O’Shea JJ.
Signaling by IL-12 and IL-23 and the immunoregulatory roles of
STAT4. Immunol Rev 2004;202:139–156

107 Tamiya T, Kashiwagi I, Takahashi R, Yasukawa H, Yoshimura A.
Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT
pathways: regulation of T-cell inflammation by SOCS1 and
SOCS3. Arterioscler Thromb Vasc Biol 2011;31(5):980–985

108 HuG, Barnes BJ. IRF-5 is amediator of the death receptor-induced
apoptotic signaling pathway. J Biol Chem 2009;284(5):
2767–2777

109 Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflam-
matory macrophage polarization and TH1-TH17 responses. Nat
Immunol 2011;12(3):231–238

110 Zhang X, Ing S, Fraser A, et al. Follicular helper T cells: new
insights into mechanisms of autoimmune diseases. Ochsner J
2013;13(1):131–139

111 Wang JH, Avitahl N, Cariappa A, et al. Aiolos regulates B cell
activation and maturation to effector state. Immunity 1998;9(4):
543–553

112 Hirschfield GM, Xie G, Lu E, et al. Association of primary biliary
cirrhosis with variants in the CLEC16A, SOCS1, SPIB and
SIAE immunomodulatory genes. Genes Immun 2012;13(4):
328–335

113 Nakamura M, Nishida N, Kawashima M, et al. Genome-wide
association study identifies TNFSF15 and POU2AF1 as suscepti-
bility loci for primary biliary cirrhosis in the Japanese population.
Am J Hum Genet 2012;91(4):721–728

114 Li M, Zheng H, Li T, Gao P, Zhang XL, Liu DW. Cytotoxic T-
lymphocyte associated antigen-4 gene polymorphisms and pri-
mary biliary cirrhosis: a systematic review. J Gastroenterol
Hepatol 2012;27(7):1159–1166

115 Donaldson P, Agarwal K, Craggs A, CraigW, James O, Jones D. HLA
and interleukin 1 gene polymorphisms in primary biliary cirrho-
sis: associations with disease progression and disease suscepti-
bility. Gut 2001;48(3):397–402

116 Vogel A, Strassburg CP, Manns MP. Genetic association of vitamin
D receptor polymorphisms with primary biliary cirrhosis and
autoimmune hepatitis. Hepatology 2002;35(1):126–131

117 Gianchecchi E, Palombi M, Fierabracci A. The putative role of the
C1858T polymorphism of protein tyrosine phosphatase PTPN22
gene in autoimmunity. Autoimmun Rev 2013;12(7):717–725

118 Zheng J, Petersen F, Yu X. The role of PTPN22 in autoimmunity:
learning from mice. Autoimmun Rev 2014;13(3):266–271

119 Zhou VW, Goren A, Bernstein BE. Charting histone modifications
and the functional organization of mammalian genomes. Nat Rev
Genet 2011;12(1):7–18

120 Bogdanos DP, Smyk DS, Rigopoulou EI, et al. Twin studies in
autoimmune disease: genetics, gender and environment. J Auto-
immun 2012;38(2-3):J156–J169

121 Costenbader KH, Gay S, Alarcón-Riquelme ME, Iaccarino L, Doria
A. Genes, epigenetic regulation and environmental factors: which
is the most relevant in developing autoimmune diseases? Auto-
immun Rev 2012;11(8):604–609

122 Katoh H, Zheng P, Liu Y. FOXP3: genetic and epigenetic implica-
tions for autoimmunity. J Autoimmun 2013;41:72–78

123 Lu Q. The critical importance of epigenetics in autoimmunity. J
Autoimmun 2013;41:1–5

124 Luo Y, Wang Y, Wang Q, Xiao R, Lu Q. Systemic sclerosis: genetics
and epigenetics. J Autoimmun 2013;41:161–167

125 Wang Q, Selmi C, Zhou X, et al. Epigenetic considerations and the
clinical reevaluation of the overlap syndrome between primary
biliary cirrhosis and autoimmune hepatitis. J Autoimmun 2013;
41:140–145

126 Higuchi M, Horiuchi T, Kojima T, et al. Analysis of CD40 ligand
genemutations in patients with primary biliary cirrhosis. Scand J
Clin Lab Invest 1998;58(5):429–432

127 Lleo A, Liao J, Invernizzi P, et al. Immunoglobulin M levels
inversely correlate with CD40 ligand promoter methylation in
patients with primary biliary cirrhosis. Hepatology 2012;55(1):
153–160

Seminars in Liver Disease Vol. 34 No. 3/2014

Breach of Tolerance: Primary Biliary Cirrhosis L. Wang et al. 313

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 T
ho

m
as

 J
ef

fe
rs

on
 U

ni
ve

rs
ity

, S
co

tt 
M

em
or

ia
l L

ib
ra

ry
, A

IS
R

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



128 Bianchi I, Lleo A, Gershwin ME, Invernizzi P. The X chromosome
and immune associated genes. J Autoimmun 2012;38(2-3):
J187–J192

129 Borchers AT, Gershwin ME. Sociological differences between
women and men: implications for autoimmunity. Autoimmun
Rev 2012;11(6-7):A413–A421

130 Lee TP, Chiang BL. Sex differences in spontaneous versus induced
animal models of autoimmunity. Autoimmun Rev 2012;11(6-7):
A422–A429

131 Moroni L, Bianchi I, Lleo A. Geoepidemiology, gender and auto-
immune disease. Autoimmun Rev 2012;11(6-7):A386–A392

132 Nussinovitch U, Shoenfeld Y. The role of gender and organ specific
autoimmunity. Autoimmun Rev 2012;11(6-7):A377–A385

133 Oertelt-Prigione S. The influence of sex and gender on the
immune response. Autoimmun Rev 2012;11(6-7):A479–A485

134 Pennell LM, Galligan CL, Fish EN. Sex affects immunity. J Auto-
immun 2012;38(2-3):J282–J291

135 Quintero OL, Amador-Patarroyo MJ, Montoya-Ortiz G, Rojas-
Villarraga A, Anaya JM. Autoimmune disease and gender: plausi-
ble mechanisms for the female predominance of autoimmunity. J
Autoimmun 2012;38(2-3):J109–J119

136 Rogers MA, Levine DA, Blumberg N, Fisher GG, Kabeto M, Langa
KM. Antigenic challenge in the etiology of autoimmune disease in
women. J Autoimmun 2012;38(2-3):J97–J102

137 Selmi C, Brunetta E, Raimondo MG, Meroni PL. The X chromo-
some and the sex ratio of autoimmunity. Autoimmun Rev 2012;
11(6-7):A531–A537

138 Shoenfeld Y, Tincani A, Gershwin ME. Sex gender and autoim-
munity. J Autoimmun 2012;38(2-3):J71–J73

139 Amur S, Parekh A, Mummaneni P. Sex differences and genomics
in autoimmune diseases. J Autoimmun 2012;38(2-3):
J254–J265

140 Mitchell MM, Lleo A, Zammataro L, et al. Epigenetic investigation
of variably X chromosome inactivated genes in monozygotic
female twins discordant for primary biliary cirrhosis. Epigenetics
2011;6(1):95–102

141 Lleo A, Oertelt-Prigione S, Bianchi I, et al. Y chromosome loss in
male patients with primary biliary cirrhosis. J Autoimmun 2013;
41:87–91

142 Podda M, Selmi C, Lleo A, Moroni L, Invernizzi P. The limitations
and hidden gems of the epidemiologyof primary biliary cirrhosis.
J Autoimmun 2013;46:81–87

143 Padgett KA, Lan RY, Leung PC, et al. Primary biliary cirrhosis is
associated with altered hepatic microRNA expression. J Auto-
immun 2009;32(3-4):246–253

144 Qin B, Huang F, Liang Y, Yang Z, Zhong R. Analysis of altered
microRNA expression profiles in peripheral blood mononuclear
cells from patients with primary biliary cirrhosis. J Gastroenterol
Hepatol 2013;28(3):543–550

145 Banales JM, Sáez E, Uriz M, et al. Up-regulation of microRNA 506
leads to decreased Cl-/HCO3- anion exchanger 2 expression in
biliary epithelium of patients with primary biliary cirrhosis.
Hepatology 2012;56(2):687–697

146 Ninomiya M, Kondo Y, Funayama R, et al. Distinct microRNAs
expression profile in primary biliary cirrhosis and evaluation of
miR 505-3p andmiR197-3p as novel biomarkers. PLoS ONE 2013;
8(6):e66086

147 Qian C, Chen SX, Ren CL, Zhong RQ, Deng AM, Qin Q. [Abnormal
expression of miR-let-7b in primary biliary cirrhosis and its
clinical significance]. Zhonghua Gan Zang Bing Za Zhi 2013;
21(7):533–536

148 Selmi C, Invernizzi P, Miozzo M, Podda M, Gershwin ME. Primary
biliary cirrhosis: does X mark the spot? Autoimmun Rev 2004;
3(7-8):493–499

149 Bouman A, Heineman MJ, Faas MM. Sex hormones and the
immune response in humans. Hum Reprod Update 2005;11(4):
411–423

150 Invernizzi P, Miozzo M, Battezzati PM, et al. Frequency of mono-
somy X in women with primary biliary cirrhosis. Lancet 2004;
363(9408):533–535

151 Borchers AT, Naguwa SM, Keen CL, Gershwin ME. The implica-
tions of autoimmunity and pregnancy. J Autoimmun 2010;
34(03):J287–J299

152 Bogdanos D, Pusl T, Rust C, Vergani D, Beuers U. Primary biliary
cirrhosis following Lactobacillus vaccination for recurrent vagi-
nitis. J Hepatol 2008;49(3):466–473

153 Selmi C, Lleo A, Pasini S, Zuin M, Gershwin ME. Innate immunity
and primary biliary cirrhosis. Curr Mol Med 2009;9(1):45–51

154 Kikuchi K, Lian ZX, Yang GX, et al. Bacterial CpG induces hyper-
IgM production in CD27(þ) memory B cells in primary biliary
cirrhosis. Gastroenterology 2005;128(2):304–312

155 Medzhitov R, Janeway CA Jr. Decoding the patterns of self and
nonself by the innate immune system. Science 2002;296(5566):
298–300

156 Mogensen TH. Pathogen recognition and inflammatory signaling
in innate immune defenses. Clin Microbiol Rev 2009;22(2):
240–273 Table of Contents

157 Mao TK, Lian ZX, Selmi C, et al. Altered monocyte responses to
defined TLR ligands in patients with primary biliary cirrhosis.
Hepatology 2005;42(4):802–808

158 Moritoki Y, Lian ZX, Wulff H, et al. AMA production in primary
biliary cirrhosis is promoted by the TLR9 ligand CpG and sup-
pressed by potassium channel blockers. Hepatology 2007;45(2):
314–322

159 Shimoda S, Harada K, Niiro H, et al. Interaction between Toll-like
receptors and natural killer cells in the destruction of bile ducts in
primary biliary cirrhosis. Hepatology 2011;53(4):1270–1281

160 Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic
cells. Annu Rev Immunol 2000;18:767–811

161 Demetris AJ, Sever C, Kakizoe S, Oguma S, Starzl TE, Jaffe R. S100
protein positive dendritic cells in primary biliary cirrhosis and
other chronic inflammatory liver diseases. Relevance to patho-
genesis? Am J Pathol 1989;134(4):741–747

162 Tanimoto K, Akbar SM, Michitaka K, Onji M. Immunohistochemi-
cal localization of antigen presenting cells in liver from patients
with primary biliary cirrhosis; highly restricted distribution of
CD83-positive activated dendritic cells. Pathol Res Pract 1999;
195(3):157–162

163 Akbar SM, YamamotoK,MiyakawaH, et al. Peripheral blood T-cell
responses to pyruvate dehydrogenase complex in primary biliary
cirrhosis: role of antigen-presenting dendritic cells. Eur J Clin
Invest 2001;31(7):639–646

164 Kita H, Lian ZX, Van de Water J, et al. Identification of HLA-A2-
restricted CD8(þ) cytotoxic T cell responses in primary biliary
cirrhosis: T cell activation is augmented by immune complexes
cross-presented by dendritic cells. J Exp Med 2002;195(1):
113–123

165 Hiasa Y, Akbar SM, Abe M, Michitaka K, Horiike N, Onji M.
Dendritic cell subtypes in autoimmune liver diseases; decreased
expression of HLA DR and CD123 on type 2 dendritic cells.
Hepatol Res 2002;22(4):241–249

166 Harada K, Shimoda S, Ikeda H, et al. Significance of periductal
Langerhans cells and biliary epithelial cell-derived macrophage
inflammatory protein-3. α in the pathogenesis of primary biliary
cirrhosis. Liver Int 2011;31(2):245–253

167 Vandenbark AA, Meza-Romero R, Benedek G, et al. A novel
regulatory pathway for autoimmune disease: binding of partial
MHC class II constructs to monocytes reduces CD74 expression
and induces both specific and bystander T-cell tolerance. J Auto-
immun 2013;40:96–110

168 Honda Y, Yamagiwa S,Matsuda Y, TakamuraM, Ichida T, Aoyagi Y.
Altered expression of TLR homolog RP105 on monocytes hyper-
sensitive to LPS in patients with primary biliary cirrhosis. J
Hepatol 2007;47(3):404–411

Seminars in Liver Disease Vol. 34 No. 3/2014

Breach of Tolerance: Primary Biliary Cirrhosis L. Wang et al.314

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 T
ho

m
as

 J
ef

fe
rs

on
 U

ni
ve

rs
ity

, S
co

tt 
M

em
or

ia
l L

ib
ra

ry
, A

IS
R

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



169 Takii Y, Nakamura M, Ito M, et al. Enhanced expression of type I
interferon and toll-like receptor-3 in primary biliary cirrhosis.
Lab Invest 2005;85(7):908–920

170 Jin JO, Han X, Yu Q. Interleukin-6 induces the generation of IL-10-
producing Tr1 cells and suppresses autoimmune tissue inflam-
mation. J Autoimmun 2013;40:28–44

171 Samavedam UK, Kalies K, Scheller J, et al. Recombinant IL-6
treatment protectsmice from organ specific autoimmune disease
by IL-6 classical signalling-dependent IL-1ra induction. J Auto-
immun 2013;40:74–85

172 Selmi C, Meroni PL, Gershwin ME. Primary biliary cirrhosis and
Sjögren’s syndrome: autoimmune epithelitis. J Autoimmun 2012;
39(1-2):34–42

173 Van den Oord JJ, Sciot R, Desmet VJ. Expression of MHC products
by normal and abnormal bile duct epithelium. J Hepatol 1986;
3(3):310–317

174 Ayres RC, Neuberger JM, Shaw J, Joplin R, Adams DH. Intercellular
adhesion molecule-1 and MHC antigens on human intrahepatic
bile duct cells: effect of pro-inflammatory cytokines. Gut 1993;
34(9):1245–1249

175 Leon MP, Bassendine MF, Gibbs P, Thick M, Kirby JA. Immunoge-
nicity of biliary epithelium: study of the adhesive interaction
with lymphocytes. Gastroenterology 1997;112(3):968–977

176 Tsuneyama K, Van de Water J, Leung PS, et al. Abnormal expres-
sion of the E2 component of the pyruvate dehydrogenase com-
plex on the luminal surface of biliary epithelium occurs before
major histocompatibility complex class II and BB1/B7 expression.
Hepatology 1995;21(4):1031–1037

177 Ballardini G,Mirakian R, Bianchi FB, Pisi E, DoniachD, BottazzoGF.
Aberrant expression of HLA-DR antigens on bileduct epithelium
in primary biliary cirrhosis: relevance to pathogenesis. Lancet
1984;2(8410):1009–1013

178 Cha S, Leung PS, GershwinME, Fletcher MP, Ansari AA, Coppel RL.
Combinatorial autoantibodies to dihydrolipoamide acetyltrans-
ferase, the major autoantigen of primary biliary cirrhosis. Proc
Natl Acad Sci U S A 1993;90(6):2527–2531

179 Borchers AT, Shimoda S, Bowlus C, Keen CL, Gershwin ME.
Lymphocyte recruitment and homing to the liver in primary
biliary cirrhosis and primary sclerosing cholangitis. Semin Im-
munopathol 2009;31(3):309–322

180 Sakisaka S, Gondo K, Yoshitake M, et al. Functional differences
between hepatocytes and biliary epithelial cells in handling
polymeric immunoglobulin A2 in humans, rats, and guinea
pigs. Hepatology 1996;24(2):398–406

181 Fukushima N, Nalbandian G, Van De Water J, et al. Characteriza-
tion of recombinant monoclonal IgA anti-PDC-E2 autoantibodies
derived from patients with PBC. Hepatology 2002;36(6):
1383–1392

182 Johansson S, Berg L, Hall H, Höglund P. NK cells: elusive players in
autoimmunity. Trends Immunol 2005;26(11):613–618

183 Panasiuk A, Prokopowicz D, Zak J. Peripheral blood T, B lympho-
cytes and NK cells in primary biliary cirrhosis. Rocz Akad Med
Bialymst 2001;46:231–239

184 Chuang YH, Lian ZX, Tsuneyama K, et al. Increased killing
activity and decreased cytokine production in NK cells in
patients with primary biliary cirrhosis. J Autoimmun 2006;
26(4):232–240

185 Shimoda S, Tsuneyama K, Kikuchi K, et al. The role of natural killer
(NK) and NK T cells in the loss of tolerance in murine primary
biliary cirrhosis. Clin Exp Immunol 2012;168(3):279–284

186 Hudspeth K, Pontarini E, Tentorio P, et al. The role of natural killer
cells in autoimmune liver disease: a comprehensive review. J
Autoimmun 2013;46:55–65

187 Kita H, Naidenko OV, Kronenberg M, et al. Quantitation and
phenotypic analysis of natural killer T cells in primary biliary
cirrhosis using a human CD1d tetramer. Gastroenterology 2002;
123(4):1031–1043

188 Chuang YH, Lian ZX, Yang GX, et al. Natural killer T cells exacer-
bate liver injury in a transforming growth factor beta receptor II
dominant-negative mouse model of primary biliary cirrhosis.
Hepatology 2008;47(2):571–580

189 WuSJ, Yang YH, Tsuneyama K, et al. Innate immunity and primary
biliary cirrhosis: activated invariant natural killer T cells exacer-
bate murine autoimmune cholangitis and fibrosis. Hepatology
2011;53(3):915–925

190 Harada K, Van de Water J, Leung PS, et al. In situ nucleic acid
hybridization of cytokines in primary biliary cirrhosis: predomi-
nance of the Th1 subset. Hepatology 1997;25(4):791–796

191 NaganoT, Yamamoto K,Matsumoto S, et al. Cytokine profile in the
liver of primary biliary cirrhosis. J Clin Immunol 1999;19(6):
422–427

192 Lan RY, Salunga TL, Tsuneyama K, et al. Hepatic IL-17 responses in
human andmurine primary biliary cirrhosis. J Autoimmun 2009;
32(1):43–51

193 Trivedi PJ, AdamsDH.Mucosal immunity in liver autoimmunity: a
comprehensive review. J Autoimmun 2013;46:97–111

194 Fenoglio D, Bernuzzi F, Battaglia F, et al. Th17 and regulatory T
lymphocytes in primary biliary cirrhosis and systemic sclerosis as
models of autoimmune fibrotic diseases. Autoimmun Rev 2012;
12(2):300–304

195 Lan RY, Cheng C, Lian ZX, et al. Liver-targeted and peripheral
blood alterations of regulatory T cells in primary biliary cirrhosis.
Hepatology 2006;43(4):729–737

196 Zhang W, Sharma R, Ju ST, et al. Deficiency in regulatory T cells
results in development of antimitochondrial antibodies and
autoimmune cholangitis. Hepatology 2009;49(2):545–552

197 Mayer CT, Tian L, Hesse C, et al. Anti-CD4 treatment inhibits
autoimmunity in scurfy mice through the attenuation of co-
stimulatory signals. J Autoimmun 2014;50:23–32

198 Bernuzzi F, Fenoglio D, Battaglia F, et al. Phenotypical and
functional alterations of CD8 regulatory T cells in primary biliary
cirrhosis. J Autoimmun 2010;35(3):176–180

199 Oertelt-Prigione S, Mao TK, Selmi C, et al. Impaired indoleamine
2,3-dioxygenase production contributes to the development of
autoimmunity in primary biliary cirrhosis. Autoimmunity 2008;
41(1):92–99

200 Selmi C, Podda M, Gershwin ME. Old and rising stars in the
lymphoid liver. Semin Immunopathol 2009;31(3):279–282

201 Shimoda S, Van de Water J, Ansari A, et al. Identification and
precursor frequency analysis of a common T cell epitope motif in
mitochondrial autoantigens in primary biliary cirrhosis. J Clin
Invest 1998;102(10):1831–1840

202 Shimoda S, Harada K, Niiro H, et al. Biliary epithelial cells and
primary biliary cirrhosis: the role of liver-infiltrating mononu-
clear cells. Hepatology 2008;47(3):958–965

203 Shimoda S, Ishikawa F, Kamihira T, et al. Autoreactive T-cell
responses in primary biliary cirrhosis are proinflammatory
whereas those of controls are regulatory. Gastroenterology
2006;131(2):606–618

204 Shimoda S, Miyakawa H, Nakamura M, et al. CD4 T-cell autoreac-
tivity to the mitochondrial autoantigen PDC-E2 in AMA-negative
primary biliary cirrhosis. J Autoimmun 2008;31(2):110–115

205 Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. HLA
DRB4 0101-restricted immunodominant T cell autoepitope of
pyruvate dehydrogenase complex in primary biliary cirrhosis:
evidence ofmolecular mimicry in human autoimmune diseases. J
Exp Med 1995;181(5):1835–1845

206 Shimoda S, Nakamura M, Ishibashi H, et al. Molecular mimicry of
mitochondrial and nuclear autoantigens in primary biliary cir-
rhosis. Gastroenterology 2003;124(7):1915–1925

207 Shimoda S, NakamuraM, ShigematsuH, et al.Mimicry peptides of
human PDC-E2 163-176 peptide, the immunodominant T-cell
epitope of primary biliary cirrhosis. Hepatology 2000;31(6):
1212–1216

Seminars in Liver Disease Vol. 34 No. 3/2014

Breach of Tolerance: Primary Biliary Cirrhosis L. Wang et al. 315

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 T
ho

m
as

 J
ef

fe
rs

on
 U

ni
ve

rs
ity

, S
co

tt 
M

em
or

ia
l L

ib
ra

ry
, A

IS
R

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



208 Kita H, Matsumura S, He XS, et al. Quantitative and functional
analysis of PDC-E2-specific autoreactive cytotoxic T lymphocytes
in primary biliary cirrhosis. J Clin Invest 2002;109(9):1231–1240

209 Chabot S, Fakhfakh A, Béland K, et al. Mouse liver-specific CD8(þ)
T-cells encounter their cognate antigen and acquire capacity to
destroy target hepatocytes. J Autoimmun 2013;42:19–28

210 Tanaka A, Nezu S, Uegaki S, et al. The clinical significance of IgA
antimitochondrial antibodies in sera and saliva in primary biliary
cirrhosis. Ann N Y Acad Sci 2007;1107:259–270

211 Kim WR, Poterucha JJ, Jorgensen RA, et al. Does antimitochon-
drial antibody status affect response to treatment in patients
with primary biliary cirrhosis? Outcomes of ursodeoxycholic
acid therapy and liver transplantation. Hepatology 1997;26(1):
22–26

212 Invernizzi P, Crosignani A, Battezzati PM, et al. Comparison of the
clinical features and clinical course of antimitochondrial anti-
body-positive and -negative primary biliary cirrhosis. Hepatol-
ogy 1997;25(5):1090–1095

213 Cambridge G, Perry HC, Nogueira L, et al. The effect of B-cell
depletion therapy on serological evidence of B-cell and plasma-
blast activation in patients with rheumatoid arthritis over mul-
tiple cycles of rituximab treatment. J Autoimmun 2014;
50:67–76

214 Moritoki Y, Lian ZX, Ohsugi Y, Ueno Y, Gershwin ME. B cells and
autoimmune liver diseases. Autoimmun Rev 2006;5(7):449–457

215 Takahashi T, Miura T, Nakamura J, et al. Plasma cells and the
chronic nonsuppurative destructive cholangitis of primary bili-
ary cirrhosis. Hepatology 2012;55(3):846–855

216 Moritoki Y, Lian ZX, Lindor K, et al. B-cell depletion with anti-
CD20 ameliorates autoimmune cholangitis but exacerbates colitis
in transforming growth factor-beta receptor II dominant negative
mice. Hepatology 2009;50(6):1893–1903

217 TsudaM,Moritoki Y, Lian ZX, et al. Biochemical and immunologic
effects of rituximab in patients with primary biliary cirrhosis and
an incomplete response to ursodeoxycholic acid. Hepatology
2012;55(2):512–521

218 Dhirapong A, Lleo A, Yang GX, et al. B cell depletion therapy
exacerbates murine primary biliary cirrhosis. Hepatology 2011;
53(2):527–535

219 Angulo P, Jorgensen RA, Keach JC, Dickson ER, Smith C, Lindor KD.
Oral budesonide in the treatment of patients with primary biliary
cirrhosis with a suboptimal response to ursodeoxycholic acid.
Hepatology 2000;31(2):318–323

220 Kaplan MM, Bonder A, Ruthazer R, Bonis PA. Methotrexate in
patientswith primary biliary cirrhosiswho respond incompletely
to treatment with ursodeoxycholic acid. Dig Dis Sci 2010;55(11):
3207–3217

221 Munoz SJ. Cyclosporine in primary biliary cirrhosis. N Engl J Med
1990;323(19):1352

222 Gong Y, Christensen E, Gluud C. Azathioprine for primary biliary
cirrhosis. Cochrane Database Syst Rev 2007;(3):CD006000

223 Wolfraim LA. Treating autoimmune diseases through restoration
of antigen-specific immune tolerance. Arch Immunol Ther Exp
(Warsz) 2006;54(1):1–13

224 Yin YF, Zhang X. B cell depletion in treating primary biliary
cirrhosis: pros and cons. World J Gastroenterol 2012;18(30):
3938–3940

225 Kawata K, Tsuda M, Yang GX, et al. Identification of potential
cytokine pathways for therapeutic intervention in murine pri-
mary biliary cirrhosis. PLoS ONE 2013;8(9):e74225

226 Cingoz O. Ustekinumab. MAbs 2009;1(3):216–221
227 Kavanaugh A, Ritchlin C, Rahman P, et al; PSUMMIT-1 and 2 Study

Groups. Ustekinumab, an anti-IL-12/23 p40 monoclonal anti-
body, inhibits radiographic progression in patients with active
psoriatic arthritis: results of an integrated analysis of radiograph-
ic data from the phase 3, multicentre, randomised, double-blind,
placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann
Rheum Dis 2014;73(6):1000–1006

228 Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P.
Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune dis-
eases. Autoimmun Rev 2014;13(3):272–280

229 Chuang YH, Lian ZX, Cheng CM, et al. Increased levels of chemo-
kine receptor CXCR3 and chemokines IP-10 and MIG in patients
with primary biliary cirrhosis and their first degree relatives. J
Autoimmun 2005;25(2):126–132

230 Dhirapong A, Yang GX, Nadler S, et al. Therapeutic effect of cytotoxic
T lymphocyte antigen 4/immunoglobulin on a murine model of
primary biliary cirrhosis. Hepatology 2013;57(2):708–715

231 Romo-Tena J, Gómez-Martín D, Alcocer-Varela J. CTLA-4 and
autoimmunity: new insights into the dual regulator of tolerance.
Autoimmun Rev 2013;12(12):1171–1176

232 Walker LS. Treg and CTLA-4: two intertwining pathways to
immune tolerance. J Autoimmun 2013;45:49–57

233 Figueroa FE, Carrión F, Villanueva S, Khoury M. Mesenchymal
stem cell treatment for autoimmune diseases: a critical review.
Biol Res 2012;45(3):269–277

234 Wang D, Zhang H, Liang J, et al. Effect of allogeneic bone marrow-
derived mesenchymal stem cells transplantation in a polyI:C-
induced primary biliary cirrhosis mouse model. Clin Exp Med
2011;11(1):25–32

235 Wang L, Li J, Liu H, et al. Pilot study of umbilical cord-derived
mesenchymal stem cell transfusion in patients with primary
biliary cirrhosis. J Gastroenterol Hepatol 2013;28(Suppl 1):85–92

236 Van Brussel I, Lee WP, Rombouts M, et al. Tolerogenic dendritic
cell vaccines to treat autoimmune diseases: can the unattainable
dream turn into reality? Autoimmun Rev 2014;13(2):138–150

237 Weiner HL. Oral tolerance: immune mechanisms and treatment
of autoimmune diseases. Immunol Today 1997;18(7):335–343

238 Suzuki A, Van de Water J, Gershwin ME, Jorgensen R, Angulo P,
Lindor K. Oral tolerance and pyruvate dehydrogenase in patients
with primary biliary cirrhosis. Dev Immunol 2002;9(2):55–61

239 Goudy KS, Annoni A, Naldini L, Roncarolo MG. Manipulating
immune tolerancewithmicro-RNA regulated gene therapy. Front
Microbiol 2011;2:221

240 Pauley KM, Cha S. RNAi therapeutics in autoimmune disease.
Pharmaceuticals (Basel) 2013;6(3):287–294

241 Ando Y, Yang GX, Kenny TP, et al. Overexpression ofmicroRNA-21
is associated with elevated pro-inflammatory cytokines in domi-
nant-negative TGF-β receptor type II mouse. J Autoimmun 2013;
41:111–119

242 Singh RP, Massachi I, Manickavel S, et al. The role of miRNA in
inflammation and autoimmunity. Autoimmun Rev 2013;12(12):
1160–1165

243 Albani S, Koffeman EC, Prakken B. Induction of immune tolerance
in the treatment of rheumatoid arthritis. Nat Rev Rheumatol
2011;7(5):272–281

244 Imam MH, Talwalkar JA, Lindor KD. Clinical management of
autoimmune biliary diseases. J Autoimmun 2013;46:88–96

245 Bogdanos DP, Baum H, Sharma UC, et al. Antibodies against
homologous microbial caseinolytic proteases P characterise pri-
mary biliary cirrhosis. J Hepatol 2002;36(1):14–21

246 Kaplan MM. Novosphingobium aromaticivorans: a potential initi-
ator of primary biliary cirrhosis. Am J Gastroenterol 2004;99(11):
2147–2149

247 GooMJ, Ki MR, Lee HR, et al. Primary biliary cirrhosis, similar to that
in human beings, in a male C57BL/6 mouse infected with Helico-
bacter pylori. Eur J Gastroenterol Hepatol 2008;20(10):1045–1048

248 Bogdanos DP, Baum H, Gunsar F, et al. Extensive homology
between the major immunodominant mitochondrial antigen in
primary biliary cirrhosis and Helicobacter pylori does not lead to
immunological cross-reactivity. Scand J Gastroenterol 2004;
39(10):981–987

249 Bogdanos DP, BaumH, OkamotoM, et al. Primary biliary cirrhosis
is characterized by IgG3 antibodies cross-reactive with the major
mitochondrial autoepitope and its Lactobacillus mimic. Hepatol-
ogy 2005;42(2):458–465

Seminars in Liver Disease Vol. 34 No. 3/2014

Breach of Tolerance: Primary Biliary Cirrhosis L. Wang et al.316

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 T
ho

m
as

 J
ef

fe
rs

on
 U

ni
ve

rs
ity

, S
co

tt 
M

em
or

ia
l L

ib
ra

ry
, A

IS
R

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



250 Berg CP, Kannan TR, Klein R, et al. Mycoplasma antigens as a
possible trigger for the induction of antimitochondrial antibodies
in primary biliary cirrhosis. Liver Int 2009;29(6):797–809

251 BogdanosDP, Pares A, BaumH, et al. Disease-specific cross-reactivity
between mimicking peptides of heat shock protein of Mycobacteri-
um gordonae and dominant epitope of E2 subunit of pyruvate
dehydrogenase is common in Spanish but not British patients
with primary biliary cirrhosis. J Autoimmun 2004;22(4):353–362

252 Bogdanos DP, Koutsoumpas A, Baum H, Vergani D. Borrelia
burgdorferi: a new self-mimicking trigger in primary biliary
cirrhosis. Dig Liver Dis 2006;38(10):781–782, author reply
782–783

253 Zhao J, Zhao S, Zhou G, et al. Altered biliary epithelial cell and
monocyte responses to lipopolysaccharide as a TLR ligand in
patients with primary biliary cirrhosis. Scand J Gastroenterol
2011;46(4):485–494

254 Nakamura M, Ishibashi H, Matsui M, et al. Peripheral B lympho-
cyte repertoire to mitochondrial antigen in primary biliary
cirrhosis—positive correlation between the disease activity and
the frequency of circulating B lymphocytes specific for pyruvate
dehydrogenase complex. Autoimmunity 1995;21(4):253–262

255 Silveira MG, Lindor KD. Obeticholic acid and budesonide for the
treatment of primary biliary cirrhosis. Expert Opin Pharmacother
2014;15(3):365–372

Seminars in Liver Disease Vol. 34 No. 3/2014

Breach of Tolerance: Primary Biliary Cirrhosis L. Wang et al. 317

D
ow

nl
oa

de
d 

by
: I

P
-P

ro
xy

 T
ho

m
as

 J
ef

fe
rs

on
 U

ni
ve

rs
ity

, S
co

tt 
M

em
or

ia
l L

ib
ra

ry
, A

IS
R

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.


	Breach of tolerance: primary biliary cirrhosis.
	Let us know how access to this document benefits you
	Recommended Citation

	tmp.1442886833.pdf.aXqzy

