5-21-2012

RhoA/ROCK Pathway is the Major Molecular Determinant of Basal Tone in Intact Human Internal Anal Sphincter

Satish Rattan
Thomas Jefferson University

Jagmohan Singh
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/gastro_hепfp

Part of the Gastroenterology Commons, and the Hepatology Commons

Let us know how access to this document benefits you

Recommended Citation
Rattan, Satish and Singh, Jagmohan, "RhoA/ROCK Pathway is the Major Molecular Determinant of Basal Tone in Intact Human Internal Anal Sphincter" (2012). Division of Gastroenterology and Hepatology Faculty Papers. Paper 9.
https://jdc.jefferson.edu/gastro_hепfp/9

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Division of Gastroenterology and Hepatology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact JeffersonDigitalCommons@jefferson.edu.
RhoA/ROCK Pathway is the Major Molecular Determinant of Basal Tone in Intact Human Internal Anal Sphincter
Satish Rattan and Jagmohan Singh
Department of Medicine, Division of Gastroenterology and Hepatology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA

Backgrounds & Aims
Knowledge of molecular control mechanisms underlying the basal tone in the intact human IAS is critical for the pathophysiology and rational therapy for debilitating rectoanal motility disorders.

Methods
We determined the effects of ROCK and PKC-selective inhibitors Y 27632 and Gö 6850 (10^{-10} to 10^{-2} M), respectively on the basal tone in the IAS vs. the RSM. We performed Western blot analysis, confocal microscopy and enzymatic activity assay to determine the levels, membrane distribution and enzyme activity of RhoA/ROCKII, PKcs, MYPT1, CPI-17, and MLCG, before and after Y 27632 and Gö 6850.

Results

Conclusions
• RhoA/ROCK are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in the human IAS.
• Therefore, RhoA/ROCK are novel therapeutic targets for a number of rectoanal motility disorders in humans.