2-2019

Efficacy of Combination of Immunotherapies in a Murine in a Murine Squamous Cell Carcinoma Model

E. Correia
Thomas Jefferson University, emily.correia@jefferson.edu

C. Portocarrero
Thomas Jefferson University, Carla.Portocarrero@jefferson.edu

U. Rodeck
Thomas Jefferson University, Ulrich.Rodeck@jefferson.edu

Let us know how access to this document benefits you
Follow this and additional works at: https://jdc.jefferson.edu/si_ctr_2021_phase1
Part of the Dermatology Commons, and the Medical Immunology Commons

Recommended Citation
Efficacy of Combination of Immunotherapies in a Murine Squamous Cell Carcinoma Model

Introduction: Head and neck squamous cell carcinomas (HNSCCs) are a type of neoplasm found in the epithelium of the oral cavity, oropharynx, nasopharynx, larynx, or hypopharynx. Recent evidence has demonstrated that 70-90% of HNSCC are associated with Human Papillomavirus (HPV), particularly strain 16 producing oncogenic proteins E6/E7. Currently, HNSCCs are treated with surgery, chemotherapy, and radiation, however immunotherapy with immune checkpoint (PD-1) blocking agents promises to improve outcomes in HNSCC.

Objective: This study examined the therapeutic effects of dual and triple combination immunotherapies in a mouse model of HPV-associated HNSCC.

Methods: Treatment modalities included a tumor vaccine (attenuated *Listeria monocytogenes* based vaccine encoding HPV16 E6/E7 (AXAL)), an immune checkpoint inhibitor targeting PD1 (RMP1-14) and topical subtherapeutic radiation. Mice were injected subcutaneously with tumor cells expressing HPV16 E6/E7 (TC-1). When tumors were established, mice were vaccinated with AXAL (3 injections) either alone and/or with anti-PD1 and/or with a single dose of radiation. Results: Partial responses were observed in some mice receiving dual combination therapies. Most mice treated with triple immunotherapy revealed complete tumor regression.

Discussion: Combination immunotherapy is effective in the TC-1 HNSCC model system. The results obtained set the stage for investing immune mechanism underpinning treatment-associated tumor regression.

---