Background

- Peritoneal dialysis is currently used by 11% of the global dialysis population with end stage renal disease
- Bacterial peritonitis is a major complication of peritoneal dialysis and is the primary reason for switching from peritoneal dialysis to hemodialysis
- Dosing in patients with peritonitis during automated peritoneal dialysis (APD) is empiric and extrapolated from pharmacokinetic (PK) studies in patients on continuous ambulatory peritoneal dialysis (CAPD)
- It is unclear if this practice would result in vancomycin under-dosing or overdosing in patients on APD

Objectives

Primary Objective
- Characterize the pharmacokinetics of vancomycin in plasma, dialysate, and urine following a single intraperitoneal dose

Secondary Objective
- Explore the safety, tolerability, and feasibility in administering vancomycin during the long dwell period in patients on APD

Methods

Study Design
- Ongoing prospective, open-label, single-center, PK study in peritonitis-negative patients receiving automated peritoneal dialysis
- Single dose vancomycin (20 mg/kg) in 1L of icodextrin solution was administered through the peritoneum and allowed to dwell for a minimum of 15 hours
- Blood for PK was obtained at 0, 6, 12, 18, and 24 hours following the initial drug-dialysate dwell, prior and following each cycle exchange, and at 48, 72, 96, 120, 144, & 168 hours post-dose. Wasted dialysate and urine were obtained and analyzed for vancomycin.
- This study was approved by the Thomas Jefferson University IRB (ClinicalTrials.gov ID: NCT03685747)

Study Schematic

- 15-hour dwell
- 9 hour on-cycler
- Home dialysis
- Dwell time sampling
- End of dwell and post-RF sampling

Study Population

- **Inclusion:** Adult male or females between 18-85 years old and stabilized on a peritoneal dialysis regimen for >3 months prior to study start
- **Exclusion:** Active peritonitis infection, previous intraperitoneal antibiotics or intravenous vancomycin treatment within 2 months, hemoglobin <9 g/dL

Bioanalytical, Pharmacokinetic, and Statistical Analysis

- Plasma vancomycin concentrations were determined using the Roche Cobas c502 assay (Roche Diagnostics, Germany). Dialysate and urine vancomycin concentrations as alternative sample types was verified for accuracy. A non-compartmental analysis was conducted (Phoenix WinNonlin Version 8, Certara) to estimate the pharmacokinetic parameters. Parameters were summarized by means and standard deviations
- Plots were generated on SPSS version 26 (IBM Corp.)

Funding and Disclosures

The authors would like to acknowledge the patients and nurses who participated in this study. Funding was provided internally through the Department of Medicine at Thomas Jefferson University. Edwin Lam is supported by a National Institutes of Health institutional training grant T32GM008562-24

Results

Patient Demographics

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Race</th>
<th>Sex</th>
<th>Weight (kg)</th>
<th>Time on peritoneal dialysis (months)</th>
<th>Vancomycin dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Black</td>
<td>Female</td>
<td>99</td>
<td>12</td>
<td>2000</td>
</tr>
<tr>
<td>42</td>
<td>Asian</td>
<td>Male</td>
<td>73</td>
<td>9</td>
<td>1500</td>
</tr>
</tbody>
</table>

Pharmacokinetic Parameters

<table>
<thead>
<tr>
<th>T_max (hrs)</th>
<th>C_max (mg/L)</th>
<th>AUC_pieri (mL/min/hour)</th>
<th>AUC_30 (mL/min/hour)</th>
<th>CL/F (mL/min)</th>
<th>V/F (L)</th>
<th>T1/2 (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>13.8</td>
<td>34.4</td>
<td>4520</td>
<td>3089</td>
<td>7.3</td>
<td>62.7</td>
</tr>
<tr>
<td>Patient 2</td>
<td>14.9</td>
<td>25.5</td>
<td>4565</td>
<td>2636</td>
<td>5.7</td>
<td>62.8</td>
</tr>
</tbody>
</table>

Dialysate PK parameters following a single IP dose

<table>
<thead>
<tr>
<th>Dwell time (hrs)</th>
<th>Transfer T1/2 (hours)</th>
<th>CL_renal (mL/min)</th>
<th>CL_APD at EOD1 (mL/min)</th>
<th>CL_APD at EOD2 (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>2.2 ±0.2</td>
<td>8.5</td>
<td>10.8</td>
<td>11.0</td>
</tr>
<tr>
<td>Patient 2</td>
<td>2.2 ±0.1</td>
<td>6.0</td>
<td>9.6</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Pharmacokinetic Results

Figure 1. Vancomycin concentration-time profiles of two patients in A) plasma and B) dialysate

Figure 2. Relationship between drug bioavailability and dwell time

Figure 3. End of drug-free dwell concentrations in plasma and dialysate

Conclusions

- Despite the small sample size, this pilot study suggests that the dwell-time has important implications for systemic vancomycin exposure
- Vancomycin pharmacokinetics- when given at doses recommended by the International Society of Peritoneal Dialysis- were not largely altered during rapid exchanges and was well tolerated with no adverse events
- Frequent intraperitoneal doses after the initial dwell may be needed to maintain concentrations in the peritoneum above the minimum inhibitory concentration for *S. aureus* during peritonitis peritoneal dialysis (APD)