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The protective effect of iron chelators in experimental models of intracerebral 

hemorrhage suggests that nonheme iron may contribute to injury to perihematomal cells.  

Therapy with high affinity iron chelators is limited by their toxicity, which may be due in 

part to sequestration of metals in an inaccessible complex.  Transferrin is unique in 

chelating iron with very high affinity while delivering it to cells as needed via receptor-

mediated endocytosis.  However, its efficacy against iron-mediated neuronal injury has 

never been described, and was therefore evaluated in this study using an established cell 

culture model of hemoglobin neurotoxicity.  At concentrations similar to that of CSF 

transferrin (50-100 micrograms/ml), both iron-saturated holotransferrin and 

apotransferrin were nontoxic per se.  Overnight exposure to 3 µM purified human 

hemoglobin in serum-free culture medium resulted in death, as measured by lactate 

dehydrogenase release assay, of about three-quarters of neurons.  Significant increases in 

culture iron, malondialdehyde, protein carbonyls, ferritin and heme oxygenase-1 were 

also observed.  Holotransferrin had no effect on these parameters, but all were attenuated 

by 50-100 micrograms/ml apotransferrin.   The effect of apotransferrin was very similar 

to that of deferoxamine at a concentration that provided equivalent iron binding capacity, 

and was not antagonized by concomitant treatment with holotransferrin.  Transferrin 

receptor-1 expression was localized to neurons and was not altered by hemoglobin or 

transferrin treatment. These results suggest that apotransferrin may mitigate the 

neurotoxicity of hemoglobin after intracerebral hemorrhage.  Increasing its concentration 

in perihematomal tissue may be beneficial.   

 

 

Key Words: intracerebral hemorrhage; iron; oxidative
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1.  Introduction 

 

Hemoglobin is present in millimolar concentrations in an intracerebral hematoma.  

Although most of this hemoglobin appears to remain within intact erythrocytes until they 

are phagocytosed by microglia and macrophages (Wagner and Dwyer, 2004), increased 

nonheme iron staining in perihematomal tissue indicates that at least some is released and 

metabolized locally (Hua et al., 2006; Wu et al., 2003).  Attenuation of tissue edema, 

oxidation, cell death, and behavioral deficits by deferoxamine and other metal chelators 

supports the hypothesis that this iron contributes to the pathogenesis of intracerebral 

hemorrhage (Masuda et al., 2007; Nakamura et al., 2004).   

The primary limitation of effective iron chelator therapy in a clinical setting is 

toxicity, which may be due in part to metal deficiency (Porter and Huehns, 1989).  High 

affinity chelators such as deferoxamine sequester iron and other essential metals in a 

complex that is largely inaccessible to cells.  Although tolerated in patients with systemic 

iron overload, deferoxamine must be given at relatively low doses by continuous 

infusion, and the dose must be rapidly reduced as iron concentrations decline (Kushner et 

al., 2001; Porter and Huehns, 1989). Since tissue iron excess after ICH is highly 

localized, systemic administration may produce toxicity more rapidly than observed 

when treating iron poisoning or transfusional iron overload.  

An alternative approach to exogenous chelator therapy is to enhance endogenous 

iron binding capacity.  Prior studies have demonstrated that hyperexpression of ferritin, 

the primary intracellular iron storage protein, markedly reduces cellular vulnerability to 

hemoglobin and hemin (Balla et al., 1992; Regan et al., 2008).  Sequestration of 

extracellular iron is primarily accomplished by transferrin, a glycoprotein that binds two 

Fe
3+ 

ions with extraordinary affinity (stability constant 10
22

 at neutral pH), thereby 

preventing nonspecific iron transfer (Halliwell and Gutteridge, 1999).  Compared with 

exogenous chelators, transferrin may be less likely to induce toxicity by cell iron 

deprivation.  Iron-saturated holotransferrin is taken up by cells as needed via receptor-

mediated endocytosis (Huebers et al., 1985), with upregulation of its receptor in iron-

deficient cells (Pantopoulos, 2004).  Subsequent acidification of the endosome releases 
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iron, which is then transported into the cytosol by divalent metal transporter-1 (Garrick 

and Garrick, 2009). 

Despite its unique and potentially beneficial iron-chelating properties, the efficacy 

of transferrin in models relevant to hemorrhagic CNS injury has not been reported.  

Binding of iron to transferrin increases the affinity of the complex for transferrin 

receptor-1 (TfR1), which is expressed by most central neurons (Huebers et al., 1985; 

Moos et al., 2007).  If transferrin-bound iron is then transported into neural cells in 

sufficient quantities, any therapeutic benefit of increasing transferrin iron binding 

capacity after intracerebral hemorrhage may be negated.  Consistent with this hypothesis, 

Nakamura et al.(Nakamura et al., 2005) have observed that striatal injection of 

holotransferrin at a concentration exceeding that in serum contributed to striatal edema 

and DNA oxidation, and increased cell iron content.  Moreover, despite an increase in 

nonheme iron, transferrin receptor-1 (TfR1) expression was paradoxically increased after 

experimental ICH  (Wu et al., 2003), although the cellular source of this expression has 

not yet been characterized.  In order to further investigate the effect of transferrin on iron-

mediated toxicity, in the present study we tested the hypothesis that physiologic 

concentrations of transferrin would protect neurons from the iron-dependent 

neurotoxicity of hemoglobin.  

 

 

2. Methods 

2.1 Cell cultures  

 All procedures on animals were conducted in accordance with a protocol 

approved by the Thomas Jefferson University Institutional Animal Care and Use 

Committee.  Mixed cortical cell cultures containing both neurons and glia were prepared 

from B6129 fetal mice at gestational age 14-16 days as previously described (Regan  and 

Choi, 1994).  Two-thirds of the culture medium was replaced on days 5 and 8-9 in vitro 

with minimal essential medium (Invitrogen, Carlsbad, CA, USA) containing 10% equine 

serum (Hyclone, Logan, UT, USA), 2 mM glutamine, and 23 mM glucose. After ten days 
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in vitro this procedure was performed daily.  Cultures were used for experiments at 12-16 

days in vitro. 

 

2.2. Hemoglobin and transferrin exposure 

 On the day prior to the experiment, the serum concentration of all cultures was 

reduced to 3.3% by replacing two-thirds of the medium with serum-free MEM containing 

10 mM glucose (MEM10).  Immediately prior to hemoglobin and transferrin exposure, 

remaining serum was washed out of cultures with MEM10.  They were then treated with 

purified, endotoxin-free hemoglobin (Hemosol, Inc, Etobicoke, CA), holotransferrin, 

and/or apotransferrin (both purchased from Calbiochem/EMD, Gibbstown, NJ, USA) in 

MEM10, and were incubated at 37
o
C in a 5% CO2 atmosphere.   

 

2.3. Cell injury assessment 

At the end of the exposure interval, cultures were examined with phase contrast 

microscopy.  Cell death was then quantified by measurement of lactate dehydrogenase 

(LDH) activity in the culture medium, as previously described (Regan and Rogers, 2003).  

The low LDH activity in sister cultures subjected to medium exchange only was 

subtracted from all values to yield the signal specific for the neurotoxic insult, according 

to the protocol of Koh and Choi (Koh and Choi, 1988).  To facilitate comparisons of 

experiments conducted on cultures from different platings, LDH values were scaled to 

the mean value in sister cultures exposed to NMDA 300 µM for the duration of the 

experiment.  This treatment releases all neuronal LDH in these cultures without injuring 

astrocytes. Since the low micromolar concentrations of hemoglobin that were used in this 

study do not injure glial cells (Chen-Roetling and Regan, 2006), the contribution of 

astrocyte LDH to the total signal is negligible.  

After sampling medium for LDH assay, proteins were precipitated with 4.5% 

trichloroacetic acid.  Lipid peroxidation was quantified by malondialdehyde assay, as 

previously described (Regan et al., 1998).  Protein content was assayed by the BCA 

method (Pierce, Biotechnology, Rockford, IL, USA); malondialdehyde values were 

expressed as nanomoles/milligram protein.  
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 Culture protein oxidation was quantified on additional cultures using the 

Oxyblot
TM

 kit (Millipore, Inc., Billerica, MA, USA).  Cultures were washed free of 

hemoglobin with MEM10, and then were lysed in an ice-cold buffer containing 210 mM 

mannitol, 70 mM sucrose, 5 mM HEPES, 1 mM EDTA, 0.1 % sodium dodecyl sulfate, 

and 0.1 % Triton X-100.   Lysate proteins were protected from in vitro oxidation by 

adding 2-mercaptoethanol to a final concentration of 1%.  Carbonyl groups were 

derivatized to 2, 4-dintrophenylhydrazone (DNP-hydrazone) by reaction with 2, 4-

dinitrophenylhydrazine, following the manufacturer's instructions.  Proteins were then 

separated on a 12% polyacrylamide gel (Ready Gel, Bio-Rad, Hercules, CA, USA) and 

were transferred onto a polyvinylidene difluoride (PVDF) transfer membrane filter 

(Millipore).  Carbonyl groups were detected with rabbit anti-DNP (1:150) followed by 

horseradish peroxidase-conjugated goat anti-rabbit IgG (1:300).  Immunoreactive 

proteins were visualized using Super Signal West Femto Reagent (Pierce) and Kodak Gel 

Logic 2200. 

 

2.4. Immunoblotting 

Cultures were washed and lysed as described for protein oxidation assay.  After 

sonication, centrifugation, and BCA protein assay, samples (30 µg in 30 µl) were diluted 

with 10 µl 4X loading buffer (Tris-Cl 240 mmol/L, β-mercaptoethanol 20%, sodium 

dodecyl sulfate (SDS) 8%, glycerol 40%, and bromophenol blue 0.2%).  Samples for 

heme oxygenase-1, ferritin, and actin immunoblotting were then heated to 95
o
C for 

3 minutes; transferrin receptor-1 (TfR1) samples were incubated for 10 minutes at 37
o
C.  

Proteins were separated on 12% or 7.5% gels and transferred to PVDF membranes as 

described above.  Membranes to be probed with anti-TfR1 were then treated with 100 

mM β-mercaptoethanol, 2% SDS in 62.5 mM tris buffer (pH 6.7) according to the 

protocol of Kaur and Bachhawat to enhance the signal of membrane-bound proteins 

(Kaur and Bachhawat, 2009).  After washing, nonspecific sites of all membranes were 

blocked with 5% non-fat dry milk in a buffer containing 20 mM Tris, 500 mM NaCl, and 

0.1% Tween 20 (pH 7.5) for 1 h at room temperature.  Membranes were then incubated at 

4°C overnight with primary antibodies (rabbit anti-horse spleen ferritin 1:250 dilution, 

Sigma-Aldrich Cat No. F5762, St Louis MO, USA; rabbit anti-heme oxygenase-1, 1: 
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4000 dilution, Assay Designs Cat. No. SPA-895, Ann Arbor, MI, USA; mouse 

monoclonal anti-TfR1, 1:500, Invitrogen; rabbit anti-actin, 1: 1000, Sigma-Aldrich Cat. 

No. A2066).  After washing, membranes were treated with horseradish peroxidase-

conjugated secondary antibody (Pierce, 1:3000).  Immunoreactive proteins were 

visualized as described in Section 2.3. 

 

2.5.  Immunostaining.  Cultures were washed with MEM10 (750 ml x 3) and then were 

fixed in ice-cold 4% paraformaldehyde for one hour.  After TBS wash, cultures 

immunostained with anti-transferrin receptor-1 antibody were placed into antigen 

retrieval buffer (10mM sodium citrate, 0.05% Tween 20, pH 6.0) and heated to 95
o
C for 

30 min in a water bath.  They were then treated serially, at room temperature unless 

otherwise noted,  with: 0.3% Tween 20 in TBS for 10 min, 10% normal goat serum in 

TBS with 0.05% Tween 20 for 1 hour, avidin/biotin blocking solutions for 30 min 

(Vector Laboratories, Burlingame, CA), monoclonal anti-transferrin receptor-1 antibody 

(Invitrogen, 1:100 dilution) overnight at 4ºC, biotinylated anti-mouse IgG (1:200, Vector 

Laboratories) for 30 min, and NeutrAvidin Rhodamine Red-X conjugate (1:400 dilution, 

Invitrogen) for 30 min.  NeuN immunostaining was performed via the same method but 

with omission of the antigen retrieval step, using a 1:100 dilution of anti-NeuN 

(Millipore). 

 

2.6. Enhanced Perl’s Staining.  Cultures were washed with PBS (750 ml x 3) and then 

were fixed with 4% paraformaldehyde for one hour.   After another PBS wash, they were 

treated with Perl’s solution (1:1, 2% HCl and 2% potassium ferrocyanide) for 30 minutes 

at room temperature.  After washout, cultures were then treated with 0.05% 3,3'-

diaminobenzidine (DAB, Sigma-Aldrich) in PBS for 10min, followed by 0.033% H2O2 in 

0.05% DAB in PBS, following a modification of the procedure of Smith et al.(Smith et 

al., 1997).  Staining of 200X images was then quantified with Kodak molecular Imaging 

software, Version 4.0. 
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2.7.  Statistical analysis. Data were analyzed with one-way analysis of variance.  

Differences between groups were assessed with the Bonferroni multiple comparisons test.  

A statistically significant difference was denoted by a P value < 0.05. 

 

 

3. Results 

 

3.1. Apotransferrin attenuates hemoglobin neurotoxicity.    Neurons in this highly-

characterized culture system are easily identified under phase contrast microscopy by 

their large, phase bright cell bodies that form groups and send out extensive processes 

(Fig 1A).  The neuronal identity of these cells has been demonstrated in prior studies by 

their immunoreactivity to both anti-neuron specific enolase (Regan and Panter, 1993) and 

anti-NeuN (Chen-Roetling et al., 2009).  Consistent with prior results, overnight 

treatment with 3 µM hemoglobin produced injury to neurons, without morphologic 

change to the glial monolayer (Fig. 1B).  In initial experiments, the effects of 

apotransferrin and holotransferrin were determined and directly compared with that of the 

iron chelator deferoxamine, which provides robust protection in this model (Regan and 

Rogers, 2003).  A transferrin concentration of 50 µg/ml (0.625 µM) was chosen since it 

approximates that found in rodent cerebrospinal fluid (Moos et al., 1999), which has a 

transferrin concentration 1-2% of that in serum.  Near complete protection was provided 

by apotransferrin, while holotransferrin had no effect (Figs. 1 C-D, 2A).  Deferoxamine 

1.25 µM, which has the same iron binding capacity as 0.625 µM apotransferrin, provided 

very similar neuroprotection.  Apotransferrin and holotransferrin alone were not 

neurotoxic at this concentration, as measured by LDH release assay (Table 1).  

 

3.2. Oxidative injury markers are reduced by apotransferrin.  Malondialdehyde (MDA) 

is a sensitive marker of lipid oxidation by hemoglobin (Regan et al., 1998; Sadrzadeh et 

al., 1987).  The approximately seven-fold increase in MDA produced by hemoglobin 

treatment was largely prevented by apotransferrin or deferoxamine (Fig 2B), while 

holotransferrin had no significant effect.   
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 Iron catalyzes the oxidation of lysine, arginine, proline and threonine on 

vulnerable proteins to carbonyl groups (Stadtman and Levine, 2003), which can be 

derivatized and then detected using specific antibodies.  Consistent with the iron-

dependence of hemoglobin neurotoxicity (Sadrzadeh et al., 1987), overnight incubation 

with hemoglobin increased protein carbonyls in these cultures by 2.4-fold (Fig.3).  This 

increase was completely prevented by either apotransferrin or deferoxamine, but 

holotransferrin had no effect.   

 Heme oxygenase (HO)-1 has an antioxidant response element in its promoter 

region that mediates its induction in an oxidative cellular environment (Tyrrell and Basu-

Modak, 1994); its expression is rapidly increased in glial cells in these mixed cultures by 

heme or hemoglobin (Benvenisti-Zarom et al., 2006).  HO-1 was minimally expressed in 

control cultures subject to medium exchange only (sham), but was increased 14-fold by 

hemoglobin treatment.  About half of this increase was prevented by either apotransferrin 

or deferoxamine (Fig. 4).  The relative increase in ferritin expression after hemoglobin 

treatment was quantitatively similar to that of heme oxygenase.  The latter was also 

reduced by deferoxamine and aprotransferrin, but not by holotransferrin.     

 

3.3. Apotransferrin reduces iron deposition after hemoglobin incubation.  Perl’s staining 

demonstrated significantly increased culture iron after overnight exposure to 3 µM 

hemoglobin, which was most intense in the vicinity of degenerating neuronal cell bodies 

(Fig. 5).  Staining was reduced by 50 µg/ml (0.625 µM) apotransferrin or 1.25 µM 

deferoxamine, but not by 50 µg/ml of holotransferrin. 

 

3.4. Holotransferrin does not antagonize the protective effect of apotransferrin.  CSF 

transferrin is iron-saturated (Moos et al., 1999), so any therapeutic administration of 

apotransferrin would inevitably be accompanied by endogenous holotransferrin.  In order 

to determine if the presence of holotransferrin would alter the beneficial effect of 

apotransferrin, cultures were treated with hemoglobin plus various combinations of 

apotransferrin and holotransferrin, producing total transferrin concentrations of 50 µg/ml 

or 100 µg/ml (Fig. 6).  Neuroprotection was a direct function of the apotransferrin 

concentration and was not influenced by the presence of holotransferrin.  For example, 
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cell death was very similar in cultures treated with hemoglobin plus either 50 µg/ml 

apotransferrin alone or 50 µg/ml apotransferrin plus 50 µg/ml holotransferrin.  Likewise, 

near-identical cell death was observed in cultures receiving 25 µg/ml apotransferrin plus 

25 µg/ml holotransferrin or 25 µg/ml apotransferrin plus 75 µg/ml holotransferrin.  

Significant protection was observed when cultures were treated with as little as 12.5 

µg/ml apotransferrin, combined with 37.5 µg/ml holotransferrin.   

 

3.5. Treatment with hemoglobin and/or transferrin has no effect on transferrin receptor-1 

(TfR1) expression.  TfR1 expression was demonstrated by immunostaining (Fig. 7A-D) 

and Western blot analysis (Fig. 7E).  Consistent with prior observations that central 

neurons but not astrocytes express transferrin receptor-1 (Dickinson and Connor, 1998; 

Moos et al., 1999), immunoreactive cells had the characteristic appearance of neurons in 

this primary culture system (Chen-Roetling et al., 2009), as described in Section 3.1.  

Expression was not significantly altered by treatment with hemoglobin alone, transferrins 

alone, hemoglobin plus transferrins, or hemoglobin plus deferoxamine.     

 

 

4. Discussion 

Although the high affinity of apotransferrin for iron is well-established (Halliwell 

and Gutteridge, 1999), neuronal expression  of transferrin receptor-1 (TfR1) suggested 

that any chelated iron might enter these cells and participate in free radical reactions.  The 

present study is the first to demonstrate that apotransferrin protects central neurons from 

an iron-dependent injury.  This protection was as robust as that of deferoxamine, and was 

not antagonized by iron-saturated holotransferrin.  Moreover, despite persistent TfR1 

expression, apotransferrin significantly attenuated the increase in culture nonheme iron 

observed after hemoglobin treatment.   These results suggest that increasing 

perihematomal apotransferrin may be beneficial after hemorrhagic CNS injuries. Testing 

of apotransferrin in models of neurodegenerative diseases associated with disruption in 

iron homeostasis, such as Alzheimer’s and Parkinson’s disease, may also be indicated 

(Connor et al., 1992; Sayre et al., 2000; Weinreb et al., 2010). 
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Native CSF transferrin is fully saturated with iron (Moos et al., 1999), and 

therefore is unlikely to provide any protection against iron neurotoxicity produced by 

intracranial hemorrhage or other processes.  Serum transferrin in contrast is normally 

only 20-50% iron-saturated.  Immediately after hemorrhage, the iron binding capacity of 

the hematoma should be substantial, and may be sufficient to attenuate if not prevent any 

iron-mediated injury.  However, in contrast with hemoglobin, which is released from 

erythrocytes in a delayed fashion beginning at least a few days after intracerebral 

hemorrhage (Xi et al., 1998), the transferrin concentration would likely decline rapidly as 

it diffuses away from the site of hemorrhage and re-enters the circulation.  Since no 

published data exist on the transferrin concentration in an experimental or clinical 

hematoma over time, a neuroprotective effect of residual serum transferrin cannot be 

excluded.  Iron deposition in tissue surrounding a hematoma in rodents and humans 

nevertheless suggests that it is insufficient per se after ICH (Hardy et al., 1990; Hua et al., 

2006; Wu et al., 2003). 

Extracellular hemoglobin is preferentially taken up by neurons (Lara et al., 2009), 

where its heme moieties are metabolized in a reaction catalyzed by constitutively-

expressed heme oxygenase-2 (Robinson et al., 2009; Wagner et al., 2003).  Compared 

with glial cells, neurons express little ferritin at baseline or in response to iron loading 

(Hansen et al., 1999; Regan et al., 2008; Wu et al., 2003).  These observations, combined 

with the widespread expression of ferroportin, has led to the hypothesis that any excess 

neuronal iron is rapidly exported (Moos and Morgan, 2004).  Iron chelated to either 

deferoxamine or transferrin is detected in vitro by the Prussian Blue reaction that is the 

basis of enhanced Perl's staining (unpublished observations).  If deferoxamine or 

apotransferrin were sequestering iron within neurons or glial cells, it is unlikely that they 

would have any effect on the intensity of iron staining.  The significant reduction in 

Perl’s staining intensity produced by both agents in this study is therefore consistent with 

extracellular sequestration of iron in this model, and the iron export hypothesis.   

In addition to iron scavenging and detoxification, iron chelators may protect cells 

from oxidative injury by increasing expression of hypoxia inducible factor (HIF)-1α via 

inhibition of iron-dependent prolyl hydroxylases, which target it for proteasomal 

degradation (Weinreb et al., 2010).  The HIF-1 transcription factor increases the 
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expression of several proteins that may enhance cellular resistance to oxidative stress 

(Harten et al., 2010).  Although HIF-1 activation by apotransferrin has not been 

described, a contribution of this regulatory mechanism to the neuroprotection observed in 

the present series of experiments cannot be excluded.  However, it is noteworthy that 

both the HO-1 and TfR1 genes are well-characterized HIF-1 targets, but their expression 

was not increased in cultures treated with either apotransferrin or deferoxamine. 

TfR1 expression in most cell types is an inverse function of cell iron, with 

regulation primarily at the post-transcriptional level (Pantopoulos, 2004).  Binding of iron 

regulatory proteins (IRP’s) to iron responsive elements in the 3’ untranslated region of 

TfR1 mRNA increases its stability.  In iron-replete cells, IRP binding activity is 

attenuated and receptor synthesis is thereby reduced.  IRP binding to the 5’ untranslated 

region of ferritin mRNA has the opposite effect, inhibiting translation.  We have 

previously demonstrated that iron regulatory proteins are expressed by these cultures and 

inhibit baseline ferritin expression, which increases rapidly with hemoglobin treatment 

(Regan et al., 2008).  In contrast, the present results demonstrate that neuronal TfR1 

expression is surprisingly unresponsive to rising iron levels, at least in the 16 hour time 

frame of these experiments.  The effect of iron on neuronal TfR1 expression has not been 

intensively investigated.  It is noteworthy that in a rat striatal hemorrhage model, tissue 

iron and TfR1 expression, as assessed by Western blot analysis, were both increased at 

three days (Wu et al., 2003).  Conversely, in iron deficient rats, TfR1 mRNA was not 

increased in central neurons despite reduced brain iron (Moos et al., 1999).  These and 

the present results suggest that standard TfR1 regulation based on feedback from cell iron 

levels may not predominate in rodent central neurons.  Regulation by other mechanisms 

would not be without precedent, having been previously described for differentiating 

erythroid cells (Lok and Ponka, 2000) and monocytes-macrophages (Testa et al., 1989).   

Apotransferrin therapy has never been tested in models of acute ischemic, 

hemorrhagic, or traumatic CNS injury.  In vivo use has been reported in models of renal 

and intestinal ischemic-reperfusion, and significant protection has been demonstrated in 

both (de Vries et al., 2004; Hernandez et al., 1987).  The efficacy of systemic therapy 

after hemorrhagic stroke may be limited by an intact blood-brain barrier.  Although 

transferrin transport through brain capillary endothelial cells has been convincingly 



 13 

demonstrated in vitro (Burdo et al., 2003), in vivo evidence for transcytosis in significant 

quantities is conflicting to date (Moos et al., 2007).  However, the relatively high 

concentration of unsaturated transferrin in serum (1-4 mg/dl) but its absence in CSF 

(Moos et al., 1999) suggests that intravenous administration of apotransferrin would be 

unlikely to increase the iron binding capacity of brain interstitial fluid.   A growing body 

of evidence suggests that minimally invasive aspiration or endoscopic removal of 

intracranial hematomas improves outcome after ICH (Rincon and Mayer, 2010).  Since 

these methods do not completely remove the hematoma, infusion of apotransferrin into 

the cavity may be a useful adjunct that may be less toxic than systemic therapy with 

exogenous chelators.  The feasibility of delivery of a radiolabeled apotransferrin 

conjugate directly to the primate brain via high flow interstitial infusion has already been 

demonstrated (Laske et al., 1997).  Further investigation of this approach in experimental 

models of ICH is warranted.  
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Fig. 1.  Morphologic appearance of cultures treated with hemoglobin alone or with 

transferrins.  Immunofluorescence (A,B) and phase contrast (C-F) photomicrographs of 

cultures 16 hours after the following treatments: A,C) sham medium exchange only; 

neurons (arrows) are easily distinguished from the background glial monolayer by their 

prominent phase-bright cell bodies, which are immunoreactive for NeuN; B,D) 3 µM 

hemoglobin (Hb); most neurons have degenerated to debris, reducing NeuN 

immunoreactivity; E) Hb 3 µM plus apotransferrin 50 µg/ml; morphology of neurons is 

preserved; F) Hb 3 µM plus holotransferrin 50 µg/ml; no protection is apparent.  Scale 

bar = 100µm. 
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Fig. 2.  Apotransferrin but not holotransferrin protects cortical neurons from hemoglobin.  

A) Culture medium LDH activity (± S.E.M, n = 21-25/condition) after 16 hour treatment 

with hemoglobin (Hb) 3 µM alone, with 50 µg/ml (0.625 µM) apotransferrin (Apo) or 

holotransferrin (Holo), or with 1.25 µM deferoxamine (DFO), which has the same iron 

binding capacity as 0.625 µM apotransferrin.  Medium LDH values are scaled to those in 

sister cultures treated with NMDA 300 µM (=100), which releases all neuronal LDH 

without injuring glial cells.  The weak signal in sister cultures subjected to medium 

exchange only (sham) was subtracted from all values to yield the LDH activity associated 

with neurotoxicity.  B) Cultures (10-14/condition) were treated as in A, and were assayed 

for malondialdehyde (MDA) at the end of the exposure period.  ***P < 0.001 v. Hb-

treated cultures, Bonferroni multiple comparisons test. 
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Fig. 3.  Apotransferrin attenuates protein oxidation by hemoglobin.  Immunoblot of 

proteins from cortical cultures 16 hours after treatment with 3 µM hemoglobin (Hb) 

alone, with 50 µg/ml (0.625 µM) apotransferrin or holotransferrin, with 1.25 µM 

deferoxamine (DFO), or medium exchange only (sham), stained with antibody to 

derivatized carbonyl groups.  Bars represent mean lane densities (± S.E.M.) after 

background subtraction.  ***P < 0.001 v. mean signal in Hb alone group, Bonferroni 

multiple comparisons test, n = 3-6 cultures/condition. 
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Fig. 4.  Apotransferrin attenuates ferritin and heme oxygenase-1 expression after 

hemoglobin treatment.  Bars represent mean band density (± S.E.M.) after 16 h treatment 

with 3 µM hemoglobin (Hb) alone or with 50 µg/ml (0.625 µM) apotransferrin or 

holotransferrin, with 1.25 µM deferoxamine (DFO), or medium exchange only (sham).  

Lane order of representative immunoblots stained with antibodies to actin (gel loading 

control), ferritin, or heme oxygenase-1 is the same as bar order.  *P < 0.05, ***P < 0.01, 

***P < 0.001 v. mean signal in corresponding Hb alone group, Bonferroni multiple 

comparisons test, n = 3-5 cultures/condition. 
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Fig. 5. Apotransferrin attenuates iron deposition in hemoglobin-treated cultures.  

Immunofluorescence and bright field photomicrographs of cultures fixed 16 hours after 

the following treatments: A,C) sham medium exchange only; iron staining is limited to 

the glial monolayer, and NeuN-positive neuronal cell bodies (arrows) are Perl’s negative; 

B,D) Hb 3 µM; iron staining in both glial monolayer and degenerating neuronal cell 

bodies is apparent; NeuN immunoreactivity is diminished;  E) Hb 3 µM plus 50 µg/ml  

apotransferrin; F) Hb 3 µM plus 50 µg/ml holotransferrin.  Bars represent mean iron 

staining  (± S.E.M.), normalized to that in Hb-alone condition (= 100).  Deferoxamine 
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(DFO) concentration was 1.25 µM.   *P < 0.05, **P < 0.01, v. mean signal in 

corresponding Hb alone group, ###P < 0.001 v. signal in sham group, Bonferroni 

multiple comparisons test, n = 12-14/condition.  Scale bar = 100µm. 

 

 

Fig. 6.  Holotransferrin does not antagonize the protective effect of apotransferrin.  A) 

Culture medium LDH activity (± S.E.M.) after 16-hour treatment with hemoglobin (Hb) 

3 µM alone, with 50 µg/ml or 100 µg/ml apotransferrin (+ apo) or holotransferrin 

(+holo), or with 50 µg/ml or 100 µg/ml total transferrin containing indicated percentage 

of apotransferrin and balance holotransferrin.  Medium LDH values are scaled to those in 

sister cultures treated with NMDA 300 µM (=100), which releases all neuronal LDH 

without injuring glial cells.  The weak signal in sister cultures subjected to medium 

exchange only was subtracted from all values to yield the LDH activity associated with 

neurotoxicity.  B) Cultures were treated as in A, using 50 µg/ml total transferrin, and 

were assayed for malondialdehyde (MDA) at the end of the exposure period.  Sham 

cultures were subjected to medium exchange only.   *P < 0.05, **P < 0.01, ***P < 0.001 

v. mean signal in corresponding Hb alone group, Bonferroni multiple comparisons test, n 

= 7-12 cultures/condition. 
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Fig. 7.  Transferrin receptor-1 (TfR1) expression is not altered by hemoglobin, transferrin 

or deferoxamine.  Phase contrast (A,C) and fluorescent photomicrographs after anti- 

TfR1 immunostaining (B,D) of sister cultures treated with: A,B) medium exchange 

(sham) only; prominent phase-bright neuronal cell bodies and adjacent processes express 

TfR1; C,D) hemoglobin 3 µM for 16h; degenerating neurons continue to express TfR1.  

E) Bar graph represents mean TfR1 immunoblot band densities (± S.E.M., n = 6-

8/condition) from cultures treated for 16h with hemoglobin (Hb) alone or with 

apotransferrin (+Apo) 50 µg/ml, holotransferrin (+Holo) 50 µg/ml, deferoxamine 

(+DFO) 1.25 µM, or with same concentrations of apotransferrin (Apo) or holotransferrin 

(Holo) alone.  Band order of representative immunoblot is the same as bar order.  P > 

0.05 for all conditions v. sham or Hb alone, Bonferroni multiple comparisons test.  Scale 

bar = 100µm. 
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