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ART ICLE Open Ac ce s s

Aberrant ARID5B expression and its
association with Ikaros dysfunction in acute
lymphoblastic leukemia
Zheng Ge1,2, Qi Han1,2, Yan Gu1,2, Qinyu Ge3, Jinlong Ma1,2, Justin Sloane4,5, Guofeng Gao6, Kimberly J. Payne2,7,
Laszlo Szekely2,8, Chunhua Song2,5 and Sinisa Dovat2,5

Abstract
Mutations and single nucleotide polymorphisms of AT-rich interactive domain-containing protein 5B (ARID5B) are
involved in the oncogenesis of acute lymphoblastic leukemia (ALL) and treatment outcomes. However, ARID5B
expression and clinical significance in ALL remain unclear. We found ARID5B is significantly down-regulated in ALL
compared to healthy bone marrow controls. ARID5B also interacts with PHD finger protein 2 (PHF2). Low expression of
ARID5B (ARID5Blow) or ARID5B and PHF2 (ARID5BlowPHF2low) is correlated with the markers of cell proliferation and poor
prognosis in ALL patients. Ikaros directly regulates ARID5B expression in ALL. Restoring Ikaros function by Casein Kinase
II inhibition also promotes ARID5B expression through recruitment of trimethylation of lysine 4 on histone H3
(H3K4me3) at its promoter region. In summary, our data show that aberrant expression of ARID5B and PHF2 is related
to leukemic cell proliferation and several poor prognostic markers. Our data indicate ARID5Blow expression, particularly
ARID5BlowPHF2low expression, is linked to Ikaros dysfunction and involved in the oncogenic effect of high-risk ALL,
which may represent a high-risk subgroup of ALL.

Introduction
The complex of AT-rich interactive domain-containing

protein 5B (ARID5B) formed with PHD finger protein 2
(PHF2) induces the demethylation of lysine 9 di-
methylation on histone H3 (H3K9me2) to activate the
transcription of the target genes1,2. ARID5B is widely
expressed throughout the human body. However ARID5B
dysfunction appears to be closely linked with leukemia2–
10. ARID5B mutations /SNPs (single nucleotide poly-
morphisms) are reported to be involved in the oncogen-
esis of acute lymphoblastic leukemia (ALL) and treatment

outcome3–10. Reports also showed that ARID5B knock-
down impairs cell cycling by up-regulating p21, and
contributes to methotrexate (MTX) and 6-
mercaptopurine (6-MP) resistance and eventual
relapse3–10. We observed that PHF2 expression is down-
regulated in ALL cells. Until now, the clinical significance
of ARID5B expression has not been determined in ALL
patients.
Ikaros, the product of the IKZF1 gene, is not only an

essential transcription factor for lymphocyte development
but also a key suppressor in leukemogenesis11,12. The
profile of Ikaros’ global genomic binding has been iden-
tified in ALL cells13–16. Ikaros binding sites are observed
at the ARID5B promoter using ChIP-seq. We reported
that Casein Kinase II (CK2) inhibition could restore the
leukemia suppressor activity of Ikaros and CK2 inhibitors
are the activator of the Ikaros function12–15. We demon-
strated that once activated, Ikaros regulates the expression
of gene targets by histone modification mechanism, and
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that it can induce transcription activation of its target
genes by recruitment of H3K4me3 in ALL13–17. Here, we
studied ARID5B expression in patients with ALL and
discovered that ARID5Blow expression is linked to the
markers of leukemia cell proliferation and that ARID5-
BlowPHF2low expression is possibly a poor prognostic
indicator in patients with ALL. We also show that
ARID5Blow expression is closely related with IKZF1 gene
deletion in B-ALL. Our data manifest that Ikaros directly
modulates ARID5B expression and that restoring Ikaros
function in ALL cells from patients promotes ARID5B
expression through the acquisition of H3K4me3. Our
results identify the oncogenic effects of the ARID5-
BlowPHF2low expression pattern and its association with
Ikaros dysfunction, which may reveal a novel high-risk
subgroup of ALL.

Results
Laboratory characteristics in patients with low ARID5B
expression
The mRNA level of ARID5B in the adult ALL patients’

bone marrow samples was significantly lower than those
in normals (Fig. 1). Similarly, the cohort studies in B-cell
ALL (B-ALL) and T-cell ALL (T-ALL) (Fig. S1) showed
that ARID5B expression in mRNA levels was significantly
lower than that in B cells from healthy controls (Fig. S1).
The laboratory features were compared in patients with
B-ALL by dividing them into two groups: high ARID5B
mRNA levels (ARID5Bhigh) or low ARID5B mRNA levels
(ARID5Blow) (Table 1 and Table S1). A significantly higher
median percentage of BM blasts (90.0% vs. 84.6%, P=
0.037) and a significantly higher percentage of cases
positive for CD34 (CD34+), the stem cell marker (88.8%
vs. 37.5%, P= 0.000) or CD33 (CD33+), the myeloid
marker (48.5% vs. 25.0%, P= 0.046) were observed in
patients with low ARID5B mRNA level compared to that
of high level. Similarly, low ARID5B mRNA level in

patients was correlated with a higher frequency of cases
positive for expression of Ikaros isoform 6 (IK6+), the
gene product of the most common IKZF1 deletion iso-
form (42.5% vs. 20.0%, P= 0.042), and also a lower
median hemoglobin (HGB) and platelet (PLT) count
compared to patients with high ARID5B expression
(Table S1). We discovered that B-ALL patients with low
ARID5B expression represented a cohort with a sig-
nificantly higher percentage of those requiring more than
4 weeks to reach complete remission (CR), a poor prog-
nostic indicator in ALL, (51.4% vs. 16.0%, P= 0.002), as
compared to that with high ARID5B expression (Table
S1). However, among T-ALL patients, the low and high
ARID5B expression groups did not show significantly
different representation in the patient cohort (data not
shown).

Correlation of ARID5BlowPHF2low expression with clinical
features in B-ALL
ARID5B and PHF2 interact with one another1,2. We

found that ARID5B mRNA levels were positively corre-
lated with PHF2 expression in the microarray analysis of
B-ALL and T-All cohort studies (Fig. S2). We analyzed
the co-occurrence of low-level ARID5B and low-level
PHF2 expression (ARID5BlowPHF2low) and its association
with clinical features (Table S2). ARID5BlowPHF2low

expression was correlated to a higher percentage of cases
with splenomegaly (50.0% vs. 22.9%, P= 0.008) and a
lower PLT count (109/L) (32.0 vs. 58.5, P= 0.020) when
compared to patients that were non-ARID5BlowPHF2low

(Table S2). Moreover, the percentage of bone marrow
blasts, a direct marker of high leukemic cell proliferation,
showed significantly higher in ARID5BlowPHF2low than
that in none-ARID5BlowPHF2low(91.2% vs. 82.4%, P=
0.000), and multivariate analyses confirmed this result
(HR 0.005, 95% CI [0.000, 0.742]; P= 0.038) (Table 1).
We observed the correlation between ARID5BlowPH-

F2low expression and several poor prognostic markers. A
higher percentage of the ARID5BlowPHF2low cases were
positive for CD34 (88.2% vs. 55.6%, P= 0.000) or CD33
(50.9% vs. 28.6%, P= 0.036). Importantly, the low
expression cohort also showed a significantly higher fre-
quency of Ik6+ cases (49.3% vs. 15.8%, P= 0.001), and a
substantially higher percentage of patients with a CR
time ≥ 4 weeks when compared to the none-ARID5-
BlowPHF2low expression cohort and confirmed by multi-
variable analysis (Table 1).
We looked over the relationship between ARID5B

expression and survival. No significant differences were
identified in the overall survival (OS) of the patients with
ARID5Blow or ARID5BlowPHF2low expression as compared
to those in the ARID5Bhigh or none-ARID5BlowPHF2low

cohorts, respectively (Fig. S3 and Fig. S4). However, we
did observe a trend towards a shortened relapse-free

Fig. 1 ARID5B expression in ALL. ARID5B expression in B-ALL (N=
123) and T-ALL (n= 57) and normal bone marrow controls (n= 19).
***p < 0.001
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survival (RFS) in patients with ARID5Blow expression,
especially the ARID5BlowPHF2low cohort, compared to
those with ARID5Bhigh or non-ARID5BlowPHF2low

expression, respectively (Fig. S3 and Fig. S4).

The ARID5B expression is regulated by Ikaros in ALL
To understand the underlying mechanism of ARID5B

low expression in ALL, we studied Ikaros binding sites
present in the ARID5B promoter region by ChIP-seq
assay, in Nalm6 (Fig. 2a) and primary B-ALL cells (Fig
S5)13,14. qChIP assay confirmed Ikaros recruitment at
ARID5B promoter in the leukemia cell lines (Fig. 2b) and
primary cells (Fig. 2c). These results suggest Ikaros has a

direct regulation on ARID5B transcription. We further
showed that Ikaros increases promoter activity of ARID5B
using the luciferase reporter assay (Fig. 3a). Ikaros trans-
duction of Nalm6 and CEM cells results in the significant
increase of ARID5B expression (Fig. 3b). Conversely,
efficient Ikaros knockdown significantly decreased
ARID5B mRNA level in both of these cell lines (Fig. 3c).

Association of IKZF1 deletion with ARID5B low expression
in B-ALL patients
Microarray analysis in B-ALL and T-ALL cohorts18–20

showed the positive correlation of IKZF1 mRNA levels
with ARID5B expression (Fig. S6). A significant ARID5B

Table 1 Significant correlation of ARID5BlowPHF2low expression with high-risk markers in B-ALL

Characteristics ARID5BlowPHF2low non-ARID5BlowPHF2low Univariate analyses (Chi-

Square Tests)

Multivariate analyses

(Multivariate Cox model)

P value P value HR(95% CI)

IKZF1 deletion (IK6 expressing) (%) 49.3 15.8 0.001 0.001 0.062 (0.013–0.298)

Blasts (%) median (range) bone

marrow

91.2 (59.0–100.0) 82.4 (28.0–98.0) 0.000 0.038 0.005 (0.000–0.742)

Extramedullary infiltration (%) spleen 50.0 22.9 0.008 0.964 1.032 (0.264–4.029)

Stem cell marker CD34+ (%) 88.2 55.6 0.000 0.135 0.370 (0.100–1.362)

Myeloid marker CD33+ (%) 50.9 28.6 0.036 0.711 1.307 (0.317–5.381)

Time to CR after treatment is >

4 weeks (%)

53.0 21.2 0.003 0.002 0.132 (0.036–0.478)

Fig. 2 Ikaros binding sites at ARID5B promoter in B-ALL cells were determined by ChIP-seq (a). b, c Ikaros binding at ARID5B promoter was
validated by qChIP assay in b ALL cell lines and (c) primary ALL cells. Graphed data are the mean ± SD of triplicates representative of one of 3
independent experiments (a, b) or 3 patient samples (c). ***p < 0.001
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low expression was observed in B-ALL patients that were
IK6+ (0.3153 ± 0.0938 vs. 1.2052 ± 0.58441, P= 0.02439)
(Fig. 3d), which is consistent with our finding that the
ARID5Blow cohort has a significantly higher percentage of

IK6+ cases in B-ALL (Table S1). These data reveal the
contribution of the IKZF1 genetic defects to low ARID5B
expression in B-ALL patients.

Fig. 3 Ikaros induces ARID5B expression in ALL. a The activity of the ARID5B promoter was assessed with transfection of Ikaros or control vector in
HEK293 cells with or without the CK2 inhibitor, CX-4945, by luciferase reporter assay; (b) Nalm6 and CEM cells were transduced to express Ikaros (Mig-
Ikaros) or with empty vector (Mig vector) and assessed by qPCR for expression of ARID5B. Graphed indicates the relative ARID5B expression; (c) Nalm6
and CEM cells were treated with IKZF1 siRNA (si-IKZF1) or control siRNA (siCTL) and assessed by qPCR for expression of ARID5B. Graphed is the relative
expression of ARID5B; (d) Patients that were positive (n= 39) vs. negative (n= 68) for Ik6, the expressed gene product of the IKZF1 deletion, were
assessed by qPCR for expression of ARID5B. The ARID5B expression in a–c expresses as the mean ± SD of triplicates representative of one of 3
independent experiments. *p < 0.05, ***p < 0.01
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CK2 inhibitor CX-4945 promotes ARID5B transcription by
enhancing Ikaros activity
Our previous studies show that the CK2 inhibitor, CX-

4945, can restore Ikaros’ tumor suppressor activity13. CX-
4945 treatment further improves Ikaros-mediated
increase of ARID5B promoter activity when compared

to that without treatment (Fig. 3a). Using qPCR, we
showed that CX-4945 treatment in Nalm6 and CEM cells
enhances ARID5B mRNA level in a dose-dependent
manner (Fig. 4a). Western blot data showed that CX-
4945 treatment also increases the ARID5B protein level as
compared to that of DMSO control in the two cell lines

Fig. 4 Ikaros dependence on CX-4945 promoting ARID5B expression. a Treatment with CX-4945 induces an increase in ARID5B expression in
Nalm6 and CEM cells; ***p < 0.001 compared to DMSO control. b Protein levels of ARID5B as evaluated by Western blot in the indicated cells that
were incubated with different doses (10 μM, 20 μM) of CX-4945 or DMSO control (0) for 48 h. Lamin B was used for loading control. c Effect of Ikaros
shRNA knockdown on the CX-4945-induced promotion of ARID5B expression. ***p < 0.01 compared to siCTL+ CX4945 group; (d) CX-4945 promotes
ARID5B expression in primary ALL cells; ***p < 0.001 compared to the control. Graphed data in A-D represents the mean+/– SD of triplicates
representative of one of 3 independent experiments
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(Fig. 4b). Moreover, Ikaros knockdown significantly
attenuates CX-4945-induced increases in the ARID5B
mRNA level in ALL cell lines (Fig. 4c). The effect of CX-
4945 on ARID5B mRNA levels is also observed in primary
B-/T-ALL cells (Fig. 4d). These results indicate that CX-
4945 promotes ARID5B transcription by increasing Ikaros
function as tumor suppressor in ALL.

Increasing Ikaros activity by CK2-inhibition promotes
H3K4me3 occupancy at the ARID5B promoter
Ikaros regulates target gene expression through histone

modification mechanism14. To explored if Ikaros reg-
ulates ARID5B expression also via epigenetic mechanisms,
we performed ChIP assays to amplify the resulting
ARID5B promoter sequences. Our data show that the
Ikaros binding to the ARID5B promoter is significantly
increased upon CX-4945 treatment not only in Nalm6
and CEM cells (Fig. 5a), but also in primary B-/T-ALL
cells (Fig. 5b). CX-4945 treatment also results in the
increases of H3K4me3 recruitment at the ARID5B pro-
moter in the cell lines (Fig. 5c), and in the primary cells
(Fig. 5d).

Discussion
The ARID5B gene product is widely expressed in the

human tissue and has been linked to leukemia2–10,21–25.
ARID5B mutations /SNPs are linked to the ALL devel-
opment and adverse treatment outcomes4. Aberrant
ARID5B expression halts B-lymphocyte maturation in the
developing fetus and contributes to leukemogenesis21.
However, the mRNA level of ARID5B in primary ALL and
its association with clinical findings have not been
reported. Our findings show the correlation of ARID5B
expression with a difference in clinical features in ALL.
We previously showed that PHF2 is down-regulated in
ALL26. We saw that ARID5B and PHF2 expression were
positively correlated in ALL and that ARID5BlowPHF2low

expression is associated with leukemic cell proliferation
(high bone marrow blasts and splenomegaly, low HGB
and PLT), as well as a poor prognosis (high percentage of
Ik6+, ≥4 weeks to reach CR upon treatment, and CD33+)
in B-ALL patients. Next, we showed that Ik6 expression,
the most common IKZF1 deletion is significantly linked to
ARID5B low expression in B-ALL. We further demon-
strated that ARID5B is a direct gene target of Ikaros, the

Fig. 5 Chromatin switches upon CX-4945 treatment. Indicated cell lines and primary cells were treated with 10 μM CX-4945 or with DMSO control
and evaluated by qChIP for Ikaros binding (a, b) and the H3K4me3 histone mark (c, d) at the ARID5B promoter in the indicated cells. ***p < 0.001
compared to WT-anti-Ikaros control. Graphed data in a–d are the mean+/– SD of triplicates representative of one of 3 independent experiments or 3
patient samples
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IKZF1 gene product, in ALL. Finally, our study identifies a
potential high-risk subgroup of ALL with ARID5BlowPH-
F2low expression and reveals the oncogenic effect of
ARID5BlowPHF2low expression and its correlation with
Ikaros dysfunction in ALL.
There have been many reports that SNPs affect gene

expression. In addition to reports that ARID5B SNPs
increase the risk of ALL, several reports also indicate that
both ARID5B and IKZF1 SNPs are positively associated
with ALL4–9,22–25,27–29. However, no reports are involved
in exploring the relationship between ARID5B SNPs and
ARID5B expression. Our data reveal that the IKZF1
genetic defect (Ik6 expression) is associated with ARID5B
low expression and that Ikaros directly promotes ARID5B
expression. This information also suggests that the asso-
ciation of ARID5B and IKZF1 SNPs with an increased risk
of ALL may result from the low expression of ARID5B
and IKZF1, although the effects of ARID5B and IKZF1
SNPs on their expression need to be further investigated.
Transcriptional and epigenetic abnormalities are key

factors in oncogenesis. The ARID5B-PHF2 complex is
involved in the activation of tumor suppressors, such as
p53, through its effect on methylation30. Our data shows
that the correlation between ARID5BlowPHF2low expres-
sion and leukemic cell proliferation, with poor prognostic
markers in B-ALL. We also found that restoring Ikaros
function by CK2 inhibition could increase ARID5B and
PHF2 expression, as well as increase H3K4me3 binding at
the promoter region. This data is the first to indicate the
regulatory mechanism underlying ARID5B gene expres-
sion. It also suggests that targeting transcriptional and
epigenetic abnormalities is a potential strategy for devel-
oping effective new therapeutics for ALL.
In conclusion, we show that ARID5BlowPHF2low

expression is correlated with markers for leukemic cell
proliferation and poor outcome. Our results further reveal
the effects of ARID5BlowPHF2low expression on ALL
oncogenesis and identify a possible subgroup of high-risk
ALL with characterization of both ARID5BlowPHF2low

expression and Ikaros dysfunction.

Materials and methods
Patient samples and therapies
The 164 bone marrow samples were obtained from

patients with ALL, diagnosed at our institutes between
2008 and 2016. All of the patients (107 B-ALL and 57 T-
ALL), ages 12–77 years old, were recruited in the cohort
study, with diagnoses based on the 2008 revision of the
WHO Diagnosis and Classification of ALL. As controls,
19 normal bone marrow samples were used. Following the
Declaration of Helsinki, the informed consent was docu-
mented by all patients before recruitment.
As previously published (CALLG2008)31, patients

received either VDCLP therapy, which consists of

Vincristine (V), Daunorubicin (D), Cyclophosphamide
(C), L- Asparaginase (L), and Prednisone (P), or CAT
therapy, which contains C, Cytarabine (A), Thioguanine
(T), high-dose Mitoxantrone (M), and methotrexate/L-
Asparaginase (Met/Asp) for induction or early induction.
For late consolidation, VDLP or the combined therapy of
CVCED (E: Epipodophyllotoxin and D: Dexamethasone),
and high-dose Met/Asp, E and A were utilized. Lastly, 6-
Mercaptopurine and M were used during maintenance
therapy. Imatinib was also added to regimens for patients
with Ph (+) ALL starting on day 15 of induction therapy.
The Ethics Committee of Zhongda Hospital Southeast

University and the First Affiliated Hospital of Nanjing
Medical University, Nanjing, China approved this study.

Cytogenetic and molecular analyses
Ikaros 6 (IK6), the most common expression product

from the IKZF1 deletion, was detected as previously
described32. Briefly, the isolated genomic DNA with
QIAamp DNA Blood Mini Kit (Qiagen, Germantown,
MD, USA) was utilized for performing the genomic PCR
amplification for detection of IKZF1 deletion on exons
4–7 (△4–7). The flanking deletion breakpoints of IK6
was characterized by direct sequencing of the resulted
PCR products. Cytogenetics was also analyzed as
described32.

Quantitative Real-time PCR (qPCR) assay
For qPCR of patient samples, the real-time PCR system

(StepOne Plus 7500) from Applied Biosystem-
Thermofisher (Foster, CA, USA) was utilized. Briefly,
cDNA was generated from total RNA (1.0 μg) using
SuperScript II first-Strand synthesis kit (Invitrogen,
Carlsbad, CA, USA) with poly d(T)20 primers. The genes’
mRNA level was analyzed from the resulting cDNAs on
the machine by using the specific primer of each gene.
Primers for the qPCR of ARID5B are: Sense: 5′-
TCTTAAAGGCAGACCACGCAA −3′, Anti-sense: 5′-
TGCCATCGGAATTGTTGTTGG −3′. Primers for
qPCR of 18 s rRNA were as previously reported13–15,17,31.
Two groups of the cohorts were divided as patients with
high or those with low ARID5B expression (4th quartile
vs. 1st–3rd quartiles), and SPSS 20.0 was utilized for
determination of the cut-off value. ARID5B or PHF2
expression was calculated in the individual sample by a
formula as previously described15–17,31–33. The formula
was determined from the value of a scatter Ct graph in a
serially diluted template standard. ARID5B or PHF2
expression level was normalized to housekeeping gene
18 s rRNA with a formula of ARID5B/18 s rRNA or PHF2/
18 s rRNA.
The qPCR assay was also used to analyze ARID5B

mRNA levels in the cell lines. Results of drug treatment,
Ikaros overexpression, or IKZF1 knockdown were divided
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by those acquired with housekeeping gene18s rRNA and
expressed as fold change over DMSO or vector controls.

Cell culture
The previously described Nalm6 cell line34, is verified by

the American Type Culture Collection (ATCC, Manassas,
VA). The CCRF-CEM (CEM) and HEK 293 T cell lines
were obtained from ATCC. DMEM (Cellgro, Tewksbury,
MA, USA), supplemented with 10% FBS and 1% L-
glutamine (Cellgro, Tewksbury, MA, USA) was used for
culture of HEK 293 T cells; and the 10% FBS (Hyclone,
Logon, Utah, USA) supplemented RPMI 1640 medium
(Cellgro, Tewksbury, MA, USA) for culturing Nalm6,
CEM, and primary human B-/T-ALL cells at 37 °C in a 5%
CO2 humidified atmosphere. CX-4945 was obtained from
Selleckchem (S2248, Houston, USA). Cells with or with-
out CX-4945 treatment were used for total RNA isolation,
as well as western blot.

Plasmid construction and retroviral gene transduction
Human full-length Ikaros (IKZF1) cDNA was cloned

into the retroviral vector, MSCV-IRES-GFP (MIG) with
BglII and EcoRI site15,34,35. The plasmids were transiently
transfected into amphotropic packaging HEK 293 cell
lines and the retroviruses were generated and con-
centrated as described15,34,35. Cells plated on a 24-well
plate at 4 × 10E5 cells/well were centrifuged 1400×g
in retroviral supernatants plus 12.5 mg/ml polybrene, at
32 °C, for 1 h. The cells were further cultured in fresh
media at 37 °C, 5% CO2 incubator for 3 days. The GFP(+)
cells were sorted with BD FACS Aria SORP high-
performance sorter (BD Biosciences, Sparks, MD, USA),
and the sorted cells are cultured for further RNA isolation
and ChIP assay.

Luciferase assay
LightSwitch luciferase reporter constructs for pro-

moters of ARID5B were purchased from Active Motif-
SwitchGear Genomics (Carlsbad, CA, USA). The
transfection-ready promoter plasmid, or pLightSwitch-
Rom vector, was transfected with Ikaros in pCDNA3.1
vector or vector only into HEK293 cells and the transient
luciferase assay was done with or without 10 μM CX-4945
according to Switchgear Genomics manual by a lumin-
ometer as previously described14–17,31–36. Briefly, ARID5B
promoter-reporter plasmids and pcDNA3.1-Ikaros or
pcDNA3.1 vector were delivered into HEK293 cells in 24-
well plates in a 1:3 ratio with the transfection reagent,
lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). The
cells were lysed 24 h after transfection in 100 μl of lysis
buffer (Active Motif-SwitchGear Genomics, Carlsbad,
CA, USA). Half of the lysate was used for luciferase
activity measurement on a GloMax Luminometer (Pro-
mega, Madison, WI, USA). The luciferase activity was

determined as fold change of the values from the cells
transfected with promoter construct relative to ones
obtained from pLightSwitch-Rom vector-only control
cells. Ikaros effect on the promoter activity was presented
as a ratio of Ikaros-induced luciferase activity over that of
the vector. The graphed data was the average of triplicates
which is one representative of 3 independent experiments.

Western blot assay
Nuclear extracts were isolated by osmotic swelling and

homogenization from the cells treated with different
doses of CX-4945 and DMSO as controls1,3,14,15,25. Pro-
tein concentrations were determined by the quantitative
Bradford assay. Total protein (20 μg) of each sample was
used for the western blot assay as previously descri-
bed13,15. ARID5B protein expression was detected with
the anti-ARID5B antibody (ab226776, Abcam, Cam-
bridge, MA, USA) and Lamin B was detected by the anti-
Lamin B1 antibody (VPA00119, Bio-Rad, USA) as a
loading control.

Quantitative chromatin immune precipitation (qChIP)
Chromatin from cells treated with CX-4945 was incu-

bated with antibodies against Ikaros14,15,25. Cells were
cross-linked in the 1% formaldehyde solution on ice and
the cross-link reaction was ceased with 0.125M glycine.
The chromatin for Ikaros ChIP assay was prepared from
2 × 10E7 Nalm6 or CEM cells or primary leukemia cells
(4–10 × 10E6) and fragmented with a Bioruptor (Diag-
enode, Denville, NJ) to obtain the average DNA size of
400 bp as previously described14,15,25. For ChIP assays, the
chromatin was incubated with Dyneabeads-coated affi-
nity-purified rabbit polyclonal anti-Ikaros antibody14,15,25

or normal rabbit IgG (Abcam, ab46540) as the control.
The protein/DNA complexes were isolated with a Mag-
netic separator (Invitrogen, Carlsbad, CA, USA) and
extensively washed with RIPA buffer. The ChIP’d DNA
was eluted and reversely crosslinked. The resulted sam-
ples were further treated with proteinase K digestion,
phenol/chloroform extraction, and RNaseA incubation. A
QIAquick PCR Purification kit (QIAGEN) was used for
recovering the ChIP’d DNAs. Enrichment of Ikaros-
bound-ARID5B promoter in the ChIP’d DNA sample
vs. that with normal rabbit IgG (ab171870, Abcam,
Cambridge, MA, USA) as a control was measured by
qPCR with the primers at ARID5B promoter(forward: 5′-
GCAGTCGCTGTCCGTTCAA −3′, reverse: 5′-
CAAGTGAGCAGTGCACACACA −3′)14,15,25. At least
three technical replicates were performed for each assay.
The relative Ikaros binding at the ARID5B promoter is
expressed as the fold change of Ikaros-bound DNA vs.
that of rabbit IgG controls. H3K4me3 qChIP assay was
done using the same protocol as Ikaros qChIP, with the
anti-H3K4me3 antibody (ab8580, Abcam, Cambridge,
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MA, USA), except using 1 × 10E7 cells for them as we
previously reported14,15,25.

IKZF1 shRNA knockdown
A set of 4 pGFP-V-RS constructs containing unique

human Ikaros (ikzf1) 29mer shRNA were purchased from
Origene (Rockville, MD, USA). The optimal gene
knockdown shRNA plasmid from the 4 constructs was
tested and selected using the Neon Transfection System
(Invitrogen, Carlsbad, CA, USA) for further studies. After
transfection for one day, cells were observed with 80–90%
(green cells) transfection efficiency and more than 95%
cell viability. The cells incubated with 10 μM CX-4945 or
non-treatment DMSO control for 2 days were harvested
for total RNA isolation. The cells transfected with a
scrambled shRNA (29-mer) vector were used as a control.
Ikaros level was evaluated in the cells by qPCR with
IKZF1 specific primer as previously reported15,35.

Statistical analyses
Median differences between the groups in the cohort

study were tested utilizing a Mann–Whitney U-test. The
univariate and multivariate Cox models were used for
statistical analysis of frequency differences. The Kaplan-
Meier analysis with the log-rank test was utilized to judge
the significance for RFS and OS. The date of diagnosis was
the initial point for OS, and RFS was started at the time of
declared remission to that of patients achieving complete
remission (CR). Living patients were counted on for sur-
vival at follow up. Data were graphed as mean value ±
SEM (standard error of the mean). Analysis of variance
(ANOVA) or Student t-test was used to evaluate the
statistical significance for comparisons of two groups or
comparing multiple groups, respectively.

Availability of data and materials
In accordance with local health research ethics protocols, the patient datasets
for the current study are not publicly accessible; however, it may be available
from the corresponding author.
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