
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Institute of Emerging Health Professions 
Faculty Papers The Institute of Emerging Health Professions 

12-28-2020 

Pyrrolidinyl Synthetic Cathinones α-PHP and 4F-α-PVP Metabolite Pyrrolidinyl Synthetic Cathinones -PHP and 4F- -PVP Metabolite 

Profiling Using Human Hepatocyte Incubations. Profiling Using Human Hepatocyte Incubations. 

Jeremy Carlier 
National Institutes of Health, Baltimore, MD, Marche Polytechnic University 

Xingxing Diao 
National Institutes of Health, Baltimore, MD, Chinese Academy of Sciences 

Raffaele Giorgetti 
Marche Polytechnic University 

Francesco P Busardò 
Marche Polytechnic University 

Marilyn A. Huestis 
Thomas Jefferson University, National Institutes of Health, Baltimore, MD 

Follow this and additional works at: https://jdc.jefferson.edu/iehpfp 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 
Carlier, Jeremy; Diao, Xingxing; Giorgetti, Raffaele; Busardò, Francesco P; and Huestis, Marilyn A., 
"Pyrrolidinyl Synthetic Cathinones α-PHP and 4F-α-PVP Metabolite Profiling Using Human Hepatocyte 
Incubations." (2020). Institute of Emerging Health Professions Faculty Papers. Paper 7. 
https://jdc.jefferson.edu/iehpfp/7 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Institute of Emerging Health Professions Faculty Papers by an authorized administrator of 
the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/iehpfp
https://jdc.jefferson.edu/iehpfp
https://jdc.jefferson.edu/iehp
https://jdc.jefferson.edu/iehpfp?utm_source=jdc.jefferson.edu%2Fiehpfp%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


 International Journal of 

Molecular Sciences

Article

Pyrrolidinyl Synthetic Cathinones α-PHP and 4F-α-PVP
Metabolite Profiling Using Human Hepatocyte Incubations

Jeremy Carlier 1,2,3, Xingxing Diao 1,4 , Raffaele Giorgetti 2 , Francesco P. Busardò 2,* and Marilyn A. Huestis 1,5

����������
�������

Citation: Carlier, J.; Diao, X.;

Giorgetti, R.; Busardò, F.P.; Huestis,

M.A. Pyrrolidinyl Synthetic

Cathinones α-PHP and 4F-α-PVP

Metabolite Profiling Using Human

Hepatocyte Incubations. Int. J. Mol.

Sci. 2021, 22, 230. https://doi.org/

10.3390/ijms22010230

Received: 17 November 2020

Accepted: 25 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chemistry & Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, MD 21224, USA; jerem.carlier@gmail.com (J.C.);
xxdiao@simm.ac.cn (X.D.); marilyn.huestis@gmail.com (M.A.H.)

2 Department of Excellence of Biomedical Sciences and Public Health, Unit of Forensic Toxicology,
Section of Legal Medicine, Marche Polytechnic University, 60126 Ancona, Italy; r.giorgetti@staff.univpm.it

3 Department of Anatomical, Histological, Unit of Forensic Toxicology, Section of Legal Medicine, Forensic,
and Orthopedic Sciences, Sapienza University of Rome, 00198 Rome, Italy

4 Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
5 Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA 19107, USA
* Correspondence: fra.busardo@libero.it

Abstract: For more than ten years, new synthetic cathinones (SCs) mimicking the effects of controlled
cocaine-like stimulants have flooded the illegal drug market, causing numerous intoxications and
fatalities. There are often no data on the pharmacokinetics of these substances when they first
emerge onto the market. However, the detection of SC metabolites is often critical in order to
prove consumption in clinical and forensic settings. In this research, the metabolite profile of two
pyrrolidinyl SCs, α-pyrrolidinohexaphenone (α-PHP) and 4′ ′-fluoro-α-pyrrolidinovalerophenone
(4F-α-PVP), were characterized to identify optimal intake markers. Experiments were conducted
using pooled human hepatocyte incubations followed by liquid chromatography–high-resolution
tandem mass spectrometry and data-mining software. We suggest α-PHP dihydroxy-pyrrolidinyl,
α-PHP hexanol, α-PHP 2′-keto-pyrrolidinyl-hexanol, and α-PHP 2′-keto-pyrrolidinyl as markers of
α-PHP use, and 4F-α-PVP dihydroxy-pyrrolidinyl, 4F-α-PVP hexanol, 4F-α-PVP 2′-keto-pyrrolidinyl-
hexanol, and 4F-α-PVP 2′-keto-pyrrolidinyl as markers of 4F-α-PVP use. These results represent the
first data available on 4F-α-PVP metabolism. The metabolic fate of α-PHP was previously studied
using human liver microsomes and urine samples from α-PHP users. We identified an additional
major metabolite (α-PHP dihydroxy-pyrrolidinyl) that might be crucial for documenting exposure
to α-PHP. Further experiments with suitable analytical standards, which are yet to be synthesized,
and authentic specimens should be conducted to confirm these results.

Keywords: α-PHP; PV7; 4F-α-PVP; novel psychoactive substance; synthetic cathinone; bath salt;
hepatocyte metabolism; liquid chromatography–high resolution tandem mass spectrometry

1. Introduction

Synthetic cathinones (SCs), or bath salts, are novel psychoactive substances (NPSs)
designed to induce cocaine-like stimulant effects while evading legislation and analytical
detection. SCs inhibit the transport of monoamines in the central nervous system, with
specific affinities for dopamine, norepinephrine, and serotonin transporters (DAT, NET,
and SERT, respectively), inducing euphoria and increased energy, but also tachycardia,
elevated blood pressure, hyperthermia, agitation, delirium, psychosis, and death. SC
use accounts for many intoxications and deaths, mainly through cardiac arrest or multi-
organ failure [1,2]. SC effects are closely related to their specific selectivity for DAT, NET,
and SERT. Particularly, DAT/SERT inhibition is associated with distinct psychoactive
effects and abuse liability. For example, methedrone and 4-ethylmethcathinone have
DAT/SERT inhibition ratios similar to that of 3′ ′,4′ ′-methylenedioxymethamphetamine
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(MDMA), whereas methylenedioxypyrovalerone (MDPV) and pyrovalerone have a much
higher ratio, resulting in higher reinforcing effects and abuse potential [3].

α-PHP (or PV7 or α-pyrrolidinohexaphenone, 1-phenyl-2-(1′-pyrrolidinyl)-1-hexanone)
and 4F-α-PVP (or 4′ ′-fluoro-α-pyrrolidinovalerophenone, 1-(4′ ′-fluorophenyl)-2-(1′-
pyrrolidinyl)-1-pentanone) are pyrrolidinyl SCs, characterized by the presence of a butyl
chain and a phenyl for α-PHP, and a propyl chain and a para-fluoro-phenyl ring for 4F-α-
PVP (Figure 1). Both SCs were first identified in 2014 in material seized in the Japanese
illegal drug market or for sale over the Internet [4,5]. α-PHP was recently involved in
several combined drug intoxication fatalities [6–10]. All the cases involved the co-ingestion
of other SCs, mainly α-pyrrolidinovalerophenone (α-PVP) and 3′ ′,4′ ′-methylenedioxy-α-
pyrrolidinohexiophenone (MDPHP), or often opiates and/or benzodiazepines. A total
of 13 α-PHP-related deaths were reported to the early warning system of the European
Monitoring Centre for Drugs and Drug Addiction (EMCDDA) between 2017 and 2020 [2],
with additional cases reported to the United Nations Office on Drugs and Crime (UNODC)
early warning advisory system [11]. No intoxication cases or deaths involving 4F-α-PVP
have been reported to date. Halogenated SCs inhibit SERT with a higher potency than
that of their non-halogenated analogues, inducing potentially fatal serotonin syndrome
effects—tachycardia; nausea; hyperthermia; rhabdomyolysis; psychomotor tremors; and
liver, kidney, and lung failure [12–15]. Therefore, 4F-α-PVP is expected to demonstrate
higher toxicity than α-PVP, which has been involved in many intoxications and fatali-
ties [1,2]. Halogenated SC use recently became popular, likely due to its higher potency [2],
and 4F-α-PVP use is also expected to increase. In December 2019, the World Health Or-
ganization (WHO) recommended the control of α-PHP under Schedule II of the UNODC
convention on psychotropic substances of 1971 [16]. It is currently controlled under Class B
in the United Kingdom; Schedule I in the United States; is illegal in China, Sweden, Poland,
and Italy; and is classified as a narcotic in Japan [11,17]. 4F-α-PVP is illegal in China and
classified as a designated chemical substance in Japan [17].

Figure 1. Chemical structures of α-PHP, 4F-α-PVP, and structural analogues α-PPP, α-PBP, α-PVP,
4-MeO-α-PVP, PV8, and PV9.

Exposure to α-PHP can be determined through the detection of parent drugs in biolog-
ical specimens [6–9]. α-PHP has been quantified in post-mortem cases with concentrations
ranging from 4 to 52 ng/mL in blood [6,7], 5.6 ng/mL in urine [9], 3.5 to 83.3 ng/g in tis-
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sues [9], and 4700 pg/mg in hair [8]. Although α-PHP was not the primary cause of death in
these cases, active and toxic concentrations are expected to be low. 4F-α-PVP concentrations
in biological specimens have not been reported to date. In clinical and forensic settings,
toxicologists often focus on the detection of drug metabolites in urine, which are often
detected in higher concentrations and over an extended time course. A prerequisite for the
detection of metabolites is the characterization of the drug’s metabolic fate. However, there
are often no data on SC pharmacokinetics when they first emerge onto the illegal drug mar-
ket. To date, there are no data available on 4F-α-PVP pharmacokinetics. α-PHP metabolism,
however, was investigated using human liver microsomes and authentic urine samples.
Several α-PHP metabolites were identified, mainly involving ketoreduction, pyrrolidinyl
oxidation, and N-dealkylation to N-butanoic acid or N-hydroxy-4′-ketobutyl [18]. Reduc-
tion of the ketone group is a prominent transformation in SC metabolism [19–23], but it is
not detected in human liver microsomes and human S9 fractions [24–26]. In vitro incuba-
tions with human hepatocytes have proved suitable for the prediction of NPS metabolic
fate in previous studies [27–34]. Additionally, it has proven particularly accurate for the
prediction of urinary metabolites of structural analogues α-pyrrolidinoheptaphenone (PV8)
and α-pyrrolidinopentiothiophenone (α-PVT) (Figure 1), suggesting an important hepatic
metabolism of pyrrolidinyl SCs [21,22]. Combining human hepatocyte incubations and
the analysis of urine samples from authentic users seems therefore the best strategy to
identify optimal SC use markers. Considering the potential health threat of α-PHP and
4F-α-PVP, we investigated their metabolite fate using pooled human hepatocyte incuba-
tions, liquid chromatography–high-resolution tandem mass spectrometry (LC-HRMS/MS),
and data-mining software, with the aim of identifying suitable markers of consumption.

2. Results and Discussion
2.1. α-PHP and 4F-α-PVP MS/MS Fragmentation Patterns

As expected from two structural analogues, α-PHP and 4F-α-PVP display similar
fragmentation patterns (Figures 2 and 3). Major fragments are produced through C-C
cleavage at the α carbons of the carbonyl and pyrrolidinyl groups, yielding fragments m/z
105.0334 and 140.1432 from α-PHP, and m/z 123.0241 and 126.1277 from 4F-α-PVP. Further
fragmentation and rearrangement yield the characteristic tropylium ion from α-PHP (m/z
91.0542), the fluorotropylium ion from 4F-α-PVP (m/z 109.0448), and the pyridinium
ion from both molecules (m/z 84.0808). C-C cleavage at the pyrrolidinyl α carbon also
produces fragments m/z 175.1117 and 189.1147 for α-PHP, m/z 179.0867 and 207.1052
for 4F-α-PVP, and m/z 72.0808 for both. Further fragmentation produces fragments m/z
119.0491 and 137.0397 from fragments m/z 175.1117 and 179.0867, respectively. McLafferty
rearrangement through the ionization of the oxygen atom may occur, yielding fragment
m/z 70.0652 from α-PHP and 4F-α-PVP. α-PHP fragmentation matches well with that
reported by Matsuta et al., although the instrument employed was different [35]. 4F-α-PVP
MS/MS fragmentation was described by Uchiyama et al. by gas chromatography (GC)-MS,
but the authors only identified two fragments, i.e., m/z 95 (attributed to the fluorophenyl
group) and 126 [5].

2.2. α-PHP Metabolism with Human Hepatocytes

The α-PHP signal decreased to 21% after 3 h incubation with hepatocytes, generating
a total of 24 metabolites. Five metabolites totaling more than 95% of the total metabolite
peak area are described in this article are listed from P1 to P5 by ascending retention
time (Figure 4). All metabolites were absent from controls, ruling out interferences and
non-enzymatic reactions.
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Figure 2. Product ion spectra of α-PHP (a1) and metabolites P1 (b1), P2 (c1), P3 (d1), P4 (e1), and P5 (f1), and their
postulated fragmentation patterns (a2–f2, respectively). Dashed arrow indicates fragmentation site.
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Figure 3. Product ion spectra of 4F-α-PVP (a1) and metabolites F1 (b1), F2 (c1), F3 (d1), F4 (e1), and F5 (f1), and their
postulated fragmentation patterns (a2–f2, respectively). Dashed arrow indicates fragmentation site.
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Figure 4. Combined extracted ion chromatogram of α-PHP (a), 4F-α-PVP (b), and metabolites obtained from 3 h hepatocyte
incubation. Mass tolerance, 5 ppm; RT, retention time.

Major metabolic reactions included reduction of the ketone group (P3 and P4) and
hydroxylation (P1 and P2) and oxidation (P4 and P5) of the pyrrolidinyl ring. Dealkylation
to the primary amine and alkyl hydroxylation were identified as minor phase I metabolites.
α-PHP alkyl chain transformations were less frequent than those of structural analogues
with a longer chain [20,21]. However, Manier et al. reported that α-PHP was mainly
hydroxylated at the pyrrolidinyl ring [26], in accordance with our results. In fact, the length
of the alkyl chain seems to strongly influence the metabolic pathway of analogues [35].
Phase II glucuronidations were also rare, as observed in the metabolic profile of analogues
(in vitro and in vivo) [21,22] and that of α-PHP in the urine of several users [18]. Therefore,
hydrolysis may be not a prerequisite for the detection of α-PHP and metabolites in urine.
The accurate mass molecular ion, retention time, elemental composition, nominal mass for
diagnostic product ions, and mass spectrometry peak areas (extracted ion chromatogram)
for P1–P5 are reported in Table 1. The fragmentation pattern of P1–P5 is displayed in
Figure 2. α-PHP’s metabolic pathway is proposed in Figure 5.

2.2.1. β-Ketoreduction

Reduction of the α-PHP ketone group (+2H) resulted in the formation of P3 (α-PHP
hexanol), as suggested by a +2.0157 Da mass shift from parent and a water loss (m/z
230.1899) detected in P3’s product-ion spectrum. The signal intensity of the water loss was
particularly intense, as it is favored by the proximity of the phenyl group. The low intensity
of ion m/z 70.0652 compared to m/z 72.0807), and the absence of ion m/z 177.1274 (m/z
175.1117 in α-PHP) suggested that McLafferty rearrangement did not occur, due to the
reduction of the ketone group. Instead, ion m/z 173.1198, produced by C-C cleavage at
the α carbon of the pyrrolidinyl group and a water loss, was intense. The presence of the
tropylium ion further indicated that the phenyl group did not carry the transformation.
β-ketoreduction is a prominent transformation in SC metabolism [19–23], and P3 was
indeed one of the metabolites with the most intense signal in our experiments. It was also
detected as a major metabolite by Paul et al. and Matsuta et al. in urine samples from
α-PHP users [18,35].
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Table 1. Accurate mass molecular ion, retention time (RT), elemental composition, nominal mass for diagnostic product ions, MS peak areas, and α-PHP and 4F-α-PVP metabolites peak
area fraction (sum = 95 and 98%, respectively) in hepatocyte incubations. Peak area for α-PHP and 4F-α-PVP at T0h were 6.1 × 107 and 7.5 × 107, respectively. Metabolites are listed by
ascending RT. MS, mass spectrometry; ND, not detected.

ID Biotransformation [M + H]+

(m/z) RT (min) Mass Error (ppm) Elemental
Composition

Diagnostic Product Ions
(m/z) Peak Area at T3h

Metabolites Peak
Area Fraction (%)

α-PHP Parent drug 246.1848 9.38 1.79 C16H23NO 70, 91, 105, 119, 140, 175 1.3 × 107

P1
Hydroxylation

(α-PHP
2′-hydroxypyrrolidinyl)

262.1798 8.70 1.32 C16H23NO2 70, 91, 105, 119, 156, 175 6.1 × 105 2.6%

P2
Dihydroxylation

(α-PHP
dihydroxy-pyrrolidinyl)

278.1746 9.02 1.72 C16H23NO3 87, 91, 105, 118, 174, 186 1.0 × 107 44%

P3 β-Ketoreduction
(α-PHP hexanol) 248.2005 9.66 1.63 C16H25NO 72, 91, 104, 117, 173, 230 9.7 × 106 40%

P4

β-Ketoreduction + Ketone
formation

(α-PHP
2′-ketopyrrolidinyl-hexanol)

262.1799 12.52 0.97 C16H23NO2 70, 86, 91, 98, 117, 159 1.3 × 106 5.3%

P5 Ketone formation
(α-PHP 2′-ketopyrrolidinyl) 260.1642 14.77 1.00 C16H21NO2 86, 91, 105, 129, 133, 175 7.0 × 105 2.9%

4F-α-PVP Parent drug 250.1598 8.71 1.33 C15H20FNO 70, 84, 109, 123, 126, 179 2.2 × 107

F1
Hydroxylation

(4F-α-PVP
2′-hydroxypyrrolidinyl)

266.1547 8.12 1.35 C15H20FNO2 70, 109, 123, 142, 179, 248 6.4 × 105 2.8%

F2
Dihydroxylation

(4F-α-PVP
dihydroxy-pyrrolidinyl)

282.1496 8.46 1.42 C15H20FNO3 87, 109, 123, 136, 178, 179 9.4 × 106 41%

F3 β-Ketoreduction
(4F-α-PVP hexanol) 252.1755 8.94 1.18 C15H22FNO 72, 109, 122, 190, 191, 234 9.1 × 106 40%

F4

β-Ketoreduction + Ketone
formation
(4F-α-PVP

2′-ketopyrrolidinyl-hexanol)

266.1548 11.70 1.01 C15H20FNO2 86, 98, 109, 135, 163, 248 1.7 × 106 7.4%

F5
Ketone formation

(4F-α-PVP
2′-ketopyrrolidinyl)

264.1391 14.00 1.15 C15H18FNO2 98, 109, 123, 140, 161, 179 1.6 × 106 7.1%
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Figure 5. Postulated metabolic pathway of α-PHP and 4F-α-PVP. Double arrow indicates major pathway.

Reduction of the ketone group implies the formation of a chiral center and two
diastereoisomers, depending on hydroxyl positioning. Matsuta et al. determined that the
formation of one isomer is favored over the other (ten-times higher concentration), but they
could not distinguish the two molecules [35]. Most probably, the two metabolites coeluted
in our experiments, which is not problematic considering that HRMS/MS is not suitable to
identify the two isomers.
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2.2.2. Pyrrolidinyl Hydroxylation

P1 (α-PHP 2′-hydroxy-pyrrolidinyl) was formed by hydroxylation (+O), as suggested
by a +15.9950 Da mass shift from the parents and a water loss (m/z 244.1693) detected after
fragmentation. The presence of ions m/z 91.0542, 105.0335, and 175.1117, also detected
in the α-PHP product-ion spectrum, indicated that the transformation occurred at the
pyrrolidinyl ring. Ion m/z 156.1382 (m/z 140.1432 in α-PHP) also suggested that the
hydroxylation occurred either at the pyrrolidinyl ring or the alkyl chain of the molecule.
The exact position of the hydroxylation could not be determined. However, the metabolic
profile of structural analogues α-PVP and α-PBP strongly suggests that the hydroxylation
may have occurred at position 2′ of the pyrrolidinyl ring, forming a hemiaminal group that
can be an intermediate to P4 and P5 (Section 2.2.3.) [36–38].

P2 (α-PHP dihydroxy-pyrrolidinyl) was the metabolite with the most intense signal
detected in our experiments. The +31.9898 Da mass shift from α-PHP and the two wa-
ter losses (m/z 260.1643 and 242.1535) suggested a dihydroxylation (+2O). Like P1, ions
m/z 91.0541, 105.0334, and 175.1117 indicated that the transformations occurred at the
pyrrolidinyl ring. Pyrrolidinyl dihydroxylation was also a major transformation in the
metabolic pathway of 4-methoxy-α-PVP and α-PVT, two structural analogues, using hu-
man hepatocytes and urine samples from users [22,23]. P2’s molecular mass and theoretical
formula also match those of α-PHP N-butanoic acid, which could theoretically be formed
by γ-lactam formation, then N-dealkylation and further carboxylation of the pyrrolidinyl
ring, as reported in the metabolism of SCs with an analogous structure [26]. However, the
absence of carboxylic acid loss and the presence of two water losses in the P2 fragmentation
pattern rather indicate a dihydroxylation. Additionally, Vickers and Polsky determined
that further transformation following lactam formation (Section 2.2.3.) is unlikely in the
metabolism of N-heterocycles [36]. Lactam opening was observed in the metabolism of
nicotine, an extensively studied molecule with a pyrrolidinyl substructure, but it was
only a minor metabolic pathway [39]. Paul et al. identified two major α-PHP metabolites
with P2 molecular mass in the urine of an authentic user, which they attributed to the
formation of N-butanoic acid and N-hydroxy-4′-oxobutane (M13 or M14, respectively,
in the article), both formed by lactam formation and opening of the N-heterocycle [18].
They correctly located the position of the transformations on the pyrrolidinyl ring of the
molecule (fragments m/z 91.0542 and 175.1117). Like P2 in our experiments, the authors
did not detect a carboxylic acid loss in the M13 and M14 fragmentation patterns, but they
detected one (M13) or two (M14) water losses instead. They also detected further minor
metabolites with subsequent hydroxylation and dealkylation. We believe that these data
rather point towards two different dihydroxylations at the pyrrolidinyl ring, as identified
in the present study (P2). Comparison with suitable analytical standards, which are yet
to be synthesized, would bring a definite answer. In another article, Matsuta et al. did
not identify P1 and P2 during their investigation of α-PHP metabolism using the urine of
five authentic users, as they mainly focused on the metabolic transformations at the alkyl
chain [35]. The characterization of P2, a potential major metabolite that was not reported in
previous studies, might be crucial for documenting α-PHP use.

Manier et al. determined the kinetics of α-PHP hydroxylations using human liver
microsomes and S9 human fractions [26]. They determined that cytochrome P450 (CYP) 2C9
is mainly involved in the hydroxylation of α-PHP (71% of reactions with selected enzymes);
CYP2C19, CYP3A4, and CYP2B6 catalyzed 18%, 6%, and 5% of reactions, respectively.

2.2.3. Oxidation

Pyrrolidinyl oxidation or hydroxylation and dehydrogenation (+O –2H) occurred in
P5 (α-PHP 2′-keto-pyrrolidinyl), as indicated by a +13.9794 Da mass shift from the parents
and the detection of α-PHP fragments m/z 91.0542, 105.0335, and 175.1117. P5’s late elution
compared to parents supported an oxidation at position 2′ of the pyrrolidinyl ring (γ-
lactam), which acts as a hindrance for hydrogen bonding [22]. In addition, 2′-pyrrolidinyl
oxidation is another transformation that is predominant in the metabolism pyrrolidinyl-
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containing molecules through CYP metabolism [36] and pyrrolidinyl SCs [19–24,26], and it
was also detected as a major metabolite by Paul et al. and Matsuta et al. in urine samples
from α-PHP users [18,35]. Fragment m/z 86.0600 may also be explained by another
McLafferty rearrangement through the ionization of the newly formed amide group.

Following the same reasoning, we found that P4 (α-PHP 2′-keto-pyrrolidinyl-hexanol)
was formed by oxidation at the pyrrolidinyl ring (+O –2H), as observed in P5, and a
β-ketoreduction (+2H), as observed in P3 (Section 2.2.1.).

2.3. 4F-α-PVP Metabolism with Human Hepatocytes

The 4F-α-PVP signal decreased to 29% after 3 h incubation with human hepatocytes.
A total of 11 metabolites were identified, with five molecules totaling more than 97% of the
total metabolite peak area, which were listed from F1 to F5 by ascending retention time
(Figure 4). All metabolites were absent in controls.

4F-α-PVP’s major transformations were the same as those of α-PHP, with similar
relative intensities (Table 1). Fewer minor metabolic reactions were detected, and no trans-
formations of the alkyl chain were identified, in consistency with the results of Matsuta
et al. on the influence of the alkyl chain length on the metabolic profile of analogues [35].
Several alkyl chain transformations, however, were observed in α-PVP metabolism us-
ing human hepatic microsomes and controlled administrations to rats [24]. No phase II
transformations were detected either. The fragmentation pattern of F1–F5 is displayed in
Figure 3. 4F-α-PVP’s metabolic pathway is proposed in Figure 5.

2.3.1. β-Ketoreduction

Unsurprisingly, β-ketoreduction (+2H) appeared as a major metabolic transformation
in our experiments, leading to F3 formation (4F-α-PVP hexanol). F3 fragmentation and
fragment relative intensities were very similar to those of P3 (Section 2.2.1.), with fragment
mass shifts depending on the fluorine atom and the alkyl side chain. Like α-PHP, mass
shift from parent (+2.0157 Da), and ions m/z 72.0808, 109.0448, 191.1104, and 234.1651
allowed for F3 identification. β-ketoreduction is also a major metabolic transformation of
α-PHP (Section 2.2.1.) and other SCs such as α-PBP, α-PVP, and α-PVT [19–23].

2.3.2. Pyrrolidinyl Hydroxylation

Pyrrolidinyl hydroxylation (+O) also occurred in 4F-α-PVP, producing F1 (4F-α-PVP
2′-hydroxy-pyrrolidinyl). Like F3, F1’s fragmentation pattern and fragment relative intensities
were similar to those of P1 (Section 2.2.2.). The mass shift from parents (+15.9949 Da) and
ions m/z 109.0447, 123.0239, 142.1225, 179.0865, and 248.1442 indicated a hydroxylation at
the pyrrolidinyl ring. As suggested by the metabolic profile of structural analogues α-PVP
and α-PBP, the reaction probably occurred at position 2′ of the pyrrolidinyl ring, forming a
hemiaminal group that can be an intermediate for F4 and F5 formation (Section 2.3.3.) [37,38].

Like α-PHP and other SCs [22,23], pyrrolidinyl dihydroxylation (+2O) was a major
4F-α-PVP metabolic transformation. F2 (4F-α-PVP dihydroxy-pyrrolidinyl) was identified
through the +31.9898 Da mass shift from the parents and ions m/z 109.0447, 123.0240,
and 179.0867, similar to α-PHP (Section 2.2.2.). Although the opening and carboxylation
of the pyrrolidinyl ring was observed in the metabolism of several SCs with a similar
structure [26], the absence of carboxylic acid and the presence of two water losses (m/z
264.1391 and 246.1289) in the F2 fragmentation pattern indicated a dihydroxylation.

2.3.3. Oxidation

Another frequent metabolic transformation of pyrrolidinyl SCs is the formation of
a γ-lactam [19–24,26]. The F5 (4F-α-PVP 2′-keto-pyrrolidinyl) retention time shift and
the +13.9793 Da mass shift from 4F-α-PVP, and ions m/z 109.0448, 123.0240, and 179.0866
indicated a formation of a ketone at position 2′ of the pyrrolidinyl ring, similar to α-PHP
(Section 2.2.3.).
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F4 (4F-α-PVP 2′keto-pyrrolidinyl-hexanol) was a combination of β-ketoreduction
(+2H) and pyrrolidinyl oxidation (+O –2H).

2.4. Optimal Targets for α-PHP and 4F-α-PVP

The four α-PHP metabolites with the most intense signal intensity detected after
3 h incubation with human hepatocytes were α-PHP dihydroxy-pyrrolidinyl (P2), α-PHP
hexanol (P3), α-PHP 2′-keto-pyrrolidinyl-hexanol (P4), and α-PHP 2′-keto-pyrrolidinyl (P5),
with P2 and P3 representing almost 85% of the total metabolite peak area. Similarly, the four
4F-α-PVP metabolites with the most intense signal intensity were 4F-α-PVP dihydroxy-
pyrrolidinyl (F2), 4F-α-PVP hexanol (F3), 4F-α-PVP 2′-keto-pyrrolidinyl-hexanol (F4),
and 4F-α-PVP 2′-keto-pyrrolidinyl (F5), with F2 and F3 representing more than 80% of the
total metabolite peak area. To the best of the authors’ knowledge, these metabolites were
not observed in the metabolism of other SCs and can be used as targets for α-PHP and
4F-α-PVP use. α-PiHP is an α-PHP isomer with a 4-methyl-pentanone structure instead
of a hexanone, which was recently identified in seized materials [40]. α-PiHP possesses
the same molecular formula and mass as those of α-PHP and the identification of the two
SCs could be problematic. Although the metabolic fate of α-PiHP has not yet been studied,
the alkyl chain of α-PHP major metabolites remained untransformed, and it is unlikely to
observe P2, P3, P4, or P5 in α-PiHP metabolism. Similarly, α-PHP major metabolites are
unlikely to be found in the metabolism of pyrovalerone, another isomer [41].

Glucuronide and sulfate hydrolysis are not required for PHP and 4F-α-PVP urinalysis
due to the low incidence of phase II transformations.

2.5. Analytical Considerations

GC separation should be avoided for SC testing and metabolite identification, consid-
ering their thermal degradation through oxidative decomposition [42]. This decomposition
was also observed with α-PVP, most likely resulting in formation of an enamine [43]. Al-
though derivatization can increase SC thermal stability, pyrrolidinyl SCs are not derivatized
with common reagents, and the derivatization of metabolites is not guaranteed [42]. Addi-
tionally, small molecules and metabolites may be unstable at high temperatures during
derivatization or GC testing [44]. LC-MS/MS is typically used for metabolite identification
studies, and HRMS is popular for identifying expected and unexpected metabolites with
accurate-mass capabilities. We employed a long chromatographic run to best separate
isomers and limit matrix effects. We selected a polar end-capped C18 column and a mobile
phase gradient, as previously reported in other SC metabolite identification studies [21–23].
The lack of a buffer limited interference and ammonium, sodium, and potassium adducts.
Metabolites are generally more polar than parent drugs to favor elimination. However, SC
metabolites with γ-lactam formation often appeared to elute later than parents in reversed-
phase chromatography [18,21–23,35]. Therefore, we ensured that αPHP and 4F-α-PVP
approximately eluted mid-gradient to best separate the metabolites.

MS source parameters were optimized using α-PHP and 4F-α-PVP reference standards
in an attempt to achieve good signals. However, the behavior of metabolites in these
conditions is hardly predictable. Similarly, a ramped collision energy generated many
specific fragments to allow metabolite identification, but optimal collision energy may
differ from one metabolite to another. Two different injections with a different acquisition
mode maximized the fragmentation of metabolites (Section 3.4.2.). Data-dependent MS/MS
acquisition with dynamic exclusion and apex triggering enabled us to obtain a few MS/MS
spectra for each chromatographic peak and allowed molecules with a less intense signal
intensity to also trigger MS/MS spectra.

3. Material and Methods
3.1. Chemicals and Reagents

α-PHP (1-phenyl-2-(1′-pyrrolidinyl)-1-hexanone) and 4F-α-PVP (1-(4′ ′-fluorophenyl)-
2-(1′-pyrrolidinyl)-1-pentanone) standards were purchased from Cayman Chemical (Ann
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Arbor, MI, USA), and diclofenac standard was acquired from Toronto Research Chemicals
(Toronto, ON, Canada). All the standards were dissolved in methanol to 1 mg/mL and
stored at −20 ◦C until analysis. Water, formic acid, and methanol (Optima™ LC/MS)
were from Fisher Scientific (Fair Lawn, NJ, USA), and acetonitrile was obtained from
Sigma-Aldrich® (St. Louis, MO, USA). All the solvents and reagents were LC-MS grade.
Ten-donor-pooled cryopreserved human hepatocytes and Krebs–Henseleit buffer (KHB)
were purchased from BioreclamationIVT (Baltimore, MD, USA).

3.2. Incubation with Pooled Human Hepatocytes

Incubations with human hepatocytes were conducted following our on-site workflow,
as previously described [45,46]. Briefly, the hepatocytes were thawed at 37 ◦C and solu-
bilized in KHB to 2 × 106 viable cells/mL. Two hundred fifty microliters cell suspension
was gently mixed with 250 µL of 20 µmol/L α-PHP or 4F-α-PVP in KHB and incubated
at 37 ◦C for 0 or 3 h. Reactions were quenched with 500 µL acetonitrile and incubates
were stored at −80 ◦C until analysis. Diclofenac was incubated under the same conditions
to ensure proper metabolic activity. Negative controls with α-PHP or 4F-α-PVP in KHB
without hepatocytes, and with KHB and hepatocytes without the drugs were incubated
simultaneously. Each incubation was performed once due to the high cost of pooled human
hepatocytes, but positive and negative controls were included to document appropriate
metabolic activity and control for potential interference and contribution from the blank.
The advantages and limitations of this approach are further discussed in two recent review
articles [47,48].

3.3. Sample Preparation

Incubates were thawed at room temperature and vortex mixed. One hundred mi-
croliters was vortex mixed with 100 µL acetonitrile and centrifuged at 4 ◦C, 15,000× g,
for 10 min. Supernatants were evaporated to dryness at 40 ◦C, and the residues were
reconstituted in 150 µL LC mobile phases A:B 80:20 (v/v). After centrifugation at 4 ◦C,
15,000× g, for 5 min, supernatants were transferred into LC autosampler vials with glass
inserts.

3.4. LC-HRMS/MS Parameters

LC-HRMS/MS analysis was performed on a Dionex Ultimate™ 3000 chromatography
system coupled with a Thermo Scientific Q Exactive™ (Fremont, CA, USA) Plus mass
spectrometer with a heated electrospray ionization (ESI) interface operating in positive-ion
mode. During method optimization, α-PHP and 4F-α-PVP did not produce any signal
when ESI was operated in negative-ion mode, and their metabolites were likely to produce
a signal in positive-ion mode. Data reprocessing was performed in Ancona, Italy, on a
Dionex Ultimate™ 3000 coupled with a Q Exactive™ (Ancona, Italy) combined with heated
ESI operating in the same conditions.

3.4.1. LC Parameters

Samples were kept at 15 ◦C in an autosampler and 15 µL was injected onto the
chromatographic system. Separation was achieved on a Synergi™ Hydro-RP column
(100 × 2.0 mm, 4.0 µm; Phenomenex, Torrance, CA, USA) equipped with a guard cartridge
of identical stationary phase (10 × 2.1 mm; Phenomenex) that was maintained at 30 ◦C
throughout the analysis. A 30 min elution was performed with 0.1% formic acid in water
(mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B) at a 0.4 mL/min
flow rate—the gradient started with 2% B held for 2 min, was increased to 95% B within
18 min, and was held at 95% B for 5 min, before returning to initial conditions within 1 min,
followed by a 4-min equilibration. LC efflux was diverted to waste the first 2 min and the
last 5 min of the gradient.
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3.4.2. HRMS/MS Parameters

Source parameters were optimized by post-column infusion of α-PHP and 4F-α-PVP
standards in LC mobile phases A:B 50:50 (v/v) at 0.5 mL/min. Source parameters for
α-PHP incubates were: spray voltage, 4 kV; sheath gas flow rate, 50 arbitrary units (a.u.);
auxiliary gas flow rate, 5 a.u.; sweep gas flow rate, 2 a.u.; S-lens radio frequency level,
50 a.u.; auxiliary gas heater temperature, 400 ◦C; capillary temperature, 300 ◦C. Source
parameters for 4F-α-PVP incubates were: spray voltage, 4 kV; sheath gas flow rate, 40 a.u.;
auxiliary gas flow rate, 5 a.u.; sweep gas flow rate, 2 a.u.; S-lens radio frequency level,
50 a.u.; auxiliary gas heater temperature, 500 ◦C; capillary temperature, 300 ◦C. Injections
were performed in duplicate with two different acquisition modes to obtain orthogonal
spectral information.

In a first injection, data were acquired in full-scan MS (FullMS) and data-dependent
MS/MS (ddMS2) modes, which triggered MS/MS data acquisitions based on the intensity
of the ions detected in FullMS scans and an inclusion list of expected metabolites. FullMS
settings were: resolution, 70,000; scan time, 2–25 min; mass range, m/z 100–500; automatic
gain control (AGC) target, 1 × 106; max injection time (IT), 200 ms. ddMS2 settings were:
resolution, 17,500; topN, 5 (pick others if idle); intensity threshold, 2 × 104; isolation
window, m/z 1.5; normalized collision energy (NCE), 40%, 50%, and 60% (35%, 50%,
and 65% for 4F-α-PVP); apex triggering, 3–6 s; dynamic exclusion, 2 s; AGC target, 1 × 105;
max IT, 50 ms. Inclusion lists were generated based on prior metabolite identification
studies [21–23,49] and postulation (Table 2).

Table 2. Inclusion and neutral loss lists for the FullMS/ddMS2 and FullMS/AIF/ddMS2 acquisitions, respectively, used
during HRMS analysis of hepatocytes incubations. FullMS/ddMS2, full-scan mass spectrometry/data-dependent tandem
mass spectrometry; FullMS/AIF/ddMS2, full-scan mass spectrometry/all-ion fragmentation/data-dependent tandem mass
spectrometry; HRMS, high resolution mass spectrometry.

α-PHP.

FullMS/ddMS2 acquisition
[M + H]+ (m/z) Formula [M + H]+ (m/z) Formula [M + H]+ (m/z) Formula

192.1383 C12H17NO 260.1645 C16H21NO2 280.1907 C16H25NO3
208.1332 C12H17NO2 262.1802 C16H23NO2 292.1543 C16H21NO4
244.1696 C16H21NO 264.1958 C16H25NO2 296.1856 C16H25NO4
246.1852 C16H23NO 276.1594 C16H21NO3 342.1370 C16H23NSO5
248.2009 C16H25NO 278.1751 C16H23NO3 438.2122 C22H31NO8

FullMS/AIF/ddMS2 acquisition
Neutral loss (m/z) Fragment loss Neutral loss (m/z) Fragment loss Neutral loss (m/z) Fragment loss
−57.0704 −C4H9 −127.1361 −C8H17N −174.1044 −C12H14O
−71.0735 −C4H9N −141.1517 −C9H19N −176.1201 −C12H16O
−79.9563 −SO3 −155.1310 −C9H17NO −176.0315 −C6H8O6
−106.0418 −C7H6O −162.1044 −C11H14O

4F-α-PVP

FullMS/ddMS2 acquisition
[M + H]+ (m/z) Formula [M + H]+ (m/z) Formula [M + H]+ (m/z) Formula

194.1176 C11H15NO2 252.1758 C15H22FNO 282.1700 C15H23NO4
196.1132 C11H14FNO 262.1438 C15H19NO3 284.1657 C15H22FNO3
212.1081 C11H14FNO2 264.1394 C15H18FNO2 296.1293 C15H18FNO4
232.1696 C15H21NO 264.1594 C15H21NO3 300.1606 C15H22FNO4
246.1489 C15H19NO2 266.1551 C15H20FNO2 328.1213 C15H21NSO5
248.1445 C15H18FNO 268.1707 C15H22FNO2 346.1119 C15H20FNSO5
248.1645 C15H21NO2 278.1387 C15H19NO4 424.1966 C21H29NO8
250.1602 C15H20FNO 280.1344 C15H18FNO3 442.1872 C21H28FNO8
250.1802 C15H23NO2 282.1500 C15H20FNO3
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Table 2. Cont.

FullMS/AIF/ddMS2 acquisition
Neutral loss (m/z) Fragment loss Neutral loss (m/z) Fragment loss Neutral loss (m/z) Fragment loss
−43.0548 −C3H7 −124.0325 −C7H5FO −176.0315 −C6H8O6
−71.0735 −C4H9N −127.1361 −C8H17N −178.0794 −C11H11FO
−79.9563 −SO3 −141.1154 −C8H15NO −180.0951 −C11H13FO
−113.1205 −C7H15N −166.0794 −C10H11FO

Bold indicates parent drugs.

In a second injection, data were acquired in FullMS/all-ion fragmentation (AIF)/ddMS2

mode, which triggered MS/MS data acquisitions based on specific neutral losses detected
in FullMS and AIF scans. FullMS and ddMS2 settings were the same as described above.
Resolution, intensity threshold, mass range, NCE, AGC target, and max IT were the same
as those of ddMS2. Neutral loss lists were generated based on the fragmentation pattern
of parent drugs, i.e., α-PHP or 4F-α-PVP, in the conditions of the analysis, and including
glucuronide and sulfate losses in case of phase II metabolism (Table 2).

3.5. Metabolite Identification

Raw data files from 0 and 3 h incubations and controls were processed with Compound
Discoverer™ (Thermo Scientific; Ancona, Italy) and compiled in a single analysis. Retention
times of the chromatographic peaks were aligned following an adaptive curve model
with a 5-ppm mass tolerance and a 0.1-min maximum time shift. Mass tolerance for MS
identification was 5 ppm, with a 13,000 intensity threshold (20,000 for 4F-α-PVP) and a 50%
intensity tolerance for isotopes. Mass tolerance for fragment identification was 10 ppm,
with a signal-to-noise ratio higher than 3. Chromatographic peaks detected in controls
with a similar or higher intensity than α-PHP and 4F-α-PVP incubations were filtered out.
Detected peaks were compared to a list of theoretical molecules automatically generated
by a combination of probable metabolic transformations, following the settings displayed
in Table 3.

Table 3. Compound Discoverer™ processing settings for identifying α-PHP and 4F-α-PVP metabolites.

α-PHP 4F-α-PVP

Phase I expected transformations

Dehydrogenation (–2H), dihydrodiol
formation (+2O +2H), oxidation (+O),

oxidative deamination to alcohol (–N +O
–H), oxidative deamination to ketone (–N

+O –3H), reduction (+2H)

Dehydrogenation (–2H), dihydrodiol
formation (+2O +2H), oxidation (+O),

oxidative deamination to alcohol (–N +O
–H), oxidative deamination to ketone (–N
+O –3H), oxidative defluorination (–F +O

+H), reduction (+2H), reductive
defluorination (–F +H)

Phase II expected transformations
Acetylation (+2C +O +2H),

glucuronidation (+6C +6O +10H),
sulfation (+S +3O)

Acetylation (+2C +O +2H),
glucuronidation (+6C +6O +10H),

sulfation (+S +3O)

Maximum number of dealkylation steps 2 2

Maximum number of phase II reactions 1 1

Maximum number of reactions 5 5

4. Conclusions

We have provided the first metabolic profile of 4F-α-PVP and identified an additional
major metabolite of α-PHP using human hepatocyte incubations, LC-HRMS/MS analysis,
and data-mining software. We suggest α-PHP dihydroxy-pyrrolidinyl (P2), α-PHP hexanol
(P3), α-PHP 2′-keto-pyrrolidinyl-hexanol (P4), and α-PHP d2′-keto-pyrrolidinyl (P5) as
markers of α-PHP use, and 4F-α-PVP dihydroxy-pyrrolidinyl (F2), 4F-α-PVP hexanol (F3),
4F-α-PVP 2′-keto-pyrrolidinyl-hexanol (F4), and 4F-α-PVP d2′-keto-pyrrolidinyl (F5) as
markers of 4F-α-PVP use. The identification of this new α-PHP metabolite (P2) may be
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critical to prove α-PHP use in clinical or forensic settings and to further substantiate find-
ings from hepatic microsome investigations. These results must be confirmed with further
experiments using suitable reference standards. Additionally, these are also valuable data
for standard manufacturers to focus their synthesis efforts. Further pharmacokinetic and
pharmacodynamic studies should be performed to better understand the effects of α-PHP
and 4F-α-PVP.
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Abbreviations
SC Synthetic cathinone
NPS Novel psychoactive substance
DAT Dopamine transporter
NET Norepinephrine transporter
SERT Serotonin transporter
MDMA 3”,4”-Methylenedioxymethamphetamine
MDPV Methylenedioxypyrovalerone
α-PHP α-pyrrolidinohexaphenone
4F-α-PVP 4”-Fluoro-α-pyrrolidinovalerophenone
α-PVP α-Pyrrolidinovalerophenone
MDPH 3”,4”-Methylenedioxy-α-pyrrolidinohexiophenone
EMCDDA European Monitoring Centre for Drugs and Drug Addiction
UNODC United Nations Office on Drugs and Crime
WHO World Health Organization
PV8 α-Pyrrolidinoheptaphenone
α-PVT α-Pyrrolidinopentiothiophenone
LC Liquid chromatography
MS Mass spectrometry
MS/MS Tandem mass spectrometry
HRMS High resolution mass spectrometry
GC Gas chromatography
FullMS Full scan
ddMS2 Data-dependent tandem mass spectrometry
AIF All-ion fragmentation
AGC Automatic gain control
IT Injection time
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